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Abstract. We recall a version of the Osofsky–Smith theorem in the context of a
Grothendieck category and derive several consequences of this result. For example, it
is deduced that every locally finitely generated Grothendieck category with a family of
completely injective finitely generated generators is semi-simple. We also discuss the
torsion-theoretic version of the classical Osofsky theorem which characterizes semi-
simple rings as those rings whose every cyclic module is injective.
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1. Introduction. In the late 1960s, Osofsky showed her classical result which
asserts that a ring is semi-simple if and only if every cyclic module is injective
[8, Theorem], [9, Corollary]. Among the categorical generalizations of the Osofsky
theorem, we mention the version established by Gómez Pardo et al. [5]. They showed
that if C is a locally finitely generated Grothendieck category and M is a finitely
presented object of C which is completely (pure-)injective and has a von Neumann
regular endomorphism ring S, then S is a semi-simple ring [5, Theorem 1]. In the early
1990s, Osofsky and Smith established a module counterpart of the original Osofsky
theorem. They proved that if M is a cyclic module with the property that every cyclic
submodule of M is completely extending, then M is a finite direct sum of uniform
modules [10]. As a consequence, if M is a module with every quotient of a cyclic
submodule injective, then M is semi-simple. In the same paper, Osofsky and Smith
noted that their result still holds in a more general categorical setting.

The purpose of this paper is to discuss some categorical version of the Osofsky–
Smith theorem and give several applications. We first consider the setting of a
locally finitely generated Grothendieck category C and deduce that if C has a family
of completely injective finitely generated generators, then C is semi-simple. As an
application, we give a positive partial answer to the following question raised by
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M. Teply: Does the torsion-theoretic version of the Osofsky theorem hold? In other
words, if τ is a hereditary torsion theory such that every cyclic module is τ -injective,
does it follow that every module is τ -injective? Finally, we show that a ring is semi-
simple if and only if every cyclic module is τ -injective τ -complemented.

2. Locally finitely generated Grothendieck categories.

DEFINITION 2.1. Let C be a Grothendieck category. Then an object C of C is called
completely injective if for every object M of C and every morphism f : C → M, Im(f )
is an injective object.

REMARK. As an immediate consequence of the existence of an injective hull for
every object in C, an object C of C is completely injective if and only if for every injective
object M of C and every morphism f : C → M, Im(f ) is an injective object.

We begin with a property that will be needed later.

PROPOSITION 2.2. Let C be a Grothendieck category and (Ui)i∈I a family of completely
injective objects of C. Then every finite direct sum of Ui’s is completely injective.

Proof. Consider a finite direct sum of Ui’s, say U1 ⊕ · · · ⊕ Un, and let f : U1 ⊕
· · · ⊕ Un → M be a morphism in C. We show that Im(f ) is an injective object. We
prove it for n = 2, the general case that follows by induction. Let f : U1 ⊕ U2 →
M be a morphism in C. Denote by i1 : U1 → U1 ⊕ U2 and i2 : U2 → U1 ⊕ U2 the
inclusion morphisms. Also, put f1 = f ◦ i1 and f2 = f ◦ i2. Then it is easy to see that
Im(f ) = Im(f1) + Im(f2). Let X = Im(f1), Y = Im(f2), and let g : U1 → X/(X ∩ Y ) be
the composition of the natural epimorphisms U1 → X and X → X/(X ∩ Y ). Then
(X + Y )/Y ∼= X/(X ∩ Y ) ∼= Im(g) is an injective object by hypothesis. But Y is also
injective, and so Im(f ) = X + Y is an injective object. �

Recall that a Grothendieck category C is called locally finitely generated if it has a
family of finitely generated generators [12].

COROLLARY 2.3. Let C be a locally finitely generated Grothendieck category with a
family of completely injective finitely generated generators. Then every finitely generated
object in C is injective.

EXAMPLE 2.4. The conclusion of Proposition 2.2 does not hold for an infinite
family. Indeed, let us consider an infinite family of fields (Ki)i∈I and let R = ∏

i∈I Ki.
Then R is a commutative von Neumann regular ring, that is, a V -ring, and so every
simple R-module is injective. Now let (ei)i∈I be the family of primitive orthogonal
idempotents in R. Clearly, each Si = Rei is a simple R-module, and so injective.
Then each Si is actually completely injective. Also, we have

⊕
i∈I Si = Soc(R). Clearly,⊕

i∈I Si is not injective, because otherwise this would imply that R = Soc(R). Now if
we take M = ⊕

i∈I Si and f to be the identity homomorphism, it follows that C = M
is not completely injective.

EXAMPLE 2.5. If R is a right hereditary ring, then it is clear that the class of
completely injective objects in the category Mod-R of right R-modules coincides with
the class of injective objects in Mod-R.

In order to be able to state the Osofsky–Smith theorem, we need the definition of
an extending object in a Grothendieck category, which is the same as for modules.
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DEFINITION 2.6. Let C be a Grothendieck category. An object M of C is called
extending if every subobject of M is essential in a direct summand of M. Equivalently,
M is extending if and only if every essentially closed subobject of M is a direct summand
of M.

An object M of C is called completely extending if for every object M of C and
every morphism f : C → M, Im(f ) is an extending object.

Let C be a Grothendieck category. For a class P of objects of C, by a P-subobject
we mean a subobject belonging to P . Let P be a class of finitely generated objects in
C with the following properties:

(P1) P is closed under quotients.
(P2) If X ∈ P and Y is a P-subobject of a quotient object of X , then there is a

P-subobject Z of X that projects onto Y .
Some examples of such classes P in C are the following: the class of all finitely

generated objects, the class of finitely generated semi-simple objects and any class of
finitely generated objects closed under subobjects and quotients.

Now basically the same proof of the basic theorem for modules (see [7] or [10])
works in our categorical context. This has also been noted in the original paper of
Osofsky and Smith [10].

THEOREM 2.7. Let C be a Grothendieck category. LetP be a class of finitely generated
objects in C satisfying (P1) and (P2) and let M ∈ P be such that every P-subobject of
M is completely extending. Then M is a finite direct sum of uniform objects.

The next two corollaries are obtained as [10, Corollaries 1 and 2].

COROLLARY 2.8. Let C be a Grothendieck category such that every finitely generated
object is extending. Then every finitely generated object is a finite direct sum of uniform
objects.

COROLLARY 2.9. Let C be a Grothendieck category. Let M be an object of C such
that every quotient of every finitely generated subobject of M is injective. Then M is
semi-simple.

Recall that a Grothendieck category C is called semi-simple if every object of C
is semi-simple [12]. Now Corollaries 2.3 and 2.9 yield the Osofsky–Smith theorem in
locally finitely generated Grothendieck categories, stated as follows.

THEOREM 2.10. Let C be a locally finitely generated Grothendieck category with a
family of completely injective finitely generated generators. Then C is semi-simple.

By Corollary 2.3, the property of complete injectivity of the finitely generated
generators of a locally finitely generated Grothendieck category passes to each
finitely generated object. Now we immediately have the following consequences of
Theorem 2.10.

COROLLARY 2.11 [8, Theorem]. Let R be a ring with identity such that every cyclic
(finitely generated) module is injective. Then R is semi-simple.

COROLLARY 2.12 [3, Corollary 7.14]. Let R be a ring with identity, M a module
and σ [M] the category of M-subgenerated modules. Suppose that every cyclic (finitely
generated) module in σ [M] is M-injective. Then M is semi-simple.
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COROLLARY 2.13. Let R be a ring with enough idempotents such that every cyclic
(finitely generated) module is injective. Then R is semi-simple.

Recall that a Grothendieck category C is called spectral if every object of C is
injective. It is well known that C is semi-simple if and only if it is locally finitely
generated and spectral [12]. This suggests us to raise the following natural question,
whose positive answer would generalize the Osofsky–Smith theorem 2.10.

QUESTION 1. If C is a Grothendieck category with a family of completely injective
generators, does it follow that C is spectral?

3. Applications to torsion theories. Throughout this section, R is a ring with
identity, all modules are unitary right R-modules and M is a module. Also, Mod-R
denotes the category of unitary right R-modules, σ [M] denotes the full subcategory
of Mod-R consisting of M-subgenerated modules and τ = (T ,F) is a hereditary
torsion theory in Mod-R. Recall that a submodule B of a module A is called τ -
dense (respectively τ -closed) in A if A/B is τ -torsion (respectively τ -torsion free). Also,
a module M is called τ -injective if for every module B and every τ -dense submodule A
of B, every homomorphism A → M extends to a homomorphism B → M. For further
background on torsion theories the reader is referred to [4] or [12].

Now we have the following consequence of the categorical Osofsky–Smith theorem
for torsion theories.

COROLLARY 3.1. Suppose that every cyclic τ -torsion module is τ -injective. Then every
τ -torsion module is τ -injective.

Proof. Note that T is generated by the modules of the form R/I for the τ -dense
right ideals I of R. Each factor of such an R/I is cyclic τ -torsion, and hence, τ -
torsion τ -injective by hypothesis, and so injective in T . Thus, each such generator
R/I is completely injective in T . Now by Theorem 2.10, T is semi-simple, and so
spectral. Then every τ -torsion module is injective in T , that is, every τ -torsion module
is τ -injective. �

A related question is the following one, which was raised by M. Teply:

QUESTION 2. If every cyclic module is τ -injective, does it follow that every module is
τ -injective?

REMARK. Note that, by Corollary 3.1, if every cyclic τ -torsion module is τ -injective,
then every τ -torsion module is τ -injective, and so every τ -torsion module is semi-simple
by [4, Proposition 8.15]. Hence, Question 2 reduces to the case of a specialization of
the Dickson torsion theory [2]. Recall that the Dickson torsion theory is the hereditary
torsion theory generated by all simple modules. Its torsion class consists of all semi-
artinian modules, whereas its torsion-free class consists of all modules with zero socle.

In the following we shall obtain a positive answer in case τ is of finite type. Recall
that a torsion theory is called of finite type if its Gabriel filter contains a cofinal subset
of finitely generated left ideals. A module is called τ -finitely generated if it has a finitely
generated τ -dense submodule. We need the following lemma.

LEMMA 3.2. Suppose that every cyclic module is τ -injective. Then every τ -finitely
generated module is τ -injective.
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Proof. First we show that every finitely generated module is τ -injective. Let M
be a finitely generated module, say M = Rx1 + · · · + Rxn. Use induction on n. For
n = 1 it is clear. Suppose that every module generated by n − 1 elements is τ -injective.
Then M/(Rx1 + · · · + Rxn−1) ∼= Rxn/((Rx1 + . . . + Rxn−1) ∩ Rxn) is cyclic, and so τ -
injective. But Rx1 + · · · + Rxn−1 is also τ -injective, so that M is τ -injective.

Now let M be a τ -finitely generated module; hence, M has some τ -dense finitely
generated submodule N. Then N is τ -injective by the argument given in the previous
paragraph. Clearly, M/N is τ -torsion, and hence, τ -injective by Corollary 3.1. Thus,
it follows that M is τ -injective. �

THEOREM 3.3. Let τ be of finite type and suppose that every cyclic module is τ -
injective. Then every module is τ -injective.

Proof. Let I be a τ -dense left ideal of R. Then there exists a finitely generated left
ideal J ⊆ I and we have I/J τ -torsion. Then J is τ -injective by Lemma 3.2; hence, it is
a direct summand of R, and so a direct summand of I , say I = J ⊕ J ′. But J ′ ∼= I/J is
τ -torsion, and hence, τ -injective. It follows that I is τ -injective, and hence, I is a direct
summand of R. Therefore, every module is τ -injective by [4, Proposition 8.10]. �

There are situations when the condition that every cyclic τ -torsion module is τ -
injective assures that every module is τ -injective. We present one based on the recent
result stating that every Baer module over a commutative domain is projective [6,
Theorem 3.4]. Recall that a module M is called τ -projective if Ext1

R(M, T) = 0 for
every τ -torsion module T . If R is a commutative domain and τ is the usual torsion
theory in Mod-R, then a τ -projective module is called Baer. We need the following
easy lemma.

LEMMA 3.4. Every τ -torsion module is τ -injective if and only if every τ -torsion
module is τ -projective.

COROLLARY 3.5. Let R be a commutative domain and τ the usual torsion theory in
Mod-R. The following are equivalent:

(i) Every cyclic τ -torsion module is injective.
(ii) Every τ -torsion module is injective.
(iii) Every τ -torsion module is Baer.
(iv) Every module is injective.
(v) R is a field.

Proof. Recall that a module is τ -torsion if and only if every non-zero element
x ∈ M is annihilated by a non-zero ideal. Since R/I is τ -torsion for every non-zero
ideal of R, τ -injectivity coincides with usual injectivity.

(i)⇒(ii) By Corollary 3.1.
(ii)⇒(iii) By Lemma 3.4.
(iii)⇒(iv) By Lemma 3.4, every τ -torsion module is Baer, and so projective by

[6, Theorem 3.4]. Then every module is τ -injective [4, Proposition 8.10], and so
injective.

(iv)⇒(v) In this case R is semi-simple, and so R must be a field.
(v)⇒(i) Clear. �
In the following, we establish a characterization of semi-simple modules using

certain relative injective modules. Let τ be a hereditary torsion theory in the category
σ [M]. Recall that a module N ∈ σ [M] is called (M, τ )-injective if N is injective
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with respect to every exact sequence 0 → K → L in σ [M] with L/K τ -torsion. We
consider the following notion which generalizes that of complemented module with
respect to a hereditary torsion theory in Mod-R from [11]. A module N ∈ σ [M] is
called (M, τ )-complemented if every submodule of N is τ -dense in a direct summand
of N.

THEOREM 3.6. The following are equivalent:
(i) M is semi-simple.
(ii) Every module in σ [M] is (M, τ )-injective (M, τ )-complemented.
(iii) Every cyclic module in σ [M] is (M, τ )-injective (M, τ )-complemented.
(iv) Every cyclic module in σ [M] is injective in σ [M].

Proof. (i) ⇒ (ii) Suppose that M is semi-simple. Then every module in σ [M] is
injective in σ [M] [14, 20.3], and hence, (M, τ )-injective. Also, every module in σ [M] is
semi-simple in σ [M] [14, 20.3], and hence, (M, τ )-complemented.

(ii) ⇒ (iii) Clear.
(iii) ⇒ (iv) Let C be the smallest closed subcategory of σ [M] containing the (M, τ )-

complemented modules. Then C = σ [N] for some module N ∈ σ [M], and a family of
finitely generated generators for C consists of the modules R/I with R/I ∈ σ [N]. Each
such R/I is (M, τ )-complemented, and so an object of C. Thus, C = σ [M]. By an easy
adaptation of [13, Lemma 2] in σ [M], it follows that τ is a generalization of the Goldie
torsion theory; hence, (M, τ )-injectivity coincides with injectivity.

(iv)⇒(i) By Corollary 2.12. �

Now we have the following characterization of semi-simple rings.

COROLLARY 3.7. R is semi-simple if and only if every cyclic module is τ -injective
τ -complemented.

The classical Osofsky theorem is obtained by taking τ = τG, i.e. the Goldie torsion
theory, or τ = χ , i.e. the torsion theory with all modules torsion. Note that a module
is τG-injective τG-complemented if and only if it is injective. Also, every module is
χ -complemented.

In [1] it has been shown that the class of τ -injective τ -complemented modules
is strictly contained in the class of quasi-injective modules. Now recall the following
result.

THEOREM 3.8 [7, Theorem 6.83]. The following are equivalent:
(i) R is semi-simple.
(ii) Every module is quasi-injective.
(iii) Every finitely generated module is quasi-injective.

The condition that every cyclic module is quasi-injective is, in general, weaker than
that in the previous theorem. For instance, R = �[x]/(x2) is self-injective, and every
cyclic module is quasi-injective, but R is not semi-simple [7]. Hence, Corollary 3.7 may
be seen as a refinement of Theorem 3.8 for cyclic modules.
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