ON \aleph_{α} -NOETHERIAN MODULES

BY

ARON SIMIS

In this note we define two concepts which can be thought of as a generalization of noetherian concepts.

The main result is as follows (Corollary 4): If R is a ring whose countably generated (left) ideals are (left) principal, then R is a (left) principal ideal ring.

This result if obtained, more generally, for any (left) *R*-module and any regular cardinal \aleph_{α} (Corollary 1); a cardinal \aleph_{α} is regular whenever $W(\aleph_{\alpha}) = \{ \text{ordinals } \gamma \mid \text{card } \gamma < \aleph_{\alpha} \}$ has no cofinal subset of cardinality less than \aleph_{α} .

In the sequel, discrete valuation rings of finite rank (greater than 1) are shown to be genuinely \aleph_0 -noetherian rings (this is one of the concepts herein introduced). Examples of genuinely \aleph_{α} -noetherian rings (for any ordinal α) are also given.

 \aleph_{α} -Noetherian rings have some interest because of the results obtained by Jensen [2] who deals with a stronger concept, thus becoming able to draw important consequences about global and weak dimension of 'big' rings.

Let R be an arbitrary ring (not assumed to be commutative or to have a unity element) and let α be any ordinal.

DEFINITIONS. (i) A (left) *R*-module *M* is \aleph_{α} -generated if it can be generated by a set of cardinality \aleph_{α} ; if, moreover, *M* cannot be generated by some set of cardinality less than \aleph_{α} , it is said to be *strictly* \aleph_{α} -generated.

(ii) A (left) *R*-module is \aleph_{α} -noetherian if every submodule of *M* is \aleph_{α} -generated; if, moreover, *M* has some strictly \aleph_{α} -generated submodule, then it is called *genu*inely \aleph_{α} -noetherian.

(iii) An \aleph_{α} -family is a well-ordered strictly increasing family of submodules of a (left) *R*-module whose cardinality is \aleph_{α} .

PROPOSITION 1. Let *M* be a (left) *R*-module and let *N* be a strictly \aleph_{α} -generated submodule of *M*; then, for every $\beta < \alpha$, there exists an \aleph_{β} -family $(N_{\gamma})_{\gamma \in W(\aleph_{\beta})}$ of sub-modules N_{γ} of *M* each contained in *N* and generated by less than \aleph_{β} elements.

Proof. We use transfinite induction to construct the desired \aleph_{β} -family. Given $\gamma \in W(\aleph_{\beta})$, suppose a submodule $N_{\gamma'}$ of M has been obtained for every $\gamma' < \gamma$ such that $N_{\gamma'}$ can be generated by less than \aleph_{β} elements and $(N_{\gamma})_{\gamma' < \gamma}$ is a well-ordered strictly increasing family with $N_{\gamma'} \subset N$ for all $\gamma' < \gamma$. Clearly $\bigcup_{\gamma' < \gamma} N_{\gamma'}$ is properly contained in N (because otherwise N would be generated by $\bigcup_{\gamma' < \gamma} S_{\gamma'} = S$, where $S_{\gamma'}$ generates $N_{\gamma'}$, card $S_{\gamma'} < \aleph_{\beta}$; this is impossible since card $S < \aleph_{\beta} \aleph_{\beta} = \aleph_{\beta}$). Pick $x \in N$, $x \notin \bigcup_{\gamma' < \gamma} N_{\gamma'}$ and let N_x be the submodule of M generated by x; clearly,

Received by the editors November 1, 1969.

ARON SIMIS

 $N_{\gamma} = \bigcup_{\gamma' < \gamma} N_{\gamma'} + N_x$ can still be generated by less than \aleph_{β} elements. The family $(N_{\gamma})_{\gamma \in W(\aleph_{\beta})}$ thus constructed is an \aleph_{β} -family since card $W(\aleph_{\beta}) = \aleph_{\beta}$.

COROLLARY 1. Let M be a (left) R-module and \aleph_{β} a regular cardinal; if M has no strictly \aleph_{β} -generated submodules then every submodule of M can be generated by less than \aleph_{β} elements.

Proof. Let N be a submodule of M; if N is generated by \aleph_{β} elements, we are done. Thus, assume N is strictly \aleph_{α} -generated for some $\alpha > \beta$. We apply the preceding proposition to get an \aleph_{β} -family $(N_{\gamma})_{\gamma \in W(\aleph_{\beta})}$ of submodules of M each contained in N. Clearly, $P = \bigcup_{\gamma} N_{\gamma}$ is a submodule of M contained in N; moreover, if S_{γ} is a set of generators for N_{γ} with card $S_{\gamma} < \aleph_{\beta}$, then P is generated by S $= \bigcup_{\gamma \in W(\aleph_{\beta})} S_{\gamma}$ whose cardinality is at most \aleph_{β} . By hypothesis, P can be generated by less than \aleph_{β} elements, say, $(x_i)_{i\in G}$ is a set of generators with card $G < \aleph_{\beta}$; for every $i \in G$, let γ_i be the smallest ordinal in $W(\aleph_{\beta})$ such that $x_i \in N_{\gamma_i}$; then P $= \bigcup_{i\in G} N_{\gamma_i}$. On the other hand, the family $(\gamma_i)_{i\in G}$ has cardinality less than \aleph_{β} , hence it cannot be cofinal in $W(\aleph_{\beta})$ since \aleph_{β} is regular by assumption. This implies the existence of $\gamma' \in W(\aleph_{\beta})$ such that $\gamma_i < \gamma' \forall i \in G$, so $N_{\gamma_i} \subseteq N_{\gamma'} \forall i \in G$. Thus P $= \bigcup_{i\in G} N_{\gamma_i} \subseteq N_{\gamma'}$, against the fact that $(N_{\gamma})_{\gamma \in W(\aleph_{\beta})}$ is strictly increasing.

REMARK. Corollary 1 applies whenever $\beta = 0$ or β is not a limit ordinal.

COROLLARY 2. If M is a (left) R-module whose countably generated submodules are finitely generated, then M is (left) noetherian.

Proof. Apply Corollary 1 with $\beta = 0$.

COROLLARY 3. If M is a (left) R-module whose countably generated submodules are cyclic, then every submodule of M is cyclic; in particular, M is cyclic.

Proof. By Corollary 2, *M* is noetherian; hence all its submodules are cyclic.

COROLLARY 4. A ring whose countably generated (left) ideals are (left) principal is a (left) principal ideal ring.

Examples of (commutative) genuinely \aleph_{α} -noetherian rings abound as one may see from the following instances:

(1) Let $R = K[X_i]_{i \in A}$, where K is a finite field and card $A = \aleph_{\alpha}$.

Clearly, card $R = \aleph_{\alpha}$, so R is \aleph_{α} -noetherian. Moreover, $(X_i)_{i \in A}$ is an ideal which cannot be generated by less than \aleph_{α} elements.

(2) Let $R = \prod_{i=1}^{\infty} K_i$, where $K_i = K(\forall i)$ is a countable field. Assuming the continum hypothesis, card $R = \aleph^{\aleph_0} = \aleph_1$. On the other hand, as it is well known (cf. [3]), there is a bijection between the set of proper ideals of R and the set of filters of $\mathscr{P}(I)$, where I is the set of indices i. Precisely, if J is a proper ideal of R, then $F(J) = \{Z(f) \mid f \in J\}$ is a filter of $\mathscr{P}(I)$, where $Z(f) = \{i \in I \mid f(i) = 0\}$; conversely, if F is a filter of $\mathscr{P}(I)$, then $J(F) = \{f \in R \mid Z(f) \in F\}$ is a proper ideal of R.

246

Now, let J be any nonprincipal maximal ideal of R; we show that J cannot be countably generated. For if $J = \sum_{n=0}^{\infty} Rf_n$, then $Z(f) \supseteq \bigcap_{n=0}^{m} Z(f_n)$ for every $f \in J$ and some $m \ge 0$. Thus, the collection $(Z(f_n))_{n\ge 0}$ would be a countable basis of the nonprincipal ultrafilter F(J); however, this is impossible. Indeed, let U be any nonprincipal ultrafilter of $\mathscr{P}(I)$ and assume U has a countable basis A_1, A_2, \ldots . Clearly, $A_1, A_1, \cap A_2, A_1 \cap A_2 \cap A_3, \ldots$ is still a basis of U, so by dropping eventual repetitions in the chain $A_1 \supseteq A_1 \cap A_2 \supseteq \cdots$, we may assume that U has a decreasing basis $A_1 \supseteq A_2 \supseteq \cdots$. Moreover, we may clearly assume that $\#(A_n \setminus A_{n+1}) \ge 2$, $n=1, 2, \ldots$. Let $a_n, b_n \in A_n \setminus A_{n+1}$, $a_n \ne b_n (n=1, 2, \ldots)$ and let $B = \{a_n, a_{n+1}, \ldots\}$. Then $B_1 \supseteq B_2 \supseteq \ldots$. Let V be the filter generated by B_1, B_2, \ldots ; clearly, $V \ne I$ since $\phi \notin V$. Also, $U \subseteq V$; indeed, if $X \in U$, then $A_n \subseteq X$ for some n, so $B_n \subseteq A_n \subseteq X$. On the other hand, $U \ne V$; indeed, $B_1 \in V$, but $B_1 \ddagger A_n (n = 1, 2, \ldots)$ because $A_n \subseteq B_1 \Rightarrow b_n = a_m$ for some $m \ge 1 \Rightarrow n = m$ (since $b_n \in A_n \setminus A_{n+1}$) $\Rightarrow b_n = a_n$, against the assumption.

This is a contradiction since U is an ultrafilter (¹).

Another important class of genuinely \aleph_0 -noetherian rings is obtained as follows: PROPOSITION 2. Let R be a discrete valuation ring of finite rank; then all ideals of R are countably generated.

Proof. We can assume that the value group of the valuation is $\Gamma = Z \times \cdots \times Z$ (lexicographically ordered). As it is well known (cf. [1]), there is a one-to-one correspondence (preserving inclusion) between the (integral) ideals of R and the upper classes of Γ contained in Γ^+ ; moreover, every upper class is the union of an increasing well ordered family of principal upper classes. Since Γ is countable, such a family must be countable; hence the result.

As a consequence, if R is a discrete valuation ring of finite rank greater than 1, then R is genuinely \aleph_0 -noetherian.

It is conceivable that arbitrary valuation rings may be genuinely \aleph_{α} -noetherian for some α depending only on the cardinality of the value group.

ACKNOWLEDGEMENTS. I wish to thank Professor Paulo Ribenboim and Professor Wolmer V. Vasconcelos for valuable conversations on the above questions. I am also indebted to the referee for calling my attention upon a different proof of Example (2) using the concept of self-injectivity.

BIBLIOGRAPHY

1. P. Ribenboim, Théorie des valuations, Université de Montréal, 1964.

2. Chr. U. Jensen, Homological dimensions of \aleph_0 -coherent rings, Math. Scand. 20 (1967), 55-60.

3. P. Ribenboim, La conjecture d'Artin sur les equations diophantiennes, Queen's University, 1968.

QUEEN'S UNIVERSITY, KINGSTON, ONTARIO

This proof was communicated to me by Professor G. Bruns.
6-C.M.B.