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TORSION UNITS IN INTEGRAL GROUP RINGS 

STANLEY ORLANDO JURIAANS 

ABSTRACT. Special cases of Bovdi's conjecture are proved. In particular the conjec­
ture is proved for supersolvable and Frobenius groups. We also prove that if exp(G/Z>) 
is finite, a e VZG a torsion unit and m the smallest positive integer such that a"1 G G 
then m divides exp(G/ Z). 

Let G be a group and let VZG be the group of units of augmentation one of the integral 
group ring ZG. Given an element x = J2x(g)g G ÏG we set 

7<*>(*)= £ x(g\ 
geG(k) 

called the k-generalized trace of x. Here G(k) = {g G G : o(g) = k}. We also set 

*(*) = £*(*)• 
h~g 

A. A. Bovdi proved the following [1]: 

LEMMA 1. Ifp is a prime, x G VZG and o(x) = pn, then I^\x) = l(mod/?) 
and T^\x) = 0(modp) for j < n. In particular there is an element g G G such that 
o{x) = o(g). 

Considering these statements he conjectured that if JC is as in Lemma 1 then 
BC1: T^\x) = 1 and T^\x) = 0 for/ < n. 

In [4] BC1 is proved for metabelian nilpotent groups and in [2] it is proved in general 
for nilpotent groups. Bovdi also conjectured the following [1]: 
BC2: Letw = exp(G/Z(G)) be finite, where Z(G) denotes the center of G. If a G VZG 

is a torsion unit and m is the smallest positive integer such that a™ e G, then m 
divides n. 

We recall that H. J. Zassenhaus had conjectured the following: 
ZC1: Let G be a finite group and a G VZG a torsion unit then a is conjugated in QG, 

to an element of G. 
Lemma 1.1 below shows that ZC1 implies BC1. In this paper we deal with the con­

jectures BC1 and BC2 and show that BC1 holds for Frobenius groups and polycyclic 
groups whose commutator subgroup is nilpotent. In particular we re-obtain the result of 
[2] that BC1 holds for nilpotent groups. Also, we show that BC2 is true for all groups. 

In the text we denote by Snj- the Kronecker delta function which is 0 if/ ^ n and 1 if 
j = n. 
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1. Some technical lemmas. First, we list some results which will be needed in our 
arguments. 

LEMMA 1.1 [9, THEOREM 6]. Let G be a finite group and a G VZG a unit of finite 
order. Then (3~l a/3 G G for some j3 G U(QG) ifand only ifthere for every element 7 
in the subgroup generated by (3 there exist an element go G G, unique up to conjugacy, 
such that 7(g0) ^ 0. 

LEMMA 1.2 [15,41.12]. LetG = Px\ X where Pis the Sylow p-subgroup of G Let 
HCU(\+ A(G,P)) be finite. Then there exists a G QG such that IT Ç G. 

LEMMA 1.3 [ 15,47.5]. Let G be a noetherian group and u G VZG a torsion element. 
Let x £ G be of infinite order. Then u(x) = 0. 

We now prove some results that will be useful to produce an induction argument in 
the sequel. 

LEMMA 1.4. Let G be a finite group and H <Ga normal subgroup of G Let ifi: ZG —> 
Z(G/H) be the natural projection and a G VZG such that (o(a)9 \H\) = 1. If(3 = I/J(CC) 

then 7<k\a) = T^(fi)for every k such that (k, \H\) = 1 and I<k\a) = 0 if(k, \H\) ^ 1. 

PROOF. Suppose that (k, \H\) = l. Set 

S={geG:o(ij(gj)=k} 

Sl={geS:o(g)>k} 

Note that if g G G is such that (o(g),\H\) = 1 then o(g) = o(i/;(g)). Also if (o(g),\H\) ^ 
1 then a(g) = 0 by [9, Theorem 2.7]. Hence, a(g) = 0 for all g G S\. Since S\ is a normal 
subset of G we have that Eges, «(g) = 0. Using these facts we have that: 

7^(0) = E ofe) = E « f e ) = E <*(£)+E <*(£)= E a(g) = T<k\a) 
o(i>(g))=k ges o(g)=k geSi o(g)=k 

The second part follows by [9, Theorem 2.7] and the fact that G(k) is a normal subset 
ofG. • 

LEMMA 1.5. Let p be a prime and G a finite group. Suppose that G has a unique 
subgroup H of order p. Let a G VZG be such that o(a) = pn. Then, with the notation of 
Lemma 1.4, we have that T^+l\a) = 1*^(0) for j > 1 and J^l\a) G {0,1}. 

In particular if BC1 holds for G JH then BC1 holds for G. 

PROOF. Let g e G be an element of order pt+x. If/ = 0 then this is just Bermans' 
Lemma. So suppose that 7 > 0. Theng^ G //, by the uniqueness of//. Hence o(VKg)) = 
y . Also if o(^(g)) = p then// G H\ {1}. Hence o(g) = p+l. Using these facts we have 
that 

7^09) = E «fe)= E a(g)=I^+\a). 
o(i>(g))=P> o{g)=pi^ 

The second statement is a consequence of the first part and Lemma 1.4. • 
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LEMMA 1.6. Let G be a noetherian group containing H < G with H torsion free. 
IfaE VZG is a torsion element then, with the notation of Lemma 1.4, we have that 
jik\a) = lW(P). In particular BC1 holds for G if it holds for G/H. 

PROOF. Let g £ G be an element of finite order. We set g = xjj(g) and G = ^(G). 
Then, since His torsion free, we have that o(g) — o(g). Hence we have that tp~l (G(&)) = 
G(k)U{g G G : o(g) = oo,o(g) = k}. Now S = {g G G : o(g) = oo,ofé) = *} 
is a normal subset of G and hence it is a disjoint union of conjugacy classes. So, by 
Lemma 1.3, Eg£s oc(g) = 0 and hence we have that I^(fi) = I^k\a). m 

We now give a definition that will simplify some arguments we use in our proofs. Let 
G be a group and m a positive integer. We say that G is m-absorbent if the subgroup 
(g G G : o(g) | mn) has exponent divisible by m. If G is m-absorbent for all integers m 
then G is called absorbent. Clearly abelian groups, regular/7-groups and^g are absorbent. 
Here K% denotes the quaternion group of order eight. 

LEMMA 1.7. Let G be group and a G VT.G an element such that o(a) — p1, p a 
prime. If G is (p, k)-absorbentfor all k < n then T^\a) = 5nj. 

PROOF. Since G is/?*-absorbent we have that //# = {g G G : o(g) \ p^} is a normal 
subgroup of G. Consider the projection ^: ÏG —> Z(G/Hk). Since a is a torsion unit we 
have, by [14, III 1.3], that EgeHk oc(g) G {0,1}. Since EgeHk <x(g) = £o</<* 'T^\a) it 
follows that Eo</<* 7^}(a) G {0,1} for all 0 < k < n. Since [14, III 1.3] shows that 
a( l ) G {0,1} we have, inductively, that T^\a) G {0,1} for all 0 < j < n. Lemma 1 
now gives us the desired result. • 

The following result is well-known; we give its proof for the sake of completeness. 

LEMMA 1.8. Let H be an abelian Sylow p-subgroup of a finite solvable group G. 
Then one of the following holds: 

i) H<G 
ii) Op,(G) J 1. 

PROOF. Denote by F the Fitting subgroup of G. If F is a p-group then, since G is 
solvable and a Sylow p-subgroup of G is abelian we have, by [11, 5.4.4], that F is a 
Sylow p-subgroup of G. Since F o G w e have that H = F. 

If F is not a/?-group we choose a prime q ^ p and let TV be a Sylow ^-subgroup of F. 
Since N o F and F is characteristic, we obtain that N<G and the result follows. • 

LEMMA 1.9. Let G be a group such that exp(G/ Z(G)) is finite. Let a G VZG be a 
torsion unit and X/J: TG —» Z(G/Z(G)) the natural projection. Set /? = tp(a) and let m 
be the smallest positive integer such that of1 G G. If there exists an element g G G such 
that o(J3) = o(^(g)) then m is a divisor o/exp(G/Z(G)). 

PROOF. Let k = o(fi). Then by hypothesis we have that k\ exp(G/Z(G)). Also, 

ofi — 1 G À ( G , Z{G)). Since a is a torsion unit we have, by [2, Proposition 3], that cfi = 

g G G. By the minimality of m we must have that m\k and hence m\ exp(G/Z(G)). • 
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2. BC1. The following three results appeared in [6]. 

THEOREM 2.1. BC1 holds for any finite solvable group such that every Sylow sub­
group of G is abelian. 

THEOREM 2.2. Let G be a finite solvable group and a G VT.G an element of order 
pn. Suppose that a Sylow p-subgroup of G is abelian. Then T^\a) = S„j. 

THEOREM 2.3. Let G be a finite solvable group and set L = ln{G) as in the remark 
below. Furthermore, suppose that if a prime p is such that p \L\ thenp4 / \G\. Then 
BC1 holds. In particular BC1 holds if the order of G is not divisible by the fourth power 
of any prime. 

REMARK 2.4. Notice that if 7W(G) is the smallest nontrivial term of the lower central 
series of a group G, then the quotient G/7W(G) is nilpotent and a result of A. Weiss 
[16] shows that ZC1, and hence BC1, holds for G/7„(G). Thus Lemma 1.4 shows that 
7W(a) G {0,1} for every a G VTG such that (o(a), |7W(G)|) = 1. In particular, by 
[4, pp. 431-433], there exist an element g G G such that o(g) = o(a). It also follows 
that BC1 holds for finite solvable groups G such that if a prime/? divides |7«(G) then G 
contains a Sylow/?-subgroup which is abelian, then BC1 holds for G. 

In this this section we shall prove the following: 

THEOREM 2.5. BC1 holds for super solvable groups. 

THEOREM 2.6. BC1 holds for finite Frobenius groups. 

If G is finite then Theorem 2.5 is a consequence of the following result. 

THEOREM 2.7. Let G be a finite group whose commutator subgroup is nilpotent. 
Then BC1 holds for G. 

PROOF. Let G be a least counterexample to our statement and a G VTG an element 
of order o(a) = pn. We first show that G' has to be a/?-group. In fact if this is not true 
then, since G' is nilpotent, we may choose H < G, H C G7, such that/? does not divide 
\H\. Since G is a least counterexample we apply Lemma 1.4 to derive a contradiction. 
Hence G' is a/?-group and thus G has a normal Sylow/?-subgroup. It follows, by the The­
orem of Schur-Zassenhaus [11, 9.1.2], that G is as in Lemma 1.1 and hence Lemma 1.1 
and Lemma 1.2 give us that a(go) ^ 0 for an element go G G which is unique, up to con-
jugacy. Hence P^\a) = 8nj by Lemma 1.2. So BC1 holds for G, a final contradiction. • 

PROOF OF THEOREM 2.5. Since G is supersolvable we have, by [ 11, 5.4.15], that G 
has a normal subgroup H, which is torsion free and of finite index. Hence G satisfies the 
condition of Lemma 1.6. Still by [11, 5.4.15], we have that G' is nilpotent. So the result 
follows from the previous theorem • 

We now proceed towards the proof of Theorem 2.4. We shall first handle the case 
where G is solvable. 
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LEMMA 2.8. Let G be a finite solvable group such that the Sylow subgroups of G are 
abelian or generalized quaternion groups. Then BC1 holds for G. 

PROOF. If p ^ 2 then a Sylow /?-subgroup of G is abelian and hence we may apply 
Theorem 2.2. So we need only to consider the case where p = 2. We use induction 
on |G|. Let a G FZG, be such that o(a) = 2n. By Theorem 2.2 we may suppose that 
a Sylow 2-subgroup of G is a generalized quaternion group. Assume first that Fit{G) 
is not a 2-group. Then, it contains a subgroup //, of odd order, which is normal in G. 
Consider the projection %/;: TG —> Z(G///). Since GjH also satisfies the hypotheses of 
the theorem it follows, by induction, that BC1 holds for G JH and, by Lemma 1.4, we 
have that T^\a) = 7^{j3). 

So, we may suppose that Fit(G) is a 2-group. Since a Sylow 2-subgroup of G is a 
generalized quaternion group we have that either Fit(G) is cyclic or it is also a generalized 
quaternion group. Hence, by [11, p. 141], we have that either Aut(Fit(G)) is a 2-group 
or it is isomorphic to £4, where the last case occurs only if Fit(G) = K%. Recall that if// 
is a subgroup of G then the quotient group NG(H)/CG(H) has a monomorphic image in 
Aut(//). Also, since G is solvable, it follows by [11, 5.4.4] that the centralizer of Fit(G) 
equals its centre. So if Aut(Fit(G)) is a 2-group then, G is a 2-group and hence A. Weiss' 
result [16] applies. If Fit(G) 9* K8 then, \G\ = 48. Set H = Z(Fit(G)); then H is the 
unique subgroup of order 2 of G. By Theorem 2.3 the quotient group G JH satisfies BC1. 
Hence we may apply Lemma 1.5 to conclude that G satisfies BC1. • 

If G is a finite solvable Frobenius group in Theorem 2.4, then the following result 
proves BC1 for G. 

LEMMA 2.9. Let G = Ax\X, where A is nilpotent and (\A\, \X\) = 1. Suppose that 
BC1 holds for X; then BC1 also holds for G. 

PROOF. Let G be a least counterexample to the statement and a £ VLG an element 
of order o(a) = pn, p a prime. We first show that A has prime power order. In fact, 
suppose that two distinct primes divide \A |. Then we may choose a prime q ^ p such that 
q I \A |. Let / /be a Sylow ̂ -subgroup of A; then / / < G. Consider the projection V>:ZG—> 
Z(G///) and set f3 = i/)(a). Then, by Lemma 1.4, we have that / ^ } (a ) = T^GS). Now, 
by the minimality of G, G JH satisfies BC1 and hence we have a contradiction. 

Now we shall show that the prime involved in \A\ is not p. In fact, if A is a/?-group 
then, by our hypothesis, A is a Sylow /^-subgroup of G and hence, by Lemma 1.2, ZC1, 
and hence BC1, holds, a contradiction. 

So we must have that;? divides \X\. In this case consider the projection tp: ÏG —• 
1(G/A). Then, with the notation of Lemma 1.4, we have that T^\oc) = 7^>(/?). Since 
BC1 holds for X, by our hypothesis, we have a final contradiction. • 

PROOF OF THEOREM 2.6 (SOLVABLE CASE). By the results of Thompson and Burn-
side on finite Frobenius groups, [11, 10.5.6], we have that G is as in Lemma 2.9 and the 
Sylow subgroups of Xare cyclic or generalized quaternion groups; hence, by Lemma 2.8, 
X satisfies BC1. The result then follows once more from Lemma 2.9. • 
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Lemma 2.9 tells us that in order to prove the non-solvable case we only have to prove 
BC1 for non-solvable Frobenius complements. 

REMARKS. 1. In Lemma 2.8 we may change generalized quaternion by dihedral. 
The proof is the same if we use the classification of these groups [5, p. 462] and the 
classification of the groups of order 24 [3]. 

2. Let G be a group and/? a prime such the Sylow/?-subgroups of G are elementary 
abelian. Suppose that a G 1(G) is an element whose order is a power of/?, say o(a) = jf. 
By [9, Theorem 2.7] we have that a(g) = 0 if g is not a/?-element. Since a(l) G {0,1} 
by [14, III. 1.3], we have that F G {0,1}. 

LEMMA 2.10. BC1 holds for G = SL(2,5). 

PROOF. Let G = SL(2,5). By [10,18.6] we have that G is a Frobenius complement 
and hence a Sylow 2-subgroup of G is isomorphic to the quaternion group of order 8. 
Observe that \G\ = 120 = 23.3.5. Hence, by item 2 of the remarks above, we may 
consider units a G VZG such that o(a) = 2w.BytheTheoremofBrauer-Suzuki[7,p. 102 
Theorem 7.8], G has a unique subgroup H of order 2 and hence G/H has elementary 
abelian Sylow 2-subgroups. So Lemma 1.5 applies. • 

We are now ready to prove: 

LEMMA 2.11. Let G be a non-solvable Frobenius complement. Then BC1 holds 
for G. 

PROOF. By [10, 18.6] G has a normal subgroup H such that H = SL(2,5) x H0 

where 2, 3 and 5 do not divide \Ho\ and hence all Sylow subgroup of Ho must be cyclic, 
so Ho satisfies BC1. Moreover we have that either: 

i) G = Hor 
ii) [G:H] = 2. 

Note that if/? G {3,5} then a Sylow/?-subgroup of G is elementary abelian and hence, 
as remarked above, we need only to consider units whose orders are powers of a prime 
/?, with/? distinct from 3 or 5. Recall also that a Sylow 2-subgroup of G is a generalized 
quaternion group so the Theorem of Brauer-Suzuki, [7, p. 102 Theorem 7.8], applies. We 
now discuss the two cases, mentioned above, separately. 

CASE 1 : G = H. In this case we may apply the Lemmas 1.4, 2.8 and 2.10 to obtain 
the result. 

CASE 2: [G : H] = 2. Let a G VZG be a torsion element such that o(a) = jf. We 
discuss two sub-cases. 

CASE (i): /? ^ 2. Note that SL(2,5) <3 G, hence we may apply Lemma 1.4, with 
H = SL(2,5), and then Lemma 2.8 to obtain that J^\a) = 8nj. 

CASE (ii): p = 2. Note that Ho <\ G. Consider the quotient group G = G /i/o. Then 
I G\ = 240. Now G has a unique subgroup of order 2, say H\. So we may apply Lemma 1.5 
for G and H\. The quotient group, G/H\ is non-solvable, of order 120 and hence must 
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be S5, for which ZC1 holds, (see [8]). So, by Lemma 1.5, we have that BC1 holds for 
G/Ho. Hence, applying Lemma 1.4 for G and H0, we obtain that I^\a) = 8nj. m 

PROOF OF THEOREM 2.6 (NON-SOLVABLE CASE). The proof is the same as in the 
solvable case, using Lemma 2.11 instead of Lemma 2.8. • 

The same proof of Lemma 2.8 together with Lemma 1.4 and the Remark 2.4 give us 
the following result: 

THEOREM 2.12. Let G be a finite solvable group such that if a prime p divides \ ln (G) \ 
then a Sylow p-subgroup of G is cyclic or a generalized quaternion group. Then BC1 
holds for G. 

3. BC2. In this section we shall prove that BC2 holds. Some partial results already 
appeared in [6]. 

THEOREM 3.1. Letn = exp(G/Z(G)) be finite, where Z£G) denotes the center of 
G. If a E VÏG is a torsion unit and m is the smallest positive integer such that a™ £ G, 
then m divides n, i.e., BC2 holds. 

PROOF. Let a e VZG be a torsion unit. Write o(a) = p\l --pfy. Let mt = Uj^ip1/ 
and set at = of"1. Then o(at) = pr/. Denote by kt the smallest positive integer such that 
af G G. Then, by Lemma 1 and Lemma 1.9, we have that kt\ exp(G/Z(G)). Since the 
orders of the a, are relatively prime, it follows that k = U h divides exp(G/ Z(G)). Since 
(m\,..., m„) = 1 we may choose integers c\9...,c„ G Z such that c\m\ + • • • +c„w„ = 1. 
So we have that a = U {oct)Ci. Thus o* E G and hence m\k. Consequently we have that 
m\Qxp(G/Z(G)). m 
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