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Sequence transformations are extrapolation methods. They are used for the purpose of convergence
acceleration. In the scalar case, such algorithms can be obtained by two different approaches which are
equivalent. The first one is an elimination approach based on the solution of a system of linear equations and
it makes use of determinants. The second approach is based on the notion of annihilation difference operators.
In this paper, these two approaches are generalized to the matrix and the vector cases.

1991 Mathematics subject classification: 65B05.

0. Introduction

There exist many algorithms for transforming a sequence of numbers, or a sequence
of vectors, or a sequence of matrices into a new sequence of objects of the same type.
Such sequence transformations are used for accelerating the convergence of the initial
sequence. They are often useful, and even essential, since many sequences and many
iterative processes used in numerical analysis and in applied mathematics converge so
slowly that their practical use is very limited. Sequence transformations are based on the
notion of extrapolation as explained, for example, in [5, 9, 21] and their theory is now
fully understood. Quite often, the elements of the new sequence obtained by an
extrapolation method are expressed as a ratio of two determinants since the elements of
the new sequence are, in fact, expressed as the solutions of systems of linear equations.
Of course, a numerical analyst would avoid computing the value of a determinant
(because there are too many arithmetical operations and then too many rounding
errors), and prefer to have recursive algorithms at his disposal for computing these
ratios of determinants. The equivalence between ratios of determinants and triangular
recursive schemes was studied in [8]. As shown in [4] and in [7], acceleration
algorithms can also be derived by means of difference operators, an approach first
introduced by Weniger [20]. In this paper, we shall extend these two procedures to the
vector and the matrix cases. In the first section, we shall begin by recalling the main
points of these two approaches.

1. The scalar case

Let (Sn) be a sequence of complex numbers such that, Vn

Sn-S = aDn (1)
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where S and a are unknown numbers and (£>„) a known sequence. We shall try to
compute the value of S. Writing (1) for the index n and for the index n+1 and
subtracting the first equation from the second one, we obtain the system

Assuming that ADn = Dn+ X — Dn¥= 0, we have

S =

Sn Dn

ASn ADn

0 AD.

This approach will be called the elimination approach.
The second approach makes use of difference operators. Although several authors

used this idea before, it really originated in [20]. It was fully developed and exploited in
[4]. It allows to recover known results, and to obtain new ones, without using the
notion of determinant. Such an approach was followed in [7] in the case of the E-
algorithm which is the most general extrapolation algorithm actually known. As above,
we assume that (1) holds and that Vn, Dn^0. Thus, (1) can be written as

Since a is a constant, the difference operator A is such that Aa = 0. A linear operator P
such that Vn, Pan = 0 is called an annihilation difference operator for the sequence (an).
Thus A is an annihilation operator for the constant sequence (an = a). Applying A to the
preceding relation yields

A(Sn/Dn)-SA(l/Dn) = Aa =

A(Sn/Dn)
It follows that

This approach will be called the annihilation operator approach.
Let us now show that the elimination and the annihilation operator approaches are

equivalent in the scalar case. Using the Leibniz rule for the operator A

A(a A ) = K +1 Aan + an Abn,

we have, starting from the second approach
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Then

A(SJDn)
A(l/Dn)

_ ASn AS
n Dn+lA(l/Dn) " ADn "

since Dn+1(l/Dn) = On+1(l/Dn + 1 - 1/Dn)= -ADJDn. Thus, the annihilation operator
approach has been recovered. Conversely, in this approach, we can write

s=
Sn+1/Dn+l

Sn Dn

ASn AD,

1
1 Dn

0 AD

which is the expression obtained by the elimination approach.
Obviously, in both approaches, if (Sn) does not satisfy (1), we can define the sequence

transformation T:(Sn)i->(Tn) by

AD
Dn for n = 0 , l , . . . .

This is the so-called 0-procedure introduced in [2] (see also [6]) whose convergence
and acceleration properties have been studied. By construction, Tn=S, Vn if Vn,
(1) holds.

In Section 2, the two approaches defined above will be generalized to the matrix case,
while the vector case will be considered in Section 3.

Of course, the form considered in equation (1) is the simplest one. It can be
generalized by assuming that the sequence (Sn) satisfies, Vn

-+akgk(n) (2)

where the (g,(n))'s are given known auxiliary sequences which can depend on the
sequence (Sn) itself. This case, which is the most general one to have been treated so far,
leads to the £-algorithm of Havie [12] and Brezinski [1]. Using the elimination and the
annihilation difference operator approaches, it will be generalized to matrices in Section
4 and to vectors in Section 5.

2. The matrix case

Let now (Sn) be a sequence of p x q matrices, (Dn) a sequence of q x q matrices, and A
and S two unknown pxq matrices. We assume that, Vn

(3)
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As before, the problem consists in computing S. Then, a sequence transformation
T:(Sa)t-*{Tn) could be defined as above and its convergence and acceleration properties
could be studied. By construction, we shall have Tn = S,Vn if (3) holds, Vn.

2.1. The elimination approach

In the scalar case, the elimination approach is based on the solution of a system of
linear equations with scalar coefficients and it makes use of the notion of determinant.
For systems of linear equations with elements in a non-commutative algebra, this notion
no longer exists [10, 11, 15] and it has to be replaced by a more general one. In this
case, the corresponding object is that of designant. This notion was introduced by
Heyting [14] in 1927 and it was recently extensively used by Salam [17, 18, 19] in
connection with vector sequence acceleration methods and, in particular, with the vector
e-algorithm which was proved to correspond to a ratio of designants instead of a ratio
of determinants as for the scalar case.

Thus, let us first remind the definition of designants and give some of their properties
that will be useful later.

Let J(q be the algebra of q x q matrices with complex entries and ^p,q the set of p x q
matrices with complex entries. We consider the system of linear equations

x1all+x2a12 = bl)

where atje J(q, b{,e Mp , and the unknown matrices x, belong to J(p<q. Let us remark
that, in this system, the unknowns are multiplied on the right by the coefficients.

Let us assume that the matrix an is regular. For eliminating the first unknown xx

from the first equation of (4), let us proceed as in Gaussian elimination, that is, let us
multiply it by a^ on the right, then by a21 and finally subtract it from the second
equation. We obtain

The square matrix a22 — ax2a\{a2x is called the designant (more precisely, the right-
designant) of the system (4) and it will be denoted by

a12

where the subscript r stands for "right".
If the designant is regular, then
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that is, using the notation introduced above for designants
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21
a2l a22

- i

Similarly, the second unknown matrix is given by

x , =
bi al2

b2 a22

- l

- Remark. The notion of designant is related to that of Schur complement. Indeed, the
Schur complement (M/aM) of au in the matrix

M
Jan al2\

\fl21 "22/

is the designant whose inverse appears in the expressions of xt and x2. The Schur
complement was already proved to be very much related to scalar and vector sequence
transformations [3].

The notion of designant can be generalized to systems in a non-commutative algebra
with an arbitrary number of equations and unknowns. Let us consider the system

(5)

as a generalization of (4). We have

*„ =

a u .. . a,

••• an

Let us set

... a In

and let A("s
 2) be the designant of order n — 1 obtained by keeping the rows

l,2,...,n — 2,r and the columns 1,2,...,n — 2,s of AB. An can be written as a designant
and computed from /ti,n_~,2)

n_1)/l
<

n
n_~1

2)
n,/l!1

n;i)1 and A[n;2) by using Sylvester's identity
[14]
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Aln-2)
"•n-\,n-\ _ A(n-2)_

— Sinn

More information about designants can be found in [14,17,18].
We shall now use these notions for computing S when the sequence (Sn) satisfies (3).

Writing this relation for the indices n and n +1 leads to the system

S+ ADn = Sn

0 + AADn = AS.

If the designant of the system is regular, we obtain

(6)

S =
ADn AS. ADn 0 (7)

Another procedure for computing S is first to obtain A from the second equation of the
system (6), assuming that ADn is regular, and then to replace it in the first equation,
thus leading to

S = Sn-ASn(ADny
iDn.

The relations (7) and (8) are equivalent since, from (7)

S = (ASn - SnD~' ADJ(0 - / . D " ' ADn) ~
l

(8)

= ( - ASn + SnD; > ADJ(ADn)"' Dn

which is the relation (8).
Before ending this subsection, let us mention that designants corresponding to a

system of linear equations where the unknowns in (4) and (5) are multiplied on the left
by the coefficients can also be defined and that the results obtained are very similar to
those given above.

2.2. The annihilation operator approach

Let us now treat the matrix case along the lines proposed in [4]. Assuming that the
square qxq matrix Dn is regular, we have SnD~l — SD~l =A. Applying the difference
operator A to both sides leads to

A(SnDn-
1)-SA(Dn"

1) ="1) =
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(9)

This approach is equivalent to the elimination approach explained in the preceding
subsection. Indeed, we have A(SnD~i)=(ASn)D~^l + SnA(D~1). It follows that

= Sn + ASn(A(Dn-
1)Dn+1)- 1 ) D ) " 1

which is the relation (8).
It is possible to obtain the same results using the notion of designant. (9) can be

written as

S =
/ D-1

Right multiplying the first row by Dn and the second row by Dn+1 does not change the
designants and we obtain

S =

which is exactly (7).

Dn

D
n+l

Dn I
ADn 0

3. The vector case

We shall now apply the techniques used in the matrix case to the vector case. Let (SJ
be a sequence of vectors of C , let AeJfpq and let (£>„) be a sequence of vectors of C*.
We assume that, Vn

Sn = S + ADn. (10)

As above, the problem consists in computing the unknown vector SeC. The idea will
be to transform this vector problem into a matrix one and then to use the approaches
of the previous section.

3.1. The elimination approach

We shall make use of the following notation: let an be any sequence of vectors of

https://doi.org/10.1017/S0013091500019295 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019295


502 C. BREZINSKI AND A. SALAM

dimension m, we shall denote by [an] the mxq matrix whose columns are an,...,an+q^l.
In the sequel, we shall take m = p or m = q. Thus, such matrices will be square for m = q.

Writing (10) for the indices n, ...,n + q— 1, we obtain

The vector case is then recovered by considering the first column of each side of this
relation, that is

= Sn-[ASn][ADn]"1Dn. (11)

The transformation H: (Sn) \-* (Hn) where Hn is the right hand side of (11) generalizes
Henrici's transformation [13, formula 5.35, p. 116] which was studied in details by
Sadok [16]. Obviously, it is also related to the Schur complement. Indeed, if we set

M =
Sn [AS.]
Dn [AD.]

we have (M./[ADJ) = S.-[AS.] | ;AD.r1D. = ff..
If Hn is a square matrix, which in our case can only arise if p= l , then detMn

Hndet[ADJ that is

Sn [AS.]
|[AD.]|r

which is nothing else than the E-algorithm [1, 12] since

H =

Sn ASn ... ASn+q^
gi(n) Ag^ri) ... Agiin + q-]

g (n) Agq{n) ... Ag(n + q-]

A g d " ) ••• A

Agq(ri) ... Agq(n + q-

3.2. The annihilation operator approach

We shall now treat the vector case by the annihilation operator approach. Using the
same notations as in the elimination approach we have, from (10), [SJ — [S] = /l[Dn]. It
follows

= [SJ-[ASB][AZ)n]-1[Dn].
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Keeping only the first columns of the matrices in both sides, we obtain
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which shows that the two approaches are equivalent in the vector case.

4. The general matrix case

We shall now extend the general scalar relation (2) to the matrix case. More precisely
we assume that, Vn

(12)

where Sn,S,AieJ?pq and where Sn and the k matrices gi(ri)eJ(q are assumed to be
known.

4.1 The elimination approach

S is obtained by solving the system

Sn =

Sn+k =

If the designant of this system is non-singular, then

S =

. . . gk(n + k) Sn+k

Si(«) •• &(») I

gk(n + k) I

(13)

If the sequence (Sn) does not satisfy (12), the expression in the right hand side of (13)
will depend on the indices k and n. In that case, it will be denoted by Ek

n). It is a matrix
belonging to Jtpq. We shall denote by gk

n\ the qxq matrix obtained by replacing the
last column in the numerator of E[n) by gi(ri),...,gj(n + k). Obviously gk

nj = 0 for i^k.
These matrices can be recursively computed by a matrix £-algorithm generalizing the
scalar one [1, 12]. It is as follows (the operator A acting on the upper index n)

Theorem 1.

with 4"> = S. and g{S}i=gi{ri).
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Proof. We have

£<»» =

C. BREZINSKI AND A. SALAM

Let us set

gi(n)

gk(n

gk{n)

gi(n) gk(n)

. . . gk(n

- 1

. . . gk(n + k) gi(n + k) f ... gk(n

- 1

We shall prove that these quantities can be recursively computed by the relations given
in the theorem. Let us denote, for simplicity, by A the numerator of Ek

n) and by D its
denominator. In other words, we write Ek

n) = AD~l. The value of the designant A does
not change if its first row is permuted with one of the first k— 1 ones [14]. Thus

&(«+!)

A = gk(n + k-l)

gk(n + k)

S n + k -1

sn
s +k

Applying Sylvester's identity, extended to designants [17], we obtain

-CJ

Sn+k

with

and

C =

ft-^n+l) Sn+l

Sn+k-l

s.

&(»+!)
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From a property of designants [14, 17] we have

Si(«) ••• ft-i(n) Sn

505

C =

Thus

- 1 ) S,n + k - l

1)

- 1 )

- 1

We have

D =
gk(n)

... ft(n + fc)

Applying Sylvester's identity to D we obtain

DJ~1=E-F

with

£ =
n + fc) .. . gk(n

and

It is known [14] that a designant changes if its last row is permuted with another one
but that the product of the two designants appearing in the deflnition of F does not
change when permuting the last rows of both of them with the same other row. Thus, it
follows that
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-1) . . . gk-iin + k-]

. . . gk(n+l)

- l

Finally we have

which is the first rule of the algorithm given in the theorem. The proof of the rule for
the file's is the same after replacing the Sn's by the g,-(n)'s. The algorithm is initialized
with

£<o
n ) = and sift=£,(«)• •

4.2. The annihilation operator approach

We shall now generalize to the matrix case the operator approach introduced in [7]
for the scalar E-algorithm. For any matrix sequence U = (Un) we shall define recursively
the operators Nk: t / = ([/„)„i->Nk(U) = (N^(U))n by

with N$)(U) =
We set

For simplicity we shall also make use of the notation Nk(Un) for denoting Nk
n)(U) and

Ek(Un) for denoting Ek
n)(U). Sometimes both notations will be used simultaneously.

If AeJtpq and BeJtq with B regular, the product AB~l will be denoted by A/B.
Thus, (12) can be written as

N0(Sm) - SN<S>{I) = A, N0(g, (n)) +•• • •+ ^ 4 (14)

Assuming that N0(g!(n)) is regular, we can multiply (14) on the right by its inverse and
then apply the operator A to both sides. Since AAt=0, we obtain, using the definition
ofN,

(15)
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and

Assuming that N1(g2{n)) is regular, multiplying (15) on the right by its inverse, applying
A, and using the definition of N2, we get

N2(Sn) - SN2°\I) = A3N2(g3(n)) + • • • • + AkN 2(gk(n))

a n d

E2(Sn) = N2(Sn)/N2"\I).

And so on, we have

_A(Nk(Sn)(Nk(gk+1(n))Yl

\Nk"\l)\ AT<">(/) )

Similarly

Nft,(/) = A(Nk
n\l)(Nk(gk+!(«)))"»)

Since Ek
n){I) = I, we finally obtain the

Theorem 2.

Ek(Sn)

:
Ek(g

I \
—

+1{n))J

l \
—- .

+l{n))J

Ek(gk+l{

These expressions are exactly those obtained in the elimination approach. Thus, the
Ek(Sn) and the Ek(gj(n)) coincide with the E(

k
n) and the gk"\ given in the previous

subsection.
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5. The general vector case

We shall assume that the sequence of vectors Sn e C satisfies, Vn

(16)

where now AieJfpq,SeC and gi(n)eC.
The problem is again to compute S. We shall follow successively the two approaches

used in the general matrix case.

5.1. The elimination approach

Transforming the vector relation (16) into a matrix one, we obtain

Using the matrix £-algorithm given in the theorem above and keeping only the first
columns in each side of the relation, we obtain the following algorithm

k + l — 2-k — Sk,k+l

gk+l.i — 8k,i — L&Sk,iJl&gk,k+lJ gk,k + l

with £(
o
n) = Sn and g<o}i=gi{n). This algorithm could be called the matrix-vector

E-algorithm since it is a vector algorithm coming out from the matrix £-algorithm given
in the previous section.

In this algorithm, the recursive computation of Ek
n) needs the knowledge of

Sn,...,Sn+qk (and similarly for gk
n)i). In the topological £-algorithm proposed in [1], this

computation only needs Sn,...,Sn + 2*. However, for the topological £-algorithm, the /4,'s
must be scalar matrices A^aJ while, now, they can be arbitrary pxq matrices.

5.2. The annihilation operator approach

Let £fc[Sn] be the pxq matrix whose columns are Ek(Sn),...,£t(Sn+4_1) and similarly
for £*[£,-(«)]• After transforming, as above, the vector case into a matrix relation, we
obtain

Keeping only the first columns of the matrices in both sides, we get

and

Ek +1 (&(«)) = Ek(gi(n)) - *Ek[g,[nmAEk[gk+, (n)]) ~ l Ek(gk + , (n))
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with £0(Sn) = Sn and £<,(£.(")) =£.(")•
Thus, the elimination and annihilation operator approaches are equivalent.
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