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ABSTRACT. We propose a novel Eulerian algorithm to compute the changes of a glacier geometry for
given mass balances. The surface of a glacier is obtained by solving a transport equation for the volume
of fluid (VOF). The surface mass balance is taken into account by adding an interfacial term in the
transport equation. An unstructured mesh with standard stabilized finite elements is used to solve the
non-linear Stokes problem. The VOF function is computed on a structured grid with a high resolution.
The algorithm is stable for Courant numbers larger than unity and conserves mass to a high accuracy.
To demonstrate the potential of the algorithm, we apply it to reconstructed Late-glacial states of a small
valley glacier, Vadret Muragl, in the Swiss Alps.

INTRODUCTION
We present a new transport algorithm to compute the
evolution of the surface of a glacier for a given mass-balance
input. The algorithm is mass-conserving to a high accuracy
and it is stable and efficient for a large range of glacier
geometries.
Several three-dimensional ice-sheet models based on

the shallow-ice approximation apply finite differences for
the computation of the flow and temperature fields, and
for the surface evolution (Huybrechts and others, 1997).
Similarly, three-dimensional glacier models applying higher-
order mechanics have been introduced (Albrecht and others,
2000; Pattyn, 2003; Saito and others, 2006), that apply
finite-difference methods. With the availability of versatile
packages, further glacier models applied finite elements
to obtain full Stokes solutions of three-dimensional ice
flow (Gudmundsson, 1999; Zwinger and others, 2007;
Gagliardini and Zwinger, 2008). Mesh generation is still a
demanding task and, thus, three-dimensional models with a
moving surface that apply finite elements or finite volumes
have emerged only recently (Martı́n and others, 2004; Reist,
2005; Deponti and others, 2006). The requirement to adapt
the mesh every time-step may cause problems at ice margins
with large curvature or with steep bed slopes.
In this paper, we propose a different approach for handling

the surface evolution of a glacier. The presence of ice
is indicated by a volume of fluid (VOF) function, which
takes the value of 1 inside and 0 outside the glacier. This
description allows the geometry of the glacier to change
its topology. The full Stokes solution of the flow field is
computed on a fixed unstructured mesh, and the varying
surface is computed on a fixed and regular Cartesian grid
with high resolution, by solving an equation for the mass
transport for the VOF function. Two mass-conserving post-
processing steps prevent numerical diffusion and numerical
compression. The surface mass balance is taken into account
by adding a source term to the transport equation.
In the next two sections, we outline the theoretical found-

ation of the transport equation and describe the numerical
methods used to solve the free-boundary problem. Then an

application of the method to various reconstructed states of
Vadret Muragl in the eastern Swiss Alps demonstrates the
possibilities of the model.

MODELLING
Velocity and pressure fields
Let Λ = [0,X ] × [0,Y ] × [Z ,Z ] be a box containing the
domain of ice Ω(t ) occupied by a glacier when time t varies
from 0 to T . The volume, Ω(t ), is bounded by the base,

ΓB = {(x, y , z) such that z = B(x, y )}, (1)

and the ice–air interface:

ΓS(t ) = {(x, y , z) such that z = S(t , x, y )}, (2)

where B(x, y ) and S(t , x, y ) are functions defined for (x, y ) ∈
[0,X ]× [0,Y ] (Fig. 1).
When the ice domain, Ω(t ), is known, the velocity,

U = (u, v ,w ), and pressure, p, satisfy the incompressible
stationary Stokes equations in Ω(t ) (Glen, 1958):

−∇ · [2μ(U)ε(U)] +∇p = ρg, (3)

∇ · U = 0, (4)
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Fig. 1. The box, Λ, showing altitude of ice base, B, ice thickness, H,
and ice velocity, U. The ice domain, surface and base are denoted
by Ω, ΓS and ΓB, respectively, and ϕ is the VOF function.
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where ε(U) = 0.5 (∇U + ∇Ut ) is the strain tensor, ρ is
the ice density and g is acceleration due to gravity. The
viscosity, μ(U), in Equation (3) is defined as being the unique
solution of

1
2μ

= A
[
σn̄−10 + (2με(II)(U))

n̄−1
]
, (5)

where ε(II)(U) =
√
0.5 tr(ε(U) · ε(U)), A is the rate factor and

n̄ is Glen’s exponent. The term σ0 is a regularization of
Glen’s flow law to prevent infinite viscosity at vanishing
effective stress (Nye, 1953; Glen, 1958; Meier, 1958). No
slip conditions are applied on the mountain base:

U = 0 on ΓB. (6)

A zero force condition holds on the ice–air interface:

2μ(U)ε(U) · ν − pν = 0 on ΓS(t ), (7)

where ν is the normal outwards vector along ΓS(t ).

A Eulerian formulation for the transport of ice
Several procedures (e.g. Scardovelli and Zaleski, 1999) may
be used to compute the motion of the ice–air free surface,
ΓS(t ), and consequently to determine the domain, Ω(t ).
Two classes of methods can be distinguished: Lagrangian
methods and Eulerian methods. The principle of Lagrangian
methods is to track each point of the ice–air free surface,
while Eulerian methods introduce a new variable, ϕ, defined
in the whole box, Λ, from which the position of the ice–air
interface is obtained.
Two models describing the motion of the ice region are

presented here. The first is the most often used currently in
the field of glaciology (Picasso and others, 2004; Deponti
and others, 2006) and is a Lagrangian method. The second
adopts the Eulerian viewpoint which allows possible changes
of topology.
Let b(t , x, y , z) be the thickness of a layer of ice added

(accumulation) or removed (ablation) during a given time-
step. This function may depend on the position, (x, y , z), and
time, t . However, in all examples presented in this paper, it
is assumed to be only a function of the altitude, z = z(x, y ),
of the ice surface (b = b(t , z) in what follows).

The Lagrangian model: Saint-Venant
The thickness of the ice is given by H(t , x, y ) = S(t , x, y ) −
B(x, y ), where S and B are the elevations of the ice surface
and bed, respectively. The mass balance of a vertical column
(Picasso and others, 2004; Deponti and others, 2006) yields
the Saint-Venant equation,(

∂

∂t
H +

∂

∂x
(ūH) +

∂

∂y
(v̄H)

)
(t , x, y ) = b(t , S(t , x, y )), (8)

where

ū(t , x, y ) =
1

H(t , x, y )

∫ S (t ,x ,y )

B(x ,y )
u(t , x, y , z) dz (9)

and v̄ (t , x, y ) is defined correspondingly.

The Eulerian model: volume of fluid
Among the Eulerian methods, the level-set approach is most
common (Osher and Fedkiw, 2001). It has been used to
describe the changes of glacier surfaces by Pralong and
others (2003). In this paper, the VOF method is preferred
to follow the changes of the domain of ice, Ω(t ) (Scardovelli
and Zaleski, 1999). The level-set method defines the free

boundary by the level line of a smooth function, whereas
the VOF method uses a discontinuous function. The VOF
fraction, ϕ, is defined in the box, Λ, by:

ϕ(t , x, y , z) =

{
1, if (x, y , z) ∈ Ω(t ),
0, otherwise.

(10)

This method has already been used to simulate Newtonian
and viscoelastic flows with complex free surfaces (Maronnier
and others, 2003; Bonito and others, 2006). With a given
local mass balance, we now derive an equation for ϕ that is
compatible with Equation (8).
At time t , consider an arbitrary volume, V , containing part

of the ice–air interface (ΓS(t ) ∩ V �= ∅). The mass difference
in the volume, V , between time t and t +Δt is given by:∫

V
ρϕ(t +Δt , x, y , z) dV −

∫
V

ρϕ(t , x, y , z) dV . (11)

Assuming that the divergence-free velocity field, U, can be
extended smoothly in the box, Λ, the mass flux and the mass
budget between t and t + Δt on the ice–air interface is
given by

−Δt
∫

∂V
ρϕ(t , x, y , z)U · ν dS +Δtρ

∫
ΓS(t )∩V

b dS, (12)

where ∂V is the boundary of V and ν is the unit normal
outwards to ∂V . Considering the equality of quantities (11)
and (12) and applying the divergence theorem, we obtain,
when Δt goes to zero,∫

V

∂ϕ

∂t
dV = −

∫
V
div(ϕU) dV +

∫
ΓS(t )∩V

b dS. (13)

Since U is divergence-free, we obtain

∂ϕ

∂t
(t , x, y , z) + U · ∇ϕ(t , x, y , z) = b(t , z) δΓS(t ), (14)

where δΓS(t ) is the three-dimensional Dirac delta function
on the surface ΓS(t ). Since ϕ(t , x, y , z) is discontinous at
ΓS(t ) ∪ ΓB, its derivatives with respect to time and space in
Equation (14) must be understood in a weak sense. (Refer
to appendix A of Cottet and Koumoutsakos (2000) for a
precise mathematical definition of weak derivatives and
weak solutions for transport problems.)

Relation to the Saint-Venant equation
It can be shown that the model (14) includes the Saint-Venant
model (8) in the following sense: if ϕ is a solution of (14) and
if H(t , x, y ) is the thickness of the glacier defined by

H(t , x, y ) =
∫ Z

Z
ϕ(t , x, y , z) dz, (15)

then H(t , x, y ) is the solution of Equation (8). This is the
consequence of a formal integration of Equation (14) from
Z to Z (Fig. 1). Note that ϕ can be deduced from H using
the following relation:

ϕ(t , x, y , z) =

{
1, if 0 ≤ z − B(x, y ) ≤ H(t , x, y ),
0, otherwise.

(16)

The VOF model strictly includes the Saint-Venant model.
Furthermore, the VOF function can describe ice cliffs and
overhanging ice.
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Summary of the model
Let Ω(0) be the initial domain of the glacier and ϕ(0, x, y , z)
be the corresponding VOF deduced using Equation (10), then
the problem is to find a set of (ϕ,U, p) that satisfies the
advection problem, Equation (14), and the elliptic problem,
Equations (3–7), with the initial condition ϕ(0, x, y , z).

NUMERICAL METHOD
Let 0 = t0 < t1 < · · · < tN = T be a uniform subdivision
of the time interval [0, T ], t i = i Δt , where Δt = T

N is the
time-step. Assume that ϕn , Un and pn , approximations of
ϕ, U and p at time tn , are available. We now describe how
ϕn+1, Un+1 and pn+1 are computed.

Time-splitting scheme for Equation (14)
Suppose ϕn is known, then the numerical method for solving
Equation (14) between time tn and time tn+1 consists of two
parts.
Firstly, we solve Equation (14) without the interface term

on the right-hand side using a forward characteristic method
(Pironneau, 1989). Let ϕn+

1
2 denote an approximation of the

solution at time tn+1 of :{
∂ϕ

∂t
+Un · ∇ϕ = 0, in Λ,

ϕ(tn ) = ϕn , in Λ.
(17)

The method of characteristics states that the solution of
Equation (17) is constant along the trajectories of the
fluid particles which are given by x′(t ) = Un (x(t )), where
x(t ) = (x(t ), y (t ), z(t )). Using x(tn ) + Δt Un

(
x(tn )

)
as an

approximation of x
(
tn+1

)
, we define ϕn+

1
2 to satisfy:

ϕn+
1
2
(
(x, y , z) + Δt Un (x, y , z)

)
= ϕn(x, y , z). (18)

Secondly, we solve Equation (14) without the advection
term. Let ϕn+1 denote an approximation of the solution at
time tn+1 of:{ ∂ϕ

∂t
= b(tn , z)δΓS(tn ), in Λ,

ϕ(tn ) = ϕn+
1
2 , in Λ.

(19)

This step corresponds to ice accumulation or ablation. Using
relations (15) and (16), solving Equation (19) is equivalent to
solving{ ∂H

∂t
= b

(
tn ,B +Hn+

1
2

)
in [0, X̄ ]× [0, Ȳ ],

H(tn ) = Hn+
1
2 , in [0, X̄ ]× [0, Ȳ ],

(20)

where Hn+
1
2 is the ice thickness deduced from ϕn+

1
2

using Equation (15). An approximation of the solution of
Equation (20) at tn+1 is given explicitly by

Hn+1(x, y ) = Hn+
1
2 (x, y ) + Δt b

(
tn ,B +Hn+

1
2

)
. (21)

Finally, ϕn+1 is deduced from Hn+1 using Equation (16).

Space discretization
Two different meshes are used (Fig. 2) to take into account the
various specifications of the advection and elliptic problems.
These two meshes are fixed and are not changed during the
computations.
We start by choosing a fixed domain, Λ̃ ⊂ Λ, in which

Ω(t ) ⊂ Λ̃ for all time, t . As the solution of the elliptic
problem, Equations (3–7), is smooth, a coarse mesh, TH ,

Air

Ice

Mountain

Λ̃
Th

Λ

TH

Fig. 2. Sections of the twomeshes: TH is an unstructured mesh while
Th is a structured grid of rectangular cells.

with a typical size, H, of the tetrahedrons is chosen in Λ̃
to solve the equations for pressure and velocity fields. Since
the shape of a glacier is shallow, the mesh, TH , can be
chosen to be anisotropic with comparable numbers of nodes
along the vertical and horizontal directions. The solution of
Equations (3–7) is described in detail in the next subsection.
A fine-structured grid of cubic cells, Th , with cell size h

is used to implement Equation (18). The reasons for using
another grid, Th , rather than TH are that, firstly, the method
of characteristics can be easily implemented on structured
grids whereas the implementation becomes more tedious
on unstructured grids, and, secondly, solving Equation (18)
on a fine grid, Th , on size h < H enables us to localize
the interface with greater accuracy. A recommended ratio
between the size of meshes is around five, H ≈ 5h.

Algorithm
Let ϕnijk andU

n
ijk denote the values of ϕ

n andUn at the middle
of cell (ijk ) of the structured grid, Th . The computation of
ϕn+1ijk and Un+1ijk is described in the following.

Solving Equation (17)
Using Equation (18), the advection step on cell number (ijk )
consists in advecting ϕnijk byΔt U

n
ijk and projecting the values

onto the structured grid. The projection holds proportionally
to the rate of overlapping. An example of cell advection and
projection is shown in Figure 3 in two space dimensions
(Maronnier and others, 2003).
Let ‖Umax‖Δt/h be the Courant–Friedrichs–Lewy (CFL)

number. With this method of characteristics, CFL numbers
>1 can be used. In all model runs presented here, the time-
step, Δt , and the cell spacing, h, were chosen such that
3 ≤ CFL ≤ 5. This ensures that no more than five cells
are crossed during one time-step. Numerical experiments,
reported by Maronnier and others (2003), have shown that
this choice is a good trade-off between numerical diffusion
and computational costs or memory requirements.

Post-processing
The previous algorithm causes two problems. The first is
that numerical diffusion (Fig. 4) is introduced during the
projection step. The second occurs when the time-step is
too large, since two cells may arrive at the same place,
producing numerical compression. Two post-processing
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Fig. 3. An example of two-dimensional advection of ϕnij (bold line)

by ΔtUnij , and projection on the grid. The four cells containing the

advected cell (dotted line) receive a fraction of ϕnij , determined by

the covered area.

steps (Maronnier and others, 2003) are implemented so that
the VOF is approximated by a step function between 0 and 1.
The first post-processing step is the simple line interface
calculation (SLIC) algorithm presented by Scardovelli and
Zaleski (1999) which reduces numerical diffusion. Figure 4
shows the numerical diffusion of a projection step and the
efficiency with which the SLIC algorithm suppresses this
diffusion in a simple example. The second step removes
artificial compression and forces the VOF to be ≤1. When
using these two post-processing algorithms, it is observed
that the width of the diffusion layer through the interface
almost never exceeds one cell.

Solving Equation (19)
The process described in the following holds for each vertical
column, (ij), of the structured grid, Th . The first task is to

UΔt = 1.5h

1

1

1

1/2 1/2

1/2

1/4

1/2 1/2

1/2 1/2

1/4

1/4

1/2

1/2

1/4

1/4

1/4

UΔt = 1.5h

1

1

1

1

1 1

1

1

1

1/2

1 1

1

1/2

1/2

1/2

1/2

1/2

Fig. 4. Top line: The horizontal velocity, U, is chosen such that
one half cell is crossed during one time-step. Numerical diffusion
increases rapidly. Bottom lines: reducing numerical diffusion using
the SLIC algorithm.

Fig. 5. VOF filling (on the left) and VOF emptying (on the right) of
cells having index (ij). On the left, Iij = 0.4 means that 0.4 VOF
has to be added starting from cell (ijk ). In the same way, Iij = −0.4
on the right means that 0.4 VOF has to be subtracted.

compute the height of ice,H
n+ 1

2
ij . Using the rectangle formula

for evaluating Equation (15), we set

H
n+1

2
ij = h

∑
k

ϕ
n+ 1

2
ijk .

According to Equation (21), the amount of ice that has to be

added or removed is
∣∣∣b (

tn ,B(xi , yj ) +H
n+ 1

2
ij

)∣∣∣ Δt , where
(xi , yj ) are the horizontal coordinates of the center of the
column, (ij). We denote by

Iij =
b

(
tn ,B(xi , yj ) +H

n+ 1
2

ij

)
Δt

h
,

the number of cells to be filled (Iij > 0) or to be emptied
(Iij < 0). We then find the largest vertical index, k , such that

ϕ
n+ 1

2
ijk−1 = 1 and ϕ

n+ 1
2

ijk < 1. Afterwards, the filling is carried
out from bottom to top while the emptying is carried out from
top to bottom until |Iij | vanishes. The algorithm is illustrated
in Figure 5 and is written as follows:

∗If (Iij > 0), then:

While (Iij > 0) do

ϕn+1ijk = min
(
ϕ
n+ 1

2
ijk + Iij , 1

)
,

Iij ← Iij −
(
ϕn+1ijk − ϕ

n+ 1
2

ijk

)
,

k ← k + 1,

∗If (Iij < 0), then:

While (Iij < 0) do

ϕn+1ijk = max
(
ϕ
n+ 1

2
ijk + Iij , 0

)
,

Iij ← Iij −
(
ϕn+1ijk − ϕ

n+ 1
2

ijk

)
,

k ← k − 1.

Interpolation of ϕn+1 on TH and definition of Ωn+1H
Firstly the VOF ϕn+1, previously computed on the structured
mesh Th , must be interpolated on TH (see, e.g., Maronnier
and others, 2003). The VOF ϕn+1P at vertex P of the
unstructured mesh TH is computed by considering all the
cells (ijk ) contained in the union of tetrahedrons containing
vertex P (Fig. 6).
Secondly, the mesh TH being fixed in time, the new

computational domain, Ωn+1H , for Equations (3–7) must be
redefined. A tetrahedron is defined as ice filled at time tn+1

if at least one of its vertices, P , is such that ϕn+1P ≥ 0.5.
The computational domain, Ωn+1H , is then defined to be the
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Fig. 6. (a) Interpolation of the VOF function to the vertices of the
unstructured mesh TH . On the left, the VOF is represented at each
cell of Th by a nuance of gray (from white if VOF = 0 until dark
gray if VOF = 1). On the right, the interpolation procedure gives
the value 0.3 to the VOF at the consided node. (b) Definition of the
computational domain in mesh TH . On the right, the values of the
VOF at vertices designate the pattern area to be the computational
domain.

set of all ice-filled elements. We denote by ΓnS the union
of nodes of TH localized on the boundary of ΩnH which are
not on ΓB (Fig. 6). In practice, the use of the SLIC algorithm
ensures that the VOF jumps from zero to one in a region of
width H. Consequently, the result, Ωn+1H , is not sensitive to
the arbitrariness of the criterion ϕn+1P ≥ 0.5.

Solving Equations (3–7)
Given the new ice domain, Ωn+1H , a fixed-point algorithm is
used to solve the non-linear problem, Equations (3–7). The
pressure and velocity fields computed at the previous time-
step are chosen as the starting point for the iteration. The
process is summarized as follows:

∗ Let (U0, p0) = (Un , pn ) if n ≥ 1, otherwise (0, 0).

∗ For k = 0, 1, 2, 3, ... until convergence: Find
(
Uk+1 ,

pk+1
)
such that⎧⎪⎪⎪⎨

⎪⎪⎪⎩

−∇ ·
(
2μ(Uk )ε(Uk+1)

)
+∇pk+1 = ρg, in Ωn+1H ,

∇ · Uk+1 = 0, in Ωn+1H ,

Uk+1 = 0, on ΓB,

2μ(Uk )ε(Uk+1) · ν − pk+1ν = 0, on Γn+1S ,

where μ(Uk ) is computed solving Equation (5) with Car-
dan’s formula if n̄ = 3. Otherwise, a Newton method can
solve Equation (5) for every n̄. The above set of equations
is solved using a stabilized continuous, piecewise-linear
finite-element method (Franca and Frey, 1992), which
ensures the velocity field satisfies ∇ · Uk = O(H).

∗ Set Un+1 = Uk+1 and pn+1 = pk+1.

As shown by Reist (2005), convergence of this fixed-point
algorithm can be proven, provided the starting point is close

Un+1
P

Un+1
Q

Un+1
R

Un+1
ij

Fig. 7. Interpolation of Un+1 on Th in two dimensions. Un+1ij is

defined using the values of U at vertices P , Q and R of the element
containing the cell (ij).

enough to the solution. Moreover, it can be shown that the
rate of convergence depends on (n̄ − 1)/n̄, where n̄ is the
Glen’s flow-law exponent defined in Equation (5).

Interpolation of Un+1 on Th
The solution of the above problem yields a new velocity
field, Un+1, on the new domain, Ωn+1H . Then the values are
linearly interpolated at the center, Cijk , of cells (ijk ) to obtain
values Un+1ijk (Maronnier and others, 2003) (see Fig. 7). The

knowledge of ϕn+1ijk and Un+1ijk on each cell (ijk ) allows the
process to be started for the next time-step.

Numerical validation
Convergence test for the two-dimensional transport
algorithm
The scheme presented is unconditionally stable and

O
(
Δt + h2

Δt

)
convergent (see characteristic Galerkin meth-

ods in Pironneau, 1989). A simple situation enables the trans-
port algorithm for a given divergence-free velocity field
which is constant with time to be tested. A free boundary
surface is chosen in the two-dimensional box, Λ = [0, 200]×
[0, 200]. Let

U =
(

x
−z

)
be defined in Λ, let B(x) = 0 be the base function defined
on [0, 200] and let H(t , x) = S(t , x) = 100 (t + 1) − x
be the thickness of the ice. These data applied in the two-
dimensional version of Equation (8) yield

∂H
∂t

+
∂

∂x

(∫ 100 (t+1)−x

0
x dz

)
= 100 + 100 (1 + t ) − x − x

= 2S(t , x)− 100 t . (22)

We deduce the mass budget function b(t , z) = 2z − 100 t
identifying the right-hand side of Equation (22) with that,
b(t , S(t , x)), of the transport equation (8). Figure 8 shows the
evolution of the ice region.
The error of ϕ (defined by Equation (16)) is checked at the

final time, T = 1year:

E = h2
∑
i,k

∣∣∣ϕ(1, xi , zk )− ϕNik

∣∣∣ ,
where (xi , zk ) are the coordinates of the center of the cell
(ik ). The physical meaning of E is the difference between
the computed and the exact ice volume. Three levels of
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Fig. 8. Evolution of the interface in the test case for the two-dimensional transport algorithm. (a) t = 0, (b) t = 0.5 and (c) t = 1year.

refinement (coarse, medium and fine) are built by dividing
the grid size and the time-step together by two. Table 1
presents the error, E , against the level of refinement. A
linear convergence is observed conforming to the order of
convergence expected (h and Δt are linked).

Mass conservation
Mass conservation is an important advantage of this method.
The advection step reallocates the mass of all cells without
global mass loss or gain. In the same way, the two post-
processing steps guarantee an exact mass conservation. This
point is checked by looking for simulations of steady-state
glaciers with a vanishing mass balance (see ‘Steady-state
geometry’ below).

APPLICATIONS TO VADRET MURAGL, SWISS ALPS
Reconstructed terminus positions
Presently, Vadret Muragl is a small glacier, 200–300m long,
in the highest reaches of the Val de Muragl, in the eastern
Swiss Alps. The glacier reached the main valley of Pontresina
during some stages in the Late-glacial period. Based on
geomorphological evidence, three positions of the glacier
terminus were reconstructed: (1) the maximum Little Ice Age
position with a length of 1.5 km at ∼1850, (2) the ‘Margun’
position with a length of∼3.65 km, and (3) the ‘Punt Muragl’
position with a length of ∼5.7 km (Rothenbühler, 2000;
Imbaumgarten, 2005). The Margun and Punt Muragl states
are related to the Egesen Late-glacial between 12000 and
10 000 years bp (Maisch, 1982; Ivy-Ochs and others, 2007).
We use the reconstructed Margun and Punt Muragl

(see Fig. 9) positions to demonstrate the possibilities of the
proposed algorithm and to test the underlying geomorpho-
logical and climatological hypotheses. Based on the hypoth-
esis that a glacier does not deposit large frontal moraines
during phases of rapid retreat or advance, we assume that
the deposited moraines mark stagnant phases. Although a
stagnant terminus does not imply an equilibrium state, we

Table 1. Error, E , according to the level of refinement

Δt Grid 200
h × 200

h CFL E

year m2

Coarse grid 0.04 250× 250 ≈5 3359
Medium grid 0.02 500× 500 ≈5 1549
Fine grid 0.01 1000× 1000 ≈5 805

approximate these positions with the equilibrium shapes of
the ice surfaces.

Mass-balance parameterization
The mass-balance distribution on a glacier surface is influ-
enced by precipitation and melt patterns, which, in turn, are
influenced by topography, wind patterns and perhaps debris
coverage. Despite these complications, the mass balance,
b(z), is predominantly elevation-dependent. To reduce the
number of degrees of freedom in a possible mass-balance
parameterization, a simple distribution is defined by the melt
gradient, am, the equilibrium-line altitude, zELA, and themax-
imum accumulation rate, ac (Fig. 10):

b(z) = min [am (z − zELA) , ac]. (23)

This simplified parameterization follows the observation
that the mass balance increases approximately linearly with
altitude in the ablation zone and often levels out in the
accumulation zone (Kuhn, 1981; Cogley and others, 1995;
Stroeven, 1996). Furthermore, the mass-balance gradient
appears to be quite independent of the climate in the
individual years.

Steady-state geometry
Firstly, we test the ability of the model to compute accurate
equilibrium shapes and the assumed uniqueness of an
equilibrium shape for a given mass-balance distribution. For
a given elevation-dependent mass balance, the model was
run with two different initial shapes. One run started with a
small glacier corresponding to the Little Ice Age geometry,
and the second run with the large shape corresponded to the
Punt Muragl geometry (Fig. 9). The numerical values of the
physical parameters in both runs were n̄ = 3 for the flow-law
exponent, rate factor A = 0.08bar−3 a−1 and regularization
parameter σ20 = 0.1bar2 (see Equation (5)). The time-step for
surface evolution was Δt = 1year, and the grid spacing for
the advection cells was 5m.
The obtained converged states were reached after a few

hundred years and coincided within 50m (Fig. 11); thus,
the differences lie within the grid resolution and are not
significant. This geometry is considered to be the steady-
state shape of the free-boundary problem for the given mass-
balance distribution. Although this is not a rigorous proof of
the uniqueness of the steady state in general, for this relatively
simple geometry of the Val de Muragl the uniqueness is a safe
assumption.
The approach of steady state was used to test the mass

conservation of the algorithm. Near the steady state, the mass
of the glacier oscillates around zero with an amplitude of
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Fig. 9. Reconstructed position Punt Muragl for Vadret Muragl, from Imbaumgarten (2005).

∼1000m3 with time-steps of 1 year, which corresponds to a
residual mass balance of a few millimeters per year.
A threshold for the residual mass balance was defined

to determine when steady state is reached. However, to
prevent premature termination due to coincidental crossing
of the threshold in one time-step, the variance of the mass
fluctuations over 20 time-steps was taken to decide when the
threshold for steady state is reached.

Margun and Punt Muragl positions
Secant method
The independence of steady states of the initial shape
motivates the solution of the inverse problem: find the mass-
balance distribution such that the modelled glacier fits a
given tongue position. In this study we investigate the two
reconstructed positions,Margun and PuntMuragl, in terms of
the three mass-balance parameters defined in Equation (23).
Our goal is to find sets of parameters (ac, am, zELA), for which
the computed steady-state terminus position fits the given
reconstructed glacier terminus. However, the solution of this
inverse problem is not unique. For this reason, we search for
solutions in the parameter space for the realistic intervals of
each parameter. For fixed values of the two parameters, ac
and am, the equilibrium-line altitude, zELA, can be found by
an iterative process. Since the glacier length is a monotonous
function of zELA, a given tongue position can be obtained by
applying a secant method, as illustrated in Figure 12.

Climatic conditions
TheMargun and PuntMuragl positions can be explained by a
range of different climatic conditions. Each set of numerical
values of the three parameters, ac, am and zELA, results in
a glacier length, L; however, each given glacier length, L,
may be obtained with an infinite number of sets. Figure 13
shows the solutions in the parameter space for the Margun
and Punt Muragl positions for limited intervals of each of
the three parameters. Within physically possible intervals

of 0.002 ≤ am ≤ 0.006a−1 and 0.3 ≤ ac ≤ 1.0ma−1,
the equilibrium-line altitude changes as much as 100m
for the Margun state and 220m for the Punt Muragl state.
Equally, the glacier volume varies as much as 40% within
this parameter range. It is thus necessary to constrain the
equilibrium-line altitude by additional climatological and
glaciological information on possible accumulation rates and
mass-balance gradients.
In our computations, the glacier was only matched to the

terminus positions. Another possible way to constrain the
climatic conditions is available if additional moraines exist
alongside the reconstructed glacier. In this case, the possible
volume and, consequently, the mass-balance parameters are
constrained further.
More realistic mass-balance models most probably require

more parameters and, thus, introduce more degrees of
freedom. This may make a further constraint on the climatic
conditions even more demanding in terms of computing time
and suitable algorithms to determine the given geometrical
outlines.

Climate sensitivity
The climate sensitivity can be characterized by the change
in equilibrium length, L, of a glacier divided by the change

b(z)

am
zELA

ac

z

Fig. 10. Ablation/accumulation function, b(z).
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a

-

b

c

-

-

Fig. 11. Evolution of the glacier starting from (a) the Little Ice Age
position and (b) the Punt Muragl position. The parameter values for
the steady state corresponding approximately to theMargun position
are zELA = 2700ma.s.l., ac = 0.5ma−1 and am = 0.004 a−1.
(c) The difference between the locations of the two tongues. Axis
labels are in meters.

in elevation of the equilibrium line zELA: dL/dzELA. We
determine the dependence of the climate sensitivity on
glacier length and the parameters used for the mass-balance
model by computing the length of Vadret Muragl for the
extreme cases for melt gradient and accumulation. Figure 14
shows these dependencies and the corresponding climate
sensitivity. Around the Punt Muragl position, the sensitivity
is small, with a value of ∼4, compared to ∼15 near the
Margun position.

Table 2. Solutions for zELA, am and ac for various values of the rate
factor, A, for the Margun position

A zELA ac am Volume V

bar−3 a−1 ma.s.l. m a−1 a−1 108 m3

0.08 2697 0.5 0.004 1.808

0.04 2697 0.425 0.004 2.180
0.04 2697 0.5 0.00475 2.323
0.04 2709 0.5 0.004 2.248

0.16 2697 0.55 0.004 1.466
0.16 2697 0.5 0.0035 1.417
0.16 2690 0.5 0.004 1.456

Fig. 12. Computation of steady shapes for zELA = 2740 and
2680ma.s.l. provides two abscissas for the tongue’s end: L(2740) =
2785 and L(2680) = 3655. Using a secant method, zELA =
2709ma.s.l. is a judicious choice for the next computation. Indeed,
the corresponding steady shape almost fits the target position.
Figure 14 shows that the target’s position is a linear zone of the
function L(zELA). This justifies the efficiency of the method in this
case. Axis labels are in meters.

Rate factor
The chosen rate factor, A = 0.08bar−3 a−1, corresponds to
temperate ice (Hubbard and others, 1998; Gudmundsson,
1999; Albrecht and others, 2000). To test the robustness of
the results, we chose different values for A by doubling and
halving the above value. The smaller value mimics colder
ice, whereas the larger value may mimic some contribution
from sliding. The experiments were performed with values
of ac = 0.5ma−1, am = 0.004a−1 and zELA = 2697
and zELA = 2513ma.s.l. for the Margun and Punt Muragl
positions, respectively. With A = 0.08bar−3 a−1 these
values correspond to the solution for the reconstructed
positions. With the smaller A = 0.04bar−3 a−1, the
glacier is 165 and 70m longer for the Margun and Punt
Muragl positions, respectively. For softer glacier ice with
A = 0.16bar−3 a−1, the corresponding shortenings are 75
and 0m.
For the Margun position with a mean rate factor A =

0.08bar−3 a−1, accumulation ac = 0.5ma−1 and mass-
balance gradient am = 0.004a−1, the resulting equilibrium-
line altitude is zELA = 2697ma.s.l. and the computed
volume of the glacier is V = 1.808 × 108 m3. For softer
ice, with A = 0.16bar−3 a−1, or harder ice, with A =
0.04bar−3 a−1, the glacier is expected to be thinner or
thicker, respectively. Table 2 summarizes the results for
the Margun position for various combinations of the mass-
balance parameters for the different rate factors.

Transient experiment for Punt Muragl state
The long narrow tongues of the proposed reconstruction
of the Punt Muragl position (Fig. 9) arise from two lateral
moraine ridges near the assumed terminus position (Rothen-
bühler, 2000; Imbaumgarten, 2005). However, the modelled
Punt Muragl state robustly shows a thick piedmont-type
glacier tongue. This should be expected in view of the
concave-shaped debris cone on which the glacier advances
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Fig. 13. The level sets of zELA with respect to am and ac (solid curves)
and variation of the volume (in %) of the steady shapes are given
relative to the smallest value, obtained with the smallest coefficients
am = 0.002ma−1 and ac = 0.3 a−1. (a) Margun position; (b) Punt
Muragl position.

at the exit of the Muragl valley near Punt Muragl. This casts
some doubt on the origin of the observed moraines and the
reconstructed glacier tongue as a maximum extent during
the Egesen maximum.
An advancing glacier tongue is generally steeper and

thicker than a retreating glacier. This suggests transient
experiments to test the hypothesis that the reconstructed
ice tongue is in a transient retreat state rather than a
stagnant or equilibrium position. A simulation of an advance
into the Punt Muragl equilibrium state and a subsequent
retreat was carried out. For the simulation, a relatively
small mass-balance gradient of am = 0.001a−1 was chosen,
corresponding to a debris-covered glacier. This choice is
motivated by the assumption that in a retreat scenario a small
mass-balance gradient initially leads to a faster thinning and
narrowing of the glacier tongue than does a faster retreat.

Fig. 14. (a) Equilibrium-line altitude, zELA, (b) climate sensitivity,
dL/dzELA, and (c) volume, as a function of the equilibrium
length for four extreme cases (am = (0.002, 0.006) a−1 and ac =
(0.3, 1.0)ma−1) and an intermediate case (am = 0.004 a−1 and
ac = 0.6ma−1). Margun and Punt Muragl positions are indicated
by dotted curves.

With an accumulation of ac = 0.3ma−1, the equilibrium-
line altitude was at 2400ma.s.l. for the advance into the
equilibrium state, and was switched to 2600ma.s.l. for the
subsequent retreat. Figure 15 shows the advance and retreat
patterns over a period of∼500 years. Although the retreating
tongue is narrower than the advancing tongue, it is difficult
to match the narrow reconstructed tongue.

DISCUSSION AND CONCLUSIONS
A novel mass-transport algorithm is introduced to compute
the evolution of a glacier surface for given climatic con-
ditions. The scheme is a Euler algorithm based on a VOF
method and is stable for CFL numbers >1. To avoid nu-
merical diffusion in the mass-advection scheme, a simple
line interface calculation is applied (see, e.g., Scardovelli
and Zaleski, 1999). A second post-processing algorithm is
used to prevent numerical compression and to force the
VOF to remain ≤1. The advection scheme, together with
the post-processing steps, meets mass conservation to a high
accuracy. For steady-state shapes with stationary climatic
conditions, the residual net mass balance is of the order of a
few millimeters per year.
The combination of a finite-element ice-flow model with

the new transport scheme yields a flexible and stable model
for the dynamics of small mountain glaciers with a wide
range of sizes and shapes. The method is well suited to
simulate the dynamics of a glacier over long periods of
time. Moreover, it can handle complex topological shapes.
Contrary to the Saint-Venant models, it can handle a change
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a b

Fig. 15. Transient states of Vadret Muragl for am = 0.001 a−1
and ac = 0.3ma−1. (a) Advance into steady state with zELA =
2400ma.s.l. and (b) retreat from this steady state with zELA =
2600ma.s.l. The thick curve indicates the reconstructed position
of Rothenbühler (2000). Axis labels are in meters.

in the topology of the domain, such as a splitting of the
glacier into smaller parts or the emergence of a nunatak
inside the glacier area.
The use of a fine-structure grid enables us to solve

Equation (14) accurately, while the coarser unstructured
mesh is suitable for solving Equations (3–7), which is
computationally the most expensive task.
We demonstrate the capabilities of the model with an

example of an almost extinct glacier that extended several
kilometers down-valley during the Late-glacial stadial of
the Egesen. Two reconstructed states are reviewed in terms
of the required climatic conditions. The geomorphological
evidence available for these states only gives the outline of
the ice tongue in the ablation area. It is not trivial to obtain an
estimate of the ice-surface topography corresponding to the
given margin. Comprehensive numerical modelling is one
way of obtaining a topography of the glacier and possibly to
test it in view of uncertain parameters, such as the climatic
conditions or the rheological properties of the glacier.
The computed piedmont-type geometry of the PuntMuragl

state of Vadret Muragl is robust. It can be safely concluded
that the reconstructed glacier tongue (Rothenbühler, 2000;
Imbaumgarten, 2005) is probably not a maximum extension
of Vadret Muragl in the Egesen maximum, but, rather, a
transient retreat state. This also suggests that the ice volume
in this valley must have been larger than estimated from
geomorphological evidence alone. A combination of both
geomorphology and numerical modelling seems to support
both fields, in the interpretation of geomorphological obser-
vations and in the numerical modelling of glacier dynamics.
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