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Abstract Non-degenerate monoids of skew type are considered. This is a class of monoids S defined
by n generators and

(n
2

)
quadratic relations of certain type, which includes the class of monoids yielding

set-theoretic solutions of the quantum Yang–Baxter equation, also called binomial monoids (or monoids
of I-type with square-free defining relations). It is shown that under any degree-lexicographic order on the
associated free monoid FMn of rank n the set of normal forms of elements of S is a regular language in
FMn. As one of the key ingredients of the proof, it is shown that an identity of the form xNyN = yNxN

holds in S. The latter is derived via an investigation of the structure of S viewed as a semigroup of
matrices over a field. It also follows that the semigroup algebra K[S] is a finite module over a finitely
generated commutative subalgebra of the form K[A] for a submonoid A of S.
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1. Introduction

Automaton algebras (and automaton semigroups) were defined by Ufnarovskii [16] with
the condition that the set of normal forms of elements of the algebra (a semigroup)
is a regular language. Namely, let A be a finitely generated algebra over a field K

with a set of generators a1, . . . , an. Let K〈x1, . . . , xn〉 denote the free K-algebra of
rank n and let π : K〈x1, . . . , xn〉 → A be the homomorphism such that π(xi) = ai

for all i. Assume that a well order is fixed on the free monoid FMn = 〈x1, . . . , xn〉
which is compatible with the multiplication in FMn. Let I be the ideal of FMn con-
sisting of all leading monomials of elements of ker(π). Then the set N(A) = FMn \I is
called the set of normal words corresponding to the chosen presentation and the cho-
sen order on FMn, and the minimal set of generators of I is called the set of obstruc-
tions. One says that A is an automaton algebra if N(A) is a regular language. Recall
that the latter means that this set is obtained from a finite subset of FMn by apply-
ing a finite sequence of operations of union, multiplication and operation ∗ defined
by T ∗ =

⋃
i�1 T i for T ⊆ FMn. If T = {w} for some w ∈ FMn, then for the sake
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of simplicity we sometimes write T ∗ = w∗. For basic facts on regular languages and
automata theory we refer the reader to [8]. If S is a semigroup, then S is an automa-
ton semigroup if the semigroup algebra K[S] is an automaton algebra. In this case we
also write N(S) = N(K[S]). The class of automaton algebras contains the class of
algebras with a finite Gröbner basis (or, equivalently, algebras with a finitely gener-
ated ideal of obstructions). There are several results indicating that not only has this
class better computational properties, but also several algebraic and structural prop-
erties behave better than in the class of arbitrary finitely generated (or even finitely
presented) algebras. For example, in this context one can quote results on the growth
and Gelfand–Kirillov dimension [16, § 5.10], results on the radical in the case of monomial
automaton algebras [16, § 7.6], results on prime algebras of this type [2] and also results
concerning the special case of finitely presented monomial algebras in [12, Chapter 24]
and [13].

In general, Ufnarovskii’s notion depends not only on the given presentation but also
on the chosen order on the corresponding free monoid FMn. His approach was later
continued in [9,10].

The object of our study in this paper is the class of so-called monoids (and algebras) of
skew type. Let X = {x1, x2, . . . , xn}. Assume that a function r : X2 → X2 is given. Then
r(xi, xj) = (xσi(j), xγj(i)) for some maps σ1, . . . , σn, γ1, . . . , γn : {1, . . . , n} → {1, . . . , n}.
Assume also that r2 = idX2 and r(x, x) = (x, x) for all x ∈ X. By the monoid of skew
type S = 〈x1, . . . , xn〉 associated to r, we mean the monoid presented with generators
x1, . . . , xn and with the defining relations xixj = xσi(j)xγj(i) for all 1 � i, j � n. We
shall also write S = 〈X; R〉, where R denotes the set of defining relations. We refer
the reader to [7], where it is shown in particular that these monoids provide us with
intriguing classes of Noetherian PI algebras with additional nice properties. Algebras of
this type are also called algebras with quantum binomial relations [4]. In particular, they
include the class of so-called square-free algebras of I-type, which are semigroup algebras
of monoids yielding set-theoretic solutions to the quantum Yang–Baxter equation [3,5,
7,15].

Let Symn be the symmetric group of degree n. If σ1, . . . , σn ∈ Symn, then we say that
S is right non-degenerate, and if γ1, . . . , γn ∈ Symn, then S is left non-degenerate. If
both conditions are satisfied, then we say that S is a non-degenerate monoid of skew
type. Our main result shows that under any degree-lexicographic order on the associated
free monoid FMn of rank n the set N(S) of normal forms of elements of S is a regular
language in FMn. One of our main motivations is a fundamental result saying that
if A is a square-free algebra of I-type, then there exists a degree-lexicographic order
on FMn such that the corresponding ideal I of obstructions is generated by the set
{xixj | xixj = xkxl and xixj > xkxl}, or, equivalently, that N(A) = {xα1

i1
· · ·xαn

in
| xi1 <

· · · < xin
, αi � 0}. (Actually, so-called binomial monoids were first defined in terms of

the Gröbner basis in [3]; then, in [5], it was shown that binomial monoids are of I-type,
while in [15] it was shown that every square-free monoid of I-type is a binomial monoid.)
As one of the key ingredients of the proof, it is shown that an identity of the form
xNyN = yNxN holds in S. The latter is derived via an investigation of the structure
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of S viewed as a semigroup of matrices over a field. This is then used to show that
C = 〈sN | s ∈ S〉 is a finitely generated commutative submonoid of S such that

S =
⋃

f∈F

fC =
⋃

f∈F

Cf

for a finite subset F ⊆ S, which seems to be a result of independent interest.
Notice that every monoid of skew type S has a degree function induced by the length of

the words in FMn, because the defining relations of S are homogeneous. We will denote
by deg(a) the degree of a ∈ S.

2. Monoids of skew type as linear semigroups

From [7, Theorem 9.4.2], we know that, for every field K, the algebra K[S] of a non-
degenerate monoid S of skew type is a Noetherian PI algebra. Therefore, by a result
of Anan′in [1], the algebra K[S] is representable, which means that it embeds into the
algebra Mm(L) of matrices over a field extension L of K for some m � 1. Our aim in this
section is to prove certain structural properties of S viewed as a semigroup of matrices
over a field and to derive an important combinatorial property that will be crucial in the
next section.

First we prove the following technical lemma.

Lemma 2.1. Let S = 〈X; R〉 be a right non-degenerate monoid of skew type. Then,
for every a, b ∈ S, a(n!)m

b ∈ bS, where n = |X| and m = deg(b).

Proof. We shall prove the result by induction on deg(b). If deg(b) = 0, then b = 1
and the result is clear in this case.

Suppose that deg(b) = m � 1 and the result is true for all a, b′ ∈ S with deg(b′) < m.
Since deg(b) � 1, there exist b′ ∈ S and xi ∈ X such that b = b′xi. Since deg(b′) = m−1,
by the induction hypothesis, there exists c ∈ S such that a(n!)m−1

b′ = b′c. Therefore,

a(n!)m

b = a(n!)m

b′xi = b′cn!xi.

Let c = xi1 · · ·xik
. Then, by using the defining relations xjxk = xσj(k)xγk(j), we have

cxi = xi1 · · ·xik
xi = xi1 · · ·xik−1xσik

(i)xγi(ik)

= xi1 · · ·xik−2xσik−1σik
(i)xγσik

(i)(ik−1)xγi(i1)

...

= xσi1 ···σik
(i)c

′

for some c′ ∈ S. Since S is right non-degenerate, σ1, . . . , σn ∈ Symn. Hence, there exists
c′′ ∈ S such that cn!xi = x(σi1 ···σik

)n!(i)c
′′ = xic

′′. Therefore,

a(n!)m

b = b′cn!xi = b′xic
′′ = bc′′ ∈ bS,

and the result follows by induction. �
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Now we are ready to prove the main result of this section. For basic background on
the structure of semigroups of matrices, including the description of Green’s relations on
the full multiplicative monoid Mm(L) over a field L, we refer the reader to [12].

Theorem 2.2. Let S be a non-degenerate monoid of skew type and let K be any field.
Then S embeds into the multiplicative monoid Mm(L) of matrices over a field extension
L of K for some m � 1 and, if S is viewed as a subsemigroup of Mm(L), then the
following conditions hold.

(i) S intersects finitely many H-classes of the multiplicative monoid Mm(L).

(ii) If H is a maximal subgroup of Mm(L), then S ∩ H generates a finitely generated
abelian-by-finite subgroup of H that is the group of quotients of S ∩ H.

(iii) If e, f are idempotents such that e ∈ H1, f ∈ H2 for some maximal subgroups
H1, H2 of Mm(L) intersecting S, then ef = fe.

(iv) There exists a positive integer N such that aNbN = bNaN for every a, b ∈ S.

Proof. As noted at the beginning of this section, K[S] embeds into the algebra Mm(L)
of matrices over a field extension L of K for some m � 1. Thus, in order to prove asser-
tions (i)–(iv), we view S as a subsemigroup of the multiplicative monoid Mn(L). The
first assertion is an easy consequence of the fact that K[S] is right and left Noetherian [7,
Proposition 5.1.1]. Then, from [12, Proposition 3.16], it follows that for every maximal
subgroup H of Mm(L) intersecting S the subgroup of H generated by S ∩ H is finitely
generated. Since K[S] is a PI algebra, this group must be abelian-by-finite [14, Theo-
rems 5.3.7 and 5.3.9], and it is the group of quotients of S∩H. Thus, the second assertion
follows.

Let a ∈ S ∩ H1, b ∈ S ∩ H2 for maximal subgroups H1, H2 of Mm(L) intersecting S.
From Lemma 2.1 and its dual we know that

aαb = bc, abβ = c′a, baγ = db, bδa = ad′ (2.1)

for some positive integers α, β, γ, δ and some elements c, c′, d, d′ ∈ S. Let b′ ∈ H2 be the
inverse of b in H2. Then

aαf = aαbb′ = bcb′ = fbcb′.

Hence,
aαf = faαf.

Since a ∈ H1 and e is the identity of H1, by the Cayley–Hamilton Theorem we know
that e =

∑j
i=1 λi(aα)i for some λi ∈ K, where j is the rank of all matrices in H1. Then

f(aα)if = (aα)if for every i � 1. Hence,

ef =
j∑

i=1

λi(aα)if =
j∑

i=1

λif(aα)if = fef.
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In a similar way, the remaining three equalities in (2.1) imply that

ef = efe, fe = fef, fe = efe.

Then ef = efe = fe, which proves assertion (iii).
Let H3 be the maximal subgroup of Mm(L) containing the idempotent ef . Then every

element of the set H1H2 is J -related in the monoid Mm(L) to ef .
In view of (i), the set C of R-classes of Mm(L) intersecting the set (S ∩H1)(S ∩H2) is

finite. Let Ĥi = (S ∩ Hi)(S ∩ Hi)−1 for i = 1, 2, 3. Let a1, a2 ∈ S∩H1 and b1, b2 ∈ S∩H2.
We have seen above that there exists a positive integer α such that aα

2 b1 ∈ b1S and this
leads to faα

2 f = aα
2 f . Since aα

2 f L ef in Mm(L) and faα
2 f ∈ feMm(L) = efMm(L), this

implies that faα
2 f = aα

2 f ∈ H3. If a−1
2 denotes the inverse of a2 in H1, then we also get

a−α
2 fMm(L) = a−α

2 faα
2 fMm(L) = efMm(L). Thus,

a1a
−1
2 b1b

−1
2 Mm(L) = a1a

α−1
2 a−α

2 fMm(L)

= a1a
α−1
2 efMm(L)

= a1a
α−1
2 b1Mm(L).

Therefore, the set of R-classes of Mm(L) intersecting Ĥ1Ĥ2 coincides with the set C,
so it is finite. The elements of S ∩ H1 act by left multiplication on C. So, this gives a
homomorphism φ : S ∩ H1 → Symt, where t is the cardinality of C. This homomorphism
φ can be extended to a homomorphism φ′ : Ĥ1 → Symt. It follows that the kernel of
φ′ is a normal subgroup of finite index dividing t! in Ĥ1. So, the action of every at!, for
a ∈ S∩H1, is trivial. Let k1 = t!. It follows that ak1ef R ef in Mm(L). Since ak1ef L ef ,
it follows that ak1ef ∈ H3. In particular, ak1ef = efak1ef . A symmetric argument shows
that there exists a positive integer k2 (which depends on the cardinality of the finite set
of L-classes of Mm(L) intersecting (S ∩ H2)(S ∩ H1)) such that feak2 = feak2fe. Let
k = k1k2. Since ef = fe, we get that akef = efak. Similarly, it follows that blef = efbl

for some l � 1 (which depends on the cardinality of the finite set of R-classes of Mm(L)
intersecting (S∩H2)(S∩H1) and on the cardinality of the finite set of L-classes of Mm(L)
intersecting (S ∩ H1)(S ∩ H2)). From (ii) we know that there exists a normal abelian
subgroup A of finite index in the subgroup Ĥ3 of H3 generated by S∩H3. If r = [Ĥ3 : A],
then (akef)r(blef)r = (blef)r(akef)r. Therefore,

akrblr = (akre)(fblr) = (akref)(efblr) = (blref)(efakr) = blrakr.

Notice that for every a ∈ S there exists a maximal subgroup H of Mm(L) such that
am ∈ H. Since the set Z of maximal subgroups of Mm(L) intersecting S is finite, asser-
tion (iv) follows with N = mr′, where r′ is the least common multiple of indices of
abelian normal subgroups (of finite index) for all groups of the form (S ∩ H)(S ∩ H)−1,
where H runs through the set Z and of the finite set of all possible integers k, l defined
as above (for all pairs of maximal subgroups from the set Z). �

As mentioned above, a right non-degenerate monoid of skew type satisfies the ascending
chain condition on right ideals. For arbitrary submonoids of nilpotent-by-finite groups
with the latter property, the assertion of Lemma 2.1 can also be proved.
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Lemma 2.3. Let S be a submonoid of a nilpotent-by-finite group G. Assume that S

satisfies the ascending chain condition on right ideals. Then there exists a positive integer
q such that for every s, t ∈ S we have sqt ∈ tS and tsq ∈ St.

Proof. By [7, Lemma 4.1.5], for every u ∈ S there exists nu � 1 such that snuu ∈ uS.
Moreover, S has a group of quotients. Hence, we may assume that G = SS−1 = S−1S.
Theorem 4.4.6 of [7] also implies that G has a normal subgroup A of finite index such
that the commutator subgroup [A, A] is contained in S.

First, consider the case where A is abelian. Let F be a finite set of coset representatives
of A in G. Since A has finite index in G, such an F can be chosen so F ⊆ S. Let m = |F |.
Then, for every t ∈ S, we get

t−1smt = (t−1st)m = (f−1sf)m = f−1smf,

where f ∈ F is chosen so that At = Af . Therefore,

t−1smnf t = (f−1smnf f) = (f−1snf f)m ∈ S.

Hence, sqt ∈ tS follows, with q = m
∏

f∈F nf .
Now, consider the general case. Let S̄ = S/[A, A] ⊆ Ḡ = G/[A, A]. Applying the

previous case to any elements s, t ∈ S we get s̄q t̄ ∈ t̄S̄, where ū denotes the image of
u ∈ S in S̄. This means that sqt ∈ tS[A, A] ⊆ tS because [A, A] ⊆ S. The symmetric
assertion follows from the fact that S also satisfies the ascending chain condition on left
ideals [7, Theorem 4.4.7]. So, there exists q′ � 1 such that tsq′ ∈ St for every s, t ∈ S.
The result follows. �

Assume that S = 〈a1, . . . , an〉 is a cancellative monoid. Let π : FMn → S be the
natural homomorphism and assume that an order on FMn is given such that S = π(N)
for a regular subset N ⊆ FMn that is a union of finitely many subsets, each of the
form w1y

∗
1w2y

∗
2 · · ·wky∗

k for some k and some wi, yi ∈ FMn. The growth of S is then
polynomial, whence by the theorem of Grigorchuk [11, Theorem 8.3], S has a nilpotent-
by-finite group of quotients. So, if S satisfies the ascending chain condition on right
ideals, then the previous lemma can be applied. Observe that if S does not satisfy the
ascending chain condition on right ideals, then this is no longer true, as the following
example shows [7, Example 4.3.4]. Let G = A � C, where A is a free abelian group of
rank 2 with basis a, b and C = 〈c〉 is the cyclic group of order 2 with the action ca = bc,
cb = ac. Then in the submonoid S = 〈a, ac〉 of G we have (ac)−1ai(ac) = c−1aic = bi /∈ S

for every i.

3. Normal forms of elements as regular languages

It is known that, in general, changing the order on the free monoid FMn with basis X

may result in a dramatic change of the properties of the subset N(S) of normal words of
a monoid S defined by a presentation S = 〈X; R〉. The following example comes from [9].
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Example 3.1. Let S = 〈x, y | xyx = yx2〉. If y > x, then xyx − yx2 forms a
Gröbner basis for S, so the ideal of obstructions is of the form I = (yx2). If x > y,
then xyixi − yixi+1, i � 1, forms a Gröbner basis and I = (xyixi | i � 0). Hence, in the
latter case the set of normal forms in FM2 of elements of S is not a regular language.

Our main aim in this section is to prove that, for every non-degenerate monoid of skew
type S = 〈X; R〉 and any degree-lexicographic order on the free monoid FMn with basis
X = {x1, . . . , xn}, the subset of all normal forms in FMn of the elements of S is a regular
language.

However, it is not true that if S = 〈X; R〉 is a non-degenerate monoid of skew type
and S has a finite Gröbner basis for some degree-lexicographic order on the free monoid
FMn with basis X, then it has a finite Gröbner basis for every degree-lexicographic order
on FMn. Even in the class of binomial monoids this is not true, as the following example
shows.

Example 3.2. Let M = 〈x1, x2, x3, x4〉 be the monoid of skew type defined by the
relations

x1x2 = x3x4, x1x3 = x2x4, x2x1 = x4x3,

x3x1 = x4x2, x1x4 = x4x1, x2x3 = x3x2.

Note that M is a binomial monoid (isomorphic to the monoid B4,5 of [7, Proposi-
tion 10.2.1]). If FM4 is ordered by x1 < x4 < x2 < x3, then N(M) = {xi

1x
j
4x

k
2xl

3 |
i, j, k, l � 0} and the defining relations yield a Gröbner basis for M . So, the ideal of
obstructions I = (x2x1, x3x1, x4x1, x2x4, x3x4, x3x2). On the other hand, it is easy to
see that, when the degree-lexicographic order on FM4 is defined by x1 < x2 < x3 < x4,
M does not admit a finite Gröbner basis. In other words, the corresponding ideal of
obstructions I of FM4 is not finitely generated. In fact,

x3x1x3 = x4x2x3 = x4x3x2 = x2x1x2 = x2x3x4 = x3x2x4

shows that x3x1x3 ∈ I. Then, by an easy induction we get x3x
2k+1
1 x3 ∈ I for every k � 1.

On the other hand, one verifies that x3x
2k
1 x3 ∈ (x3M ∩ x4M) \ (x1M ∪ x2M) for every

k � 1. Since M is cancellative, this easily implies that x3x
2k
1 x3 /∈ I. Therefore, I is not

a finitely generated ideal of FM4.

In order to distinguish the generators of S from the generators of FMn, we denote
the generators x1, . . . , xn of S by a1, . . . , an, respectively. Thus, S = 〈a1, . . . , an〉 and
FMn = 〈x1, . . . , xn〉. We will denote by π the unique homomorphism π : FMn → S such
that π(xi) = ai for all i = 1, . . . , n. Assume that we order FMn by the degree-lexico-
graphic order with x1 < x2 < · · · < xn. For a ∈ S define its normal form by min(π−1(a)),
i.e. the minimum of all words in FMn that represent a.

For a subset Y of {1, 2, . . . , n} define

SY =
⋂
i∈Y

aiS, S′
Y =

⋂
i∈Y

Sai
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and

DY = {a ∈ SY | if a = aib for some b ∈ S, then i ∈ Y },

D′
Y = {a ∈ S′

Y | if a = bai for some b ∈ S, then i ∈ Y }.

For i ∈ {1, 2, . . . , n} define

Si =
⋃

Y,|Y |=i

SY , S′
i =

⋃
Y,|Y |=i

S′
Y .

By [7, Theorem 9.3.7], we know that if S is right non-degenerate, then Si is an ideal
of S and

Sn ⊆ Sn−1 ⊆ · · · ⊆ S1 ⊆ S,

and S1 \ S2 =
⋃n

i=1 ai〈ai〉. Similarly, if S is left non-degenerate, then S′
i is an ideal of S

and
S′

n ⊆ S′
n−1 ⊆ · · · ⊆ S′

1 ⊆ S,

and S′
1 \ S′

2 =
⋃n

i=1 ai〈ai〉.

Lemma 3.3. Assume that S is right non-degenerate. Let a ∈ S\{1}. Then there exists
a non-empty subset Y of {1, . . . , n} such that a ∈ DY and the normal form w ∈ FMn of
a is of the following form

w = w1y
q1
1 w2y

q2
2 · · ·wmyqm

m , (3.1)

where m, q1, . . . , qm are positive integers, m � |Y | � n, deg(wi) � 2n, and yi ∈
{x1, . . . , xn} for all i = 1, . . . , m.

Proof. We shall prove the result by induction on |Y | = k.
If k = 1, then Y = {i} for some i ∈ {1, . . . , n}, and a = aq

i for some positive integer
q. Furthermore, π−1(a) = {xq

i }. Therefore, xq
i is the normal form of a, and we get the

result in this case.
Suppose that k > 1 and the result is true for all b ∈ DZ , where Z is any subset of

{1, . . . , n} of cardinality less than k.
Let w = y′

1y
′
2 · · · y′

r be the normal form of a, where y′
1, . . . , y

′
r ∈ {x1, . . . , xn}. Let

w′
j = y′

jy
′
j+1 · · · y′

r and bj = π(w′
j) for j = 1, 2, . . . , r. It is clear that w′

j is the normal
form of bj . Let Z1, . . . , Zr ⊆ {1, . . . , n} be the subsets such that bj ∈ DZj

. Since a = b1,
we have Z1 = Y . Since Sn ⊆ Sn−1 ⊆ · · · ⊆ S1 ⊆ S is a chain of ideals of S, it is easy to
see that

k = |Y | = |Z1| � |Z2| � · · · � |Zr| = 1.

Let s be the greatest integer such that s < r and |Zs| = k. Then bs+1 ∈ DZs+1

and |Zs+1| < k. Therefore, by the induction hypothesis w′
s+1 is of the form (3.1), with

m � |Zs+1| < k. If s � 2n, then clearly the normal form of a is of the form (3.1). Thus,
we may assume that s > 2n. Since the sets Zj are subsets of {1, . . . n}, there exist positive
integers s1 < s2 such that s2 � s and Zs1 = Zs2 . Suppose that s1 is the smallest positive
integer such that there exists a positive integer s2 satisfying the above properties. Then
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clearly s1 � 2n. In order to prove that a has a normal form of the form (3.1), it is
sufficient to prove that

y′
s1

= y′
s1+1 = · · · = y′

s.

Let ij = min(Zj). We have that y′
1y

′
2 · · · y′

s = xi1xi2 · · ·xis . Recall that aiaj = aσi(j)aγj(i)

for all i, j ∈ {1, 2, . . . , n}. Since S is right non-degenerate, the maps σi ∈ Symn. Since
|Z1| = |Z2| = · · · = |Zs| and aij

bj+1 = π(y′
j)bj+1 with bj ∈ DZj

, the restriction of σij to
Zj+1 is a bijection from Zj+1 to Zj for all j = 1, 2, . . . , s − 1. Furthermore, since ij ∈ Zj

and σij (ij) = ij , we have that ij ∈ Zj+1. Therefore,

i1 � i2 � · · · � is.

Since Zs1 = Zs2 , we have that is1 = is1+1 = · · · = is2 . We have that the maps

ϕ1 : Zis1+1 → Zis1
, . . . , ϕs2−s1 : Zs2 → Zs2−1,

defined by ϕj(i) = σis1
(i) for all i ∈ Zs1+j and all 1 � j � s2 − s1, are bijections. Since

Zs1 = Zs2 , the bijection from Zs2+1 to Zs2 given by the restriction of σis2
to Zs2+1

is the bijection ϕ1 : Zis1+1 → Zis1
. Hence, Zs2+1 = Zs1+1 and thus is2+1 = is1+1 = is1 .

An easy inductive argument shows that Zj = Zj−s2+s1 for all s2 < j � s. Therefore,
is1 = is1+1 = · · · = is. Hence,

y′
s1

= y′
s1+1 = · · · = y′

s,

and thus a has a normal form of the form (3.1). Therefore, the result follows by induction.
�

Lemma 3.4. Assume that S is right non-degenerate. Let w1, w2, . . . , wm ∈ FMn,
y1, y2, . . . , ym ∈ X and let N be a positive integer. Then there exist positive integers
N1, N2, . . . , Nm, all divisible by N , such that for every positive integer i < m and for all
0 � rj < Nj , with i < j � m, we have

π(yNi
i wi+1y

ri+1
i+1 wi+2y

ri+2
i+2 · · ·wmyrm

m ) = π(wi+1y
ri+1
i+1 wi+2y

ri+2
i+2 · · ·wmyrm

m )aN (3.2)

for some a ∈ S.

Proof. Let l be a positive integer such that deg(w1), . . . ,deg(wm) < l. We choose
Nm = N . We shall prove by induction on m − i that if Ni+1, . . . , Nm are chosen, then
there exists a positive integer Ni satisfying the statement of the result.

Let i < m and suppose that Ni+1, . . . , Nm are chosen. Let 0 � rj < Nj , with i < j � m.
We have that

deg(wi+1y
ri+1
i+1 wi+2y

ri+2
i+2 · · ·wmyrm

m ) � (m − i)l + Ni+1 + · · · + Nm.

Let Ni = N · (n!)(m−i)l+Ni+1+···+Nm . By Lemma 2.1,

π(yNi
i wi+1y

ri+1
i+1 wi+2y

ri+2
i+2 · · ·wmyrm

m ) = π(wi+1y
ri+1
i+1 wi+2y

ri+2
i+2 · · ·wmyrm

m )aN

for some a ∈ S. Thus, the result follows by induction. �
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We denote by N(S) the subset of FMn of all the normal forms of elements of the
monoid of skew type S.

Theorem 3.5. If S is a non-degenerate monoid of skew type, then N(S) is a regular
language.

Proof. Note that the subset

T = {w1y
q1
1 · · ·wmyqm

m ∈ FMn | m � n, yj ∈ X, qj � 0, deg(wj) � 2n, ∀1 � j � m}

is a regular language. By Lemma 3.3, we have that N(S) ⊆ T .
Let m be a positive integer such that m � n. Fix y1, . . . , ym ∈ X and w1, . . . , wm ∈

FMn such that deg(w1), . . . ,deg(wm) � 2n. Consider the following subset of T :

T (y1, . . . ym, w1, . . . , wm) = w1y
∗
1 · · ·wmy∗

m.

Since T is a finite union of subsets of the above form, in order to prove the result it is
sufficient to show that every N(S) ∩ T (y1, . . . , ym, w1, . . . , wm) is a regular language.

By Theorem 2.2, there exists a positive integer N such that

aNbN = bNaN for every a, b ∈ S. (3.3)

By Lemma 3.4, there exist positive integers N1, N2, . . . , Nm, multiples of N , such that,
for every positive integer i < m and for all 0 � rj < Nj with i < j � m, equality (3.2)
holds for some a ∈ S. Since S also is left non-degenerate, by the dual of Lemma 3.4,
there exist positive integers N ′

1, N
′
2, . . . , N

′
m, multiples of N , such that, for every positive

integer i � m and for all 0 � rj < N ′
j with 1 � j � i, we have

π(w1y
r1
1 w2y

r2
2 · · ·wiy

ri
i y

N ′
i

i ) = aNπ(w1y
r1
1 w2y

r2
2 · · ·wiy

ri
i ) (3.4)

for some a ∈ S.
Let Mi = NiN

′
i for i = 1, . . . , m. Define for (r1, . . . , rm), such that 0 � rj < Mj , the

subset of T (y1, . . . , ym, w1, . . . , wm),

T(r1,...,rm) = w1y
r1
1 (yM1

1 )∗ · · ·wmyri
m(yMm

m )∗.

Since T (y1, . . . , ym, w1, . . . , wm) is a finite union of subsets of the above form, in order
to prove the result it is sufficient to show that N(S) ∩ T(r1,...,rm) is a regular language.

Claim 3.6. The set

I = {(t1, . . . , tm) ∈ N
m | w1y

r1
1 yM1t1

1 · · ·wmyrm
m yMmtm

m /∈ N(S)}

is an ideal of the additive monoid N
m.

Proof of Claim 3.6. Let (t1, . . . , tm) ∈ I. In order to prove the claim, we shall show
that (t1, . . . , tj−1, tj + 1, tj+1, . . . , tm) ∈ I for every 1 � j � m. Let

z = w1y
r1
1 yM1t1

1 · · ·wmyrm
m yMmtm

m . (3.5)
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Also define

z1 = w1y
r1
1 yM1t1

1 · · ·wj−1y
rj−1
j−1 y

Mj−1tj−1
j−1 wjy

rj

j (3.6)

and

z2 = wj+1y
rj+1
j+1 y

Mj+1tj+1
j+1 · · ·wmyrm

m yMmtm
m , (3.7)

so that z = z1y
Mjtj

j z2. Let

z′ = z1y
Mj(tj+1)
j z2. (3.8)

Let w = uv ∈ FMn be the normal form of π(z), with deg(u) = deg(z1) and deg(v) =
Mjtj + deg(z2). Note that deg(z) = deg(w) and, since (t1, . . . , tm) ∈ I, it follows that
w = uv < z.

Case 1 (u < z1). Let r′
i, t′i be non-negative integers such that ri = r′

i + Nit
′
i and

0 � r′
i < Ni, for i = 1, . . . , m. By Lemma 3.4 we get that there exist bj , bj+1, . . . , bm−1 ∈ S

such that
π(yNi

i wi+1y
r′

i+1
i+1 · · ·wmy

r′
m

m ) = π(wi+1y
r′

i+1
i+1 · · ·wmy

r′
m

m )bN
i (3.9)

for all i = j, j + 1, . . . , m − 1. Let bm = π(ym). Hence, first using (3.7) and the fact that
Mi = NiN

′
i and then applying (3.9) several times, we get

π(yMj

j z2) = π(yMj

j wj+1y
rj+1
j+1 y

Mj+1tj+1
j+1 · · ·wmyrm

m yMmtm
m )

= π(y
NjN ′

j

j wj+1y
r′

j+1
j+1 y

Nj+1(t′
j+1+N ′

j+1tj+1)
j+1 · · ·wmy

r′
m

m y
Nm(t′

m+N ′
mtm)

m )

= π(y
NjN ′

j

j wj+1y
r′

j+1
j+1 y

Nj+1(t′
j+1+N ′

j+1tj+1)
j+1 · · ·wmy

r′
m

m )bNm(t′
m+N ′

mtm)
m

= π(y
NjN ′

j

j wj+1y
r′

j+1
j+1 y

Nj+1(t′
j+1+N ′

j+1tj+1)
j+1 · · ·wm−2y

r′
m−2

m−2 y
Nm−2(t′

m−2+N ′
m−2tm−2)

m−2

× wm−1y
r′

m−1
m−1 wmy

r′
m

m )b
Nm−1(t′

m−1+N ′
m−1tm−1)

m−1 b
Nm(t′

m+N ′
mtm)

m

...

= π(wj+1y
r′

j+1
j+1 · · ·wmy

r′
m

m )b
NN ′

j

j b
N(t′

j+1+N ′
j+1tj+1)

j+1 · · · bN(t′
m+N ′

mtm)
m . (3.10)

Therefore,

π(z′)

= π(z1y
Mj(tj+1)
j z2) by (3.8)

= π(z1y
Mjtj

j wj+1y
r′

j+1
j+1 · · ·wmy

r′
m

m )b
NN ′

j

j b
N(t′

j+1+N ′
j+1tj+1)

j+1 · · · bN(t′
m+N ′

mtm)
m by (3.10)

= π(z1y
Mjtj

j wj+1y
r′

j+1
j+1 · · ·wmy

r′
m

m )b
N(t′

j+1+N ′
j+1tj+1)

j+1 · · · bN(t′
m+N ′

mtm)
m b

NN ′
j

j by (3.3)

= π(z1y
Mjtj

j wj+1y
rj+1
j+1 y

Mj+1tj+1
j+1 · · ·wmyrm

m yMmtm
m )b

NN ′
j

j

= π(z)b
NN ′

j

j by (3.5) and (3.6)

= π(uv)b
NN ′

j

j
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(where the fourth equality follows as in (3.10), by applying (3.9) several times in the
reverse order). Since u < z1, we have that the normal form of π(z′) is not z′. Hence,
z′ /∈ N(S) and thus (t1, . . . , tj−1, tj + 1, tj+1, . . . , tm) ∈ I in this case.

Case 2 (u = z1). In this case, since uv < z, we have that v < y
Mjtj

j z2. Let r′
i, t

′
i

be non-negative integers such that ri = r′
i + N ′

it
′
i and 0 � r′

i < N ′
i , for i = 1, . . . , m.

By (3.4), there exist d1, d2, . . . , dj ∈ S such that

π(w1y
r′
1

1 · · ·wi−1y
r′

i−1
i−1 wiy

N ′
i

i ) = dN
i π(w1y

r′
1

1 · · ·wi−1y
r′

i−1
i−1 wi) (3.11)

for all i = 1, 2, . . . , j. Hence, in view of (3.6) and using (3.11) several times, we get

π(z1y
Mj

j ) = π(uy
Mj

j )

= π(w1y
r1
1 yM1t1

1 · · ·wj−1y
rj−1
j−1 y

Mj−1tj−1
j−1 wjy

Mj

j y
rj

j )

= π(w1y
r′
1

1 y
N ′

1(t
′
1+N1t1)

1 · · ·wj−1y
r′

j−1
j−1 y

N ′
j−1(t

′
j−1+Nj−1tj−1)

j−1 wjy
Mj

j y
r′

j

j y
N ′

jt′
j

j )

= d
N(t′

1+N1t1)
1 π(w1y

r′
1

1 w2y
r′
2

2 y
N ′

2(t
′
2+N2t2)

2 · · ·wj−1y
r′

j−1
j−1 y

N ′
j−1(t

′
j−1+Nj−1tj−1)

j−1

× wjy
Mj

j y
r′

j

j y
N ′

jt′
j

j )
...

= d
N(t′

1+N1t1)
1 · · · dN(t′

j−1+Nj−1tj−1)
j−1 d

NNj

j π(w1y
r′
1

1 · · ·wj−1y
r′

j−1
j−1 wjy

rj

j ). (3.12)

Therefore,

π(z′) = π(z1y
Mj(tj+1)
j z2) by (3.8)

= d
N(t′

1+N1t1)
1 · · · dN(t′

j−1+Nj−1tj−1)
j−1 d

NNj

j

× π(w1y
r′
1

1 · · ·wj−1y
r′

j−1
j−1 wjy

rj

j y
Mjtj

j z2) by (3.12)

= d
NNj

j d
N(t′

1+N1t1)
1 · · · dN(t′

j−1+Nj−1tj−1)
j−1

× π(w1y
r′
1

1 · · ·wj−1y
r′

j−1
j−1 wjy

rj

j y
Mjtj

j z2) by (3.3)

= d
NNj

j π(w1y
r1
1 yM1t1

1 · · ·wj−1y
rj−1
j−1 y

Mj−1tj−1
j−1 wjy

rj

j y
Mjtj

j z2)

= d
NNj

j π(z) = d
NNj

j π(uv) by (3.5)

= d
NNj

j π(w1y
r1
1 yM1t1

1 · · ·wj−1y
rj−1
j−1 y

Mj−1tj−1
j−1 wjy

rj

j v) by (3.6)

= d
NNj

j d
N(t′

1+N1t1)
1 · · · dN(t′

j−1+Nj−1tj−1)
j−1 π(w1y

r′
1

1 · · ·wj−1y
r′

j−1
j−1 wjy

rj

j v)

= d
N(t′

1+N1t1)
1 · · · dN(t′

j−1+Nj−1tj−1)
j−1 d

NNj

j π(w1y
r′
1

1 · · ·wj−1y
r′

j−1
j−1 wjy

rj

j v) by (3.3)

= π(uy
Mj

j v)

(the fourth, eighth and last equalities follow as in (3.12) by applying (3.11) several times).
Since v < y

Mjtj

j z2, we know that the normal form of π(z′) is not z′. Hence, z′ /∈ N(S)
and thus (t1, . . . , tj−1, tj + 1, tj+1, . . . , tm) ∈ I in this case.

Therefore, I is an ideal of N
m, and the claim follows. �
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It is well known that ideals of N
m are finitely generated [6, Theorems 5.1 and 7.8].

Therefore, there exist (t1,1, . . . , t1,m), . . . , (ts,1, . . . , ts,m) ∈ I such that

I =
s⋃

i=1

((ti,1, . . . , ti,m) + N
m).

Therefore,

T(r1,...,rm) \ N(S) =
s⋃

i=1

w1y
r1
1 y

M1ti,1
1 (yM1

1 )∗ · · ·wmyrm
m yMmti,m

m (yMm
m )∗

is a regular language. Note that if L is a regular language in FMn, then FMn \L is a
regular language [8, Chapter 6]. In particular, since T(r1,...,rm) is a regular language,
FMn \T(r1,...,rm) is also a regular language. Since T(r1,...,rm) \ N(S) is a regular language,
it follows that

FMn \(T(r1,...,rm) ∩ N(S)) = (FMn \T(r1,...,rm)) ∪ (T(r1,...,rm) \ N(S))

is a regular language. Therefore, N(S) ∩ T(r1,...,rm) is a regular language. Hence, N(S) is
a regular language and the result is proved. �

Remark 3.7. If S is a cancellative right non-degenerate monoid of skew type, then
N(S) is a regular language. This is proved via a modification of the argument used in the
proof of Theorem 3.5. Namely, we can use Lemma 2.3 and, since the group of quotients
of S is abelian-by-finite, assertion (iv) of Theorem 2.2 also holds. Then cancellativity
of S can now be used in the part of the proof that originally required the left non-
degenerate assumption. Namely, case 2 of the proof of Claim 3.6 can be proved easily
using cancellativity.

Corollary 3.8. If S is a non-degenerate monoid of skew type, then there exists N � 1
such that the monoid A = 〈sN | s ∈ S〉 is commutative and finitely generated and

S =
⋃

f∈F

fA =
⋃

f∈F

Af

for a finite set F ⊆ S. Moreover, A is a disjoint union of cancellative subsemigroups of S.

Proof. We use the notation of the proof of Theorem 3.5. Let A = 〈sN | s ∈ S〉. Let
m be a positive integer such that m � n. For y1, . . . , ym ∈ X and w1, . . . , wm ∈ FMn

such that deg(w1), . . . ,deg(wm) � 2n, define

F (y1, . . . , ym, w1, . . . , wm) = {π(w1y
r1
1 · · ·wmyrm

m ) | 0 � rj < Mj},

where the integers Mj are defined as in the proof of Theorem 3.5. Define

F =
n⋃

m=1

( ⋃
y1,...,ym∈X

( ⋃
w1,...,wm∈FMn,

deg(wj)�2n

F (y1, . . . , ym, w1, . . . , wm)

))
.
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Clearly, 1 = π(x0
1) ∈ F (x1, 1) ⊆ F . From the proof of Theorem 3.5 it follows that

S =
⋃

f∈F

fA =
⋃

f∈F

Af.

Hence, K[S] is a finitely generated (right and left) module over the commutative subal-
gebra K[A]. For every fi, fj ∈ F we choose ai,j ∈ A, fi,j ∈ F such that fifj = fi,jai,j .
Let C = 〈ai,j | fi, fj ∈ F 〉. Note that ak = π(xk) ∈ F for all k = 1, . . . , n. We shall see
that S =

⋃
f∈F fC.

Suppose that S 
=
⋃

f∈F fC. Let s ∈ S \ (
⋃

f∈F fC) be of minimal degree. Since ak ∈ F

for all k = 1, . . . , n, we have that deg(s) > 1. Hence, there exist s′ ∈ S and 1 � k � n

such that s = aks′. Since deg(s′) < deg(s), s′ ∈
⋃

f∈F fC. Thus, there exist c ∈ C and
f ′ ∈ F such that s′ = f ′c. Then

s = akf ′c ∈
⋃

f∈F

fC,

because ak ∈ F and all ai,j ∈ C, which is a contradiction. Therefore, S =
⋃

f∈F fC.
Then K[S] is a finitely generated right module over K[C]. Clearly, K[C] is a com-

mutative Noetherian algebra. Then K[S] is a Noetherian K[C]-module; hence, its sub-
module K[A] also is a Noetherian K[C]-module. Then K[A] is a Noetherian algebra, so
from [7, Theorem 5.1.5] we know that A is a finitely generated monoid. The proof of
Theorem 3.5 also shows that A is a disjoint union of cancellative semigroups, because
the integer N is chosen as in the proof of Theorem 2.2, implying that every sN lies in a
maximal subgroup of the corresponding monoid Mm(L). �

The above is a natural extension of the results known earlier in the special case of
monoids S satisfying the cyclic condition [7, Proposition 9.4.4], and hence, in particular,
the results in the case of monoids of I-type with square-free defining relations [7, Chap-
ter 8].
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