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Abstract

An almost sure limit theorem for the maxima of multivariate stationary Gaussian sequences is proved
under some mild conditions.
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1. Introduction

Let X, X1, X2, . . . be independent and identically distributed random variables with
E(X)= 0, Var(X)= 1 and partial sums Sn =

∑n
k=1 Xk . The simplest version of the

almost sure central limit theorem (ASCLT) for partial sums says that

lim
n→∞

1
log n

n∑
k=1

1
k

I

(
Sk
√

k
≤ x

)
=8(x) a.s. (1.1)

for all x , where I (A) is the indicator function of the event A and 8(x) stands for the
standard Gaussian distribution; see [2, 4, 11, 14]. The functional version of the ASCLT
for partial sums is treated in [3]. Fazekas and Chuprunov [9] provide examples where
the ASCLT holds but the usual limit theorem does not.

Berkes and Csáki [2] consider the ASCLT for partial maxima of independent and
identically distributed random variables; this was also treated previously by Fahrner
and Stadtmüller [8] and independently by Cheng et al. [6]. The ASCLT for partial
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maxima states that if there exist real sequences an > 0, bn ∈ R and a nondegenerate

distribution G(x) such that P(Mn < a−1
n x + bn)

d
→ G(x), then

lim
n→∞

1
log n

n∑
k=1

1
k

I
(
ak(Mk − bk) < x

)
= G(x) a.s. (1.2)

for all x , where Mn =max1≤i≤n X i . There are a few results on dependent random
variables in the literature. For example, in [7] Csáki and Gonchigdanzan considered
the ASCLT for the maximum of certain stationary Gaussian sequences under some
weak dependence conditions, whereas Chen and Lin [5] extended (1.2) to some
nonstationary Gaussian sequences.

In this paper we extend the ASCLT to multivariate stationary Gaussian sequences,
under some regularity conditions. To our knowledge, this is the first result to appear
on the topic in the multivariate setting.

Throughout the paper, let {Zi = (Zi (1), Zi (2), . . . , Zi (d)) : i ≥ 1} be a standard-
ized stationary Gaussian vector sequence with

E Zn = (E Zn(p)= 0 : p = 1, . . . , d), Var Zn = (Var Zn(p)= 1 : p = 1, . . . , d),

ri j (p)= Cov(Zi (p), Z j (p))= r| j−i |(p),

ri j (p, q)= Cov(Zi (p), Z j (q))= r| j−i |(p, q).

We write Mn = (Mn(1), . . . , Mn(d)) and Mn(p)=max1≤i≤n Zi (p), and shall
always take 1≤ p 6= q ≤ d; un = (un(1), . . . , un(d)) will be a real vector,
and un > uk means un(p) > uk(p) for p = 1, . . . , d , while a� b stands
for a = O(b).

2. The main results

THEOREM 2.1. Let Z1, Z2, . . . be a standardized stationary Gaussian vector
sequence which satisfies:

(a) rn(p)→ 0 as n→∞ for 1≤ p ≤ d, and maxp 6=q
(
supn≥0 |rn(p, q)|

)
< 1;

(b) for some γ > 2 and ε > 0,

1
n

d∑
p=1

n∑
k=1

(|rk(p)| log k) exp(γ |rk(p)| log k)� (log log n)−(1+ε), (2.1)

1
n

∑
1≤p 6=q≤d

n∑
k=1

(|rk(p, q)| log k) exp(γ |rk(p, q)| log k)� (log log n)−(1+ε).

(2.2)

Then, as n(1−8(un(p)))→ τp for 0≤ τp <∞ and p = 1, . . . , d,

lim
n→∞

1
log n

n∑
k=1

1
k

I (Mk ≤ uk)=

d∏
p=1

e−τp a.s.
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In particular, for un(p)= a−1
n x p + bn where x p ∈ R and p = 1, 2, . . . , d,

lim
n→∞

1
log n

n∑
k=1

1
k

I (Mk ≤ uk)=

d∏
p=1

e−e−x p
a.s.,

with an = (2 log n)1/2 and bn = an − (1/2)a−1
n log(4π log n).

THEOREM 2.2. Let Z1, Z2, . . . be a standardized stationary Gaussian vector
sequence with

rn(p) log n(log log n)1+ε = O(1), (2.3)

max
p 6=q

(
sup
n≥0
|rn(p, q)|

)
< 1, rn(p, q) log n(log log n)1+ε = O(1), (2.4)

for some ε > 0 when 1≤ p 6= q ≤ d. Then

lim
n→∞

1
log n

n∑
k=1

1
k

I (Mk ≤ uk)=

d∏
p=1

e−τp a.s. (2.5)

as n(1−8(un(p)))→ τp for 0≤ τp <∞ and p = 1, . . . , d. In particular, for
un(p)= a−1

n x p + bn where x p ∈ R and p = 1, 2, . . . d,

lim
n→∞

1
log n

n∑
k=1

1
k

I (Mk ≤ uk)=

d∏
p=1

exp(−e−x p ) a.s. (2.6)

REMARK. Theorems 2.1 and 2.2 are multivariate versions of [7, Theorem 1.1], and
Theorem 2.2 is an obvious consequence of Theorem 2.1.

3. Proofs

For the proof of the main results, we need the following lemmas.

LEMMA 3.1. Let {ξn}
∞

n=1 and {ηn}
∞

n=1 be d-dimensional standardized stationary
Gaussian sequences with

r0
i j (p)= Cov(ξi (p), ξ j (p)), r0

i j (p, q)= Cov(ξi (p), ξ j (q))

and
r ′i j (p)= Cov(ηi (p), η j (p)), r ′i j (p, q)= Cov(ηi (p), η j (q)).

Write

ρi j (p)=max(|r0
i j (p)|, |r

′

i j (p)|), ρi j (p, q)=max(|r0
i j (p, q)|, |r ′i j (p, q)|),

and let ui = (ui (1), ui (2), . . . , ui (d)), i ≥ 1, be real vectors. If

max
1≤i< j≤n

1≤p≤d

(ρi j (p)) < 1 and max
1≤i≤ j≤n
1≤p 6=q≤d

(ρi j (p, q)) < 1,
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then

|P(ξ j ≤ u j ∀ j = 1, . . . , n)− P(η j ≤ u j ∀ j = 1, . . . , n)|

≤ K1

d∑
p=1

∑
1≤i< j≤n

|r0
i j (p)− r ′i j (p)| exp

(
−

u2
i (p)+ u2

j (p)

2(1+ ρi j (p))

)

+ K2

d∑
1≤p 6=q≤d

∑
1≤i≤ j≤n

|r0
i j (p, q)− r ′i j (p, q)| exp

(
−

u2
i (p)+ u2

j (q)

2(1+ ρi j (p, q))

)
(3.1)

where K1, K2 are absolute constants.

PROOF. This is a special case of the normal comparison lemma [12, see
Theorem 4.2.1]. 2

LEMMA 3.2. Let Z1, Z2, . . . be a standardized stationary Gaussian vector sequence
such that conditions (a) and (b) of Theorem 2.1 hold, and further suppose that
n(1−8(un(p))) is bounded for p = 1, . . . , d. Then, for some ε > 0,

sup
1≤k≤n

k
d∑

p=1

n∑
j=1

|r j (p)| exp
(
−

u2
k(p)+ u2

n(p)

2(1+ |r j (p)|)

)
� (log log n)−(1+ε), (3.2)

sup
1≤k≤n

k
∑

1≤p 6=q≤d

n∑
j=1

|r j (p, q)| exp
(
−

u2
k(p)+ u2

n(q)

2(1+ |r j (p, q)|)

)
� (log log n)−(1+ε).

(3.3)

PROOF. This is the multivariate version of [7, Lemma 2.1]. Here we may
assume, for each p = 1, 2, . . . , d , that n(1−8(un(p)))= C p for some constant C p
[12, Lemma 4.3.2]. Also,

k
∑

1≤p 6=q≤d

n∑
j=1

|r j (p, q)| exp
(
−

u2
k(p)+ u2

n(q)

2(1+ |r j (p, q)|)

)

= k
∑

1≤p 6=q≤d

[nβ ]∑
j=1

|r j (p, q)| exp
(
−

u2
k(p)+ u2

n(q)

2(1+ |r j (p, q)|)

)

+ k
∑

1≤p 6=q≤d

n∑
j=[nβ ]+1

|r j (p, q)| exp
(
−

u2
k(p)+ u2

n(q)

2(1+ |r j (p, q)|)

)
=: A1 + B1,

where 0< β < 2/γ . Similarly to [7, proof of Lemma 2.1], we find that

A1� (log log n)−(1+ε)
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and

B1 ≤
1

nβ

n∑
j=1

|r j (p, q)|(log j) exp(γ |r j (p, q)| log j)

� (log log n)−(1+ε).

Thus, (3.3) holds. The proof of (3.2) follows similar arguments and is therefore
omitted. 2

LEMMA 3.3. Let Z1, Z2, . . . be a d-dimensional standardized stationary Gaussian
sequence with rn(p)→ 0 as n→∞ for 1≤ p ≤ d, and maxp 6=q(supn≥0 |rn(p, q)|)
< 1. Assume that, for some constant γ > 2,

1
n

d∑
p=1

n∑
k=1

|rk(p)| log k exp(γ |rk(p)| log k)→ 0, (3.4)

1
n

∑
1≤p 6=q≤d

n∑
k=1

|rk(p, q)| log k exp(γ |rk(p, q)| log k)→ 0. (3.5)

Then, as n(1−8(un(p)))→ τp for 0≤ τp <∞ and p = 1, . . . , d,

lim
n→∞

P(Mn ≤ un)=

d∏
p=1

e−τp . (3.6)

Also, for un(p)= a−1
n x p + bn where x p ∈ R and p = 1, . . . , d,

lim
n→∞

P(Mn ≤ un)→

d∏
p=1

exp(−e−x p ). (3.7)

PROOF. From Lemma 3.1 and arguments similar to those used in [12, proof of Lemma
4.5.1], we obtain

lim
n→∞

∣∣∣∣P(Mn ≤ un)−

d∏
p=1

8n(un(p))

∣∣∣∣= 0.

Note that

lim
n→∞

d∏
p=1

8n(un(p))=
d∏

p=1

exp(−e−x p ),

and the result follows.
From Lemma 3.2 and arguments similar to those used in [7, proofs of Lemmas 2.3

and 2.4], we get the following two lemmas. 2
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LEMMA 3.4. Under the conditions of Theorem 2.1,∣∣Cov
(
I (Mk ≤ uk), I (Mk,n ≤ un)

)∣∣� (log log n)−(1+ε),

where Mk,n = (Mk,n(p)=maxk+1≤i≤n(Zi (p)) : p = 1, 2, . . . , d).

LEMMA 3.5. Under the conditions of Theorem 2.1,

E
∣∣I (Mn ≤ un)− I (Mk,n ≤ un)

∣∣� k

n
+ (log log n)−(1+ε).

PROOF OF THEOREM 2.1. If

Var
( n∑

k=1

1
k
αk

)
� (log n)2(log log n)−(1+ε), (3.8)

where αk = I (Mk ≤ uk), then the result follows from [7, Lemma 3.1] and Lemma 3.3
above.

From Lemmas 3.4 and 3.5 above, we have, for 1≤ k < l ≤ n,

|Cov(αk, αl)| = |Cov(I (Mk ≤ uk), I (Ml ≤ ul))|

≤ |Cov(I (Mk ≤ uk), I (Ml ≤ ul)− I (Mk,l ≤ ul))|

+ |Cov(I (Mk ≤ uk), I (Mk,l ≤ ul))|

≤ 2E |I (Ml ≤ ul)− I (Mk,l ≤ ul)| + |Cov(I (Mk ≤ uk), I (Mk,l ≤ ul))|

�
k

l
+ (log log n)−(1+ε).

Hence

Var
( n∑

k=1

1
k
αk

)
=

n∑
k=1

1

k2 Var(αk)+ 2
∑

1≤k<l≤n

Cov(αk, αl)

kl

≤

n∑
k=1

1

k2 + 2
∑

1≤k<l≤n

Cov(αk, αl)

kl

≤

n∑
k=1

1

k2 + 2
∑

1≤k<l≤n

1
kl

(
k

l
+ (log log l)−(1+ε)

)

� log n +
n∑

l=3

1

l(log log l)(1+ε)

l−1∑
k=1

1
k

� (log n)2(log log n)−(1+ε).

The proof of Theorem 2.1 is therefore complete.

Acknowledgements

The authors would like to thank the referee and the associate editor for carefully
reading the paper and greatly helping to improve it.

https://doi.org/10.1017/S1446788708000797 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000797


[7] An almost sure limit theorem 321

References

[1] F. Amram, ‘Multivariate extreme value distributions for stationary Gaussian sequences’,
J. Multivariate Anal. 16 (1985), 237–240.

[2] I. Berkes and E. Csáki, ‘A universal result in almost sure central limit theory’, Stochastic Process.
Appl. 94 (2001), 105–134.

[3] I. Berkes, E. Csáki and L. Horváth, ‘Almost sure central limit theorems under minimal conditions’,
Statist. Probab. Lett. 37 (1998), 67–76.

[4] G. Brosamler, ‘An almost everywhere central limit theorem’, Math. Proc. Cambridge Philos. Soc.
104 (1988), 561–574.

[5] S. Chen and Z. Lin, ‘Almost sure max-limits for nonstationary Gaussian sequence’, Statist. Probab.
Lett. 76 (2006), 1175–1184.

[6] S. Cheng, L. Peng and Y. Qi, ‘Almost sure convergence in extreme value theory’, Math. Nachr.
190 (1998), 43–50.

[7] E. Csáki and K. Gonchigdanzan, ‘Almost sure limit theorem for the maximum of stationary
Gaussian sequences’, Statist. Probab. Lett. 58 (2002), 195–203.

[8] I. Fahrner and U. Stadtmüller, ‘On almost sure max-limit theorems’, Statist. Probab. Lett. 37
(1998), 229–236.

[9] I. Fazekas and A. Chuprunov, ‘An almost sure functional limit theorem for the domain of geometric
partial attraction of semistable laws’, J. Theoret. Probab. 20 (2007), 339–353.

[10] J. Hüsler, ‘Multivariate extreme value in stationary random sequences’, Stochastic Process. Appl.
35 (1990), 109–119.

[11] M. Lacey and W. Philipp, ‘A note on the almost sure central limit theorem’, Statist. Probab. Lett.
9 (1990), 201–205.

[12] M. R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and Related Properties of Random
Sequences and Processes (Springer, New York, 1983).

[13] S. I. Resnick, Extreme Values, Regular Variation and Point Processes (Springer, New York, 1987).
[14] P. Schatte, ‘On strong versions of the central limit theorem’, Math. Nachr. 137 (1988), 249–256.

ZHICHENG CHEN, Department of Mathematics, Henan Institute of Science and
Technology, Xinxiang 453003, PR China
e-mail: www.maths@163.com

ZUOXIANG PENG, School of Mathematics and Statistics, Southwest University,
Chongqing 400715, PR China
e-mail: pzx@swu.edu.cn

HONGYUN ZHANG, Department of Mathematics, Henan Institute of Science and
Technology, Xinxiang 453003, PR China
e-mail: zhhy2008@163.com

https://doi.org/10.1017/S1446788708000797 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000797

