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ABSTRACT 

MODES OF OPERATION OF THERMO-MECHANICALLY COUPLED ICE 

SHEETS 

by 

Richard C.A. Hindmarsh, Geoffrey S. Boulton, 

(Grant Institute of Geology, University of Edinburgh, West Mains Road, 
Edinburgh EH9 3JW, Scotland, U.K.) 

and 

Kolumban Hutter 

(Institut fur Mechanik, Technische Hochschule Oarmstadt, Hochschulstrasse I, 0-6100 Oarmstadt, 
Federal Republic of Germany) 

Dimensionless lapse rate 

A dimensionless model of thermo-mechanically coupled 
ice sheets is used to analyse the operation of the system. 
Three thermal processes are identified: (i) dissipation, having 
a maximum time-scale of thousands of years; (ii) advection, 
having a time-scale of tens of thousands of years; and (iii) 
conduction, having a time-scale of lOO 000 years. 
Kinematical processes occur on two time-scales: (i) a 
marginal advective time-scale of thousands of years; and (ii) 
a diffusive time-scale of tens of thousands of years 
dominant in the divide area. 
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Dimensionless margin-translation speed 
Dimensionless accumulation 

The coupling with the temperature field in the bed 
produces fluctuations to the depth of a few kilometres, 
which means that horizontal conduction in the bed can be 
ignored except perhaps in the marginal area. The thermal 
inertia of the bed could produce significant fluctuations in 
the geothermal heat gradient. 

The operation of the thermo-mechanically coupled 
system is explored with a time-dependent thermo­
mechanically coupled numerical algorithm. Dependence of 
the basal friction on temperature is introduced heuristically, 
and an enthalpy method is used to represent the effect of 
latent heat. The marginal area is shown to be diss ipation­
driven, and always reaches melting point. The divide area 
can show two modes of behaviour: a warm-based mode 
where the ice sheet is thin, and a cold-based mode where 
the ice sheet is thick. Which mode operates depends upon 
the applied temperature field and the amount of heat 
conducted from the bed. 

Calculations where sliding is limited were not found to 
be possible owing to problems with the reduced model 
which resulted in a violation of the approximation 
conditions at the margin. Cases which did work required a 
substantial sliding component; as a result, a significant 
coupling between geometry and temperature can only be 
demonstrated when sliding is made temperature-dependent. 

I. NOTATION 

Symbol Relation 

Do 3 
D 3 
C 3 
CF 3 
E 15 
F I 

Cl 13 
C2 13 
H I 
J 3 

Description 

Deformation-rate magnitude (I year-I) 
Deformation-rate tensor 
Dimensionless temperature 
Prescribed C at H = 0 
Dissipation term 
Dimensionless bed profile 
"Advection" coefficient 
"Diffusion" coefficient 
Dimensionless ice-sheet profile 
Second deviator stress invariant 
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2. INTRODUCTION 

Snow line 
Dimensionless time 
Dimensionless horizontal velocity 
Dimensionless vertical velocity 
Dimensionless horizontal position 
Dimensionless vertical position 
Deviatoric stress tensor 
Temperature-dependent rate factor 
Temperature 
Depth scale 
Bed profile 
Rheological function for ice 
Ice-sheet profile 
Constant in bed-roughness model 
Constant in internal-energy model 
Pressure 
Accumulation 
Accumulation magnitude 
Horizontal velocity 
Vertical velocity 
Horizontal position 
Vertical posi tion 
Temperature magnitude (20 K) 
Internal energy 
-1XaH/ aX)(H - Z) 
Geothermal heat flux 
Specific heat capacity of ice 
Dimensionless diffusivity 
Latent-heat representation 
Constant in internal-energy model 
Aspect ratio 
E/ S 

Thermal conductivity of ice 
Bed roughness 
Maximum temperature-dependent jJ. 

Minimum temperature-dependent Il 
k2 

Density of ice 
Stress tensor 
Stress magnitude 105 Pa 
C1oqm/ Dopgd~ 
-sgn( aH / aX) 
Rheological function for ice 

Glen's (1955) demonstration that ice is a thermo­
viscous fluid over glacial time-scales had the implication 
that the evolution of temperature within an ice sheet and 
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the flow of ice sheets could be a strongly coupled problem. 
A contemporary analysis of Robin (1955) showed how ice­
sheet flow patterns might alter temperature fields in the 
presence of a significant lapse rate (vertical atmospheric 
temperature gradient). An excellent review of progress over 
intervening years may be found in Paterson (1981); since 
then, advances have been made in the formulation and 
analysis of thermo-mechanically coupled ice sheets. 

Morland (1984) and Hutter (1983) investigated the 
properties of thermal boundary conditions necessary for a 
reduced model. By adopting suitable scalings they showed 
that 0( I) variation of the temperature field did not imply 
incorporation of extra terms into the momentum balance, 
and they also showed clearly in formal terms how the ice 
sheet was divided into an upper zone, where heat transport 
was predominantly by advection, and a basal boundary 
layer, rather thin for thick ice sheets, where advection is 
balanced by conduction. 

By varying a prescribed temperature field, MorIand and 
Smith (1984) demonstrated a significant effect on the 
geometry of ice sheets. However, Hutter and others (1986, 
1987) concluded that temperature does not significantly 
affect the geometry when the coupled problem is solved. 
One resolution of this inconsistency is to suggest that the 
ice-sheet thermo-mechanical system posesses a self -regulatory 
structure, which disallows those temperature distributions 
which produced these different results . 

While the steady-state solution may have a self­
regulatory structure, time-dependent solutions need not 
behave so; for example, van der Yeen and Oerlemans (1984) 
have suggested that there may be a bifurcation in the 
evolution of thermo-mechanically coupled ice sheets. The 
purpose of this paper is to investigate the time-dependent 
thermo-mechanically coupled behaviour of an ice sheet, 
solving for the evolution of the temperature field with no 
approximations in order to illustrate the modes of operation 
of the system. 

Many early approximate time-dependent models which 
deal with the evolution of models of ice sheets in response 
to various external inputs and boundary conditions have 
been presented. Only one of them, due to lensen (1977), 
computed coupling of temperature with rheology. This 
algorithm uses an explicit time-marching scheme in which 
the maximum permissible time-step is often substantially less 
than I year. 

Recently, an algorithm using an implicit time-marching 
scheme has been developed by Hindmarsh and others (1987) 
and Hindmarsh and Hutter (1988), where it is possible to 
take time-steps of 500 year. This method is between one 
and two orders of magnitude faster than explicit methods, 
and it makes possible the computation of the thermo­
mechanical evolution of ice sheets through cycles of 100000 
year feasible without the use of a super-computer. 

We use the Morland-Hutter (Hutter, 1983; Morland, 
1984) reduced model to describe the mechanical behaviour 
of the ice sheet, and to compute the evolution of 
temperature using the complete dissipation--advection­
diffusion equation. The surface-boundary condition is 
prescribed temperature, while the basal boundary condition 
is geothermal heat flux and basal frictional heat. 

Hindmarsh and Hutter found that in every case part of 
the base of the ice sheet reached the melting point. In their 
algorithm, no account is taken of the change in the physical 
basal boundary condition for the energy balance which 
occurs at this temperature; heat flowing in is used to melt 
ice, either to produce basal melting or else water between 
ice crystals. This logical branch is easy to represent when 
(inefficient) explicit methods are being used, but would 
almost certainly have a deleterious effect on the Newton­
Raphson iteration scheme used by Hindmarsh and Hutter. 
Instead, so as to maintain sub-zero temperatures, we have 
adopted a method similar in intent to the enthalpy method 
(e.g. ElIiot and Ockendon, 1982), though a more complete 
resolution of the problem will require the development of 
new models (e.g. Hutter, 1982; Fowler, 1984; Hutter and 
others, 1988). 

The aim of this paper is to investigate the modes of 
operation of thermo-mechanically coupled ice sheets. Section 
3 presents the governing equations. Section 4 discusses the 
boundary conditions. In section 5, we use the MorIand­
Hutter model to predict scales of operation of the various 
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processes, and we illustrate our predictions in section 6. A 
discussion and conclusion are presented in sections 7 and 8. 

3. GOVERNING EQUA nONS AND ALGORITHM 

Consider the plane, gravity-driven flow of an ice sheet 
(Fig. 1). Let x be the horizontal coordinate, z the vertical 
coordinate in a plane Cartesian system, z pointing upwards. 

z.z 
ICE DIVIDE 

z = h( x , t) 

Fig. I . Illustrating the coordinate system used. 

Z= H( X, t) 

RIGHT 
MA RGIN 

x, X 

The lines z = h(x,t) and z = f(x,t) are the equations 
describing the bounds of the domain, the domain being 
confined to the region h(x,t) - f(x,t) ~ 0, with equality 
defining the margins. Both surfaces can freely deform in 
time, though we only treat the case where the deformation 
of f is prescribed. The problem is to determine the profile 
z = h(x,t) as a function of position and time, the velocity 
distribution (u,w) in the directions (x,z), respectively, and 
the evolution of the temperature c. 

We follow Morland (1984) and use a scaling 

(x,z,hJ) = dO(X/ E,Z,H,F), (u,w,q) = qm(U/ E,W,Q) (I) 

where do is a typical thickness for the ice sheet, qm is the 
accumulation magnitude, and E « I is a characteristic ice­
sheet aspect ratio. Thus, X,Z,H,F are the dimensionless 
equivalents of x,z,h,f and similarly U,W are the dimension­
less counterparts of the velocities u, w. Time t is scaled by 
do/ qm into T, which implies a dimensionless strain-rate (D) 
with unit qm/ do' Stresses (0'), deviatoric stresses S, and 
pressure p are scaled by pgdo where p is the density of ice 
and g the acceleration due to gravity. Henceforth, we will 
always refer to the normalized form of the stresses and 
strains. Temperature c is normalized by C = cl l!., l!. = 20 K, 
where c is in Qc. 

The margin translation speed M is found to be 

(2) 

where the superscript A = L,R indicates evaluation at the 
left and right margins. 

We use a viscous relation with a temperature-dependent 
rate factor 

D = a(C'y..X"J)S/ v (3) 

where J = IrS2 / S2, S = O'o/ pgdo, v = aoqm/Dopgd~, with 
0'0 = 105 Pa, Do = I a-I and adopt the Smith-Morland 
(1981) model functions 

t.i,.J) Ao + A/ + A2J2
, a(C) = "'lexp(B1C) + "'zexp(BzC)' 

Ao = 0.3336, Al = 0.3200, A2 = 0.02963, (4) 

"'I 0.7242, 131 = 11.9567, "'2 = 0.3438 , 131 = 2.9494. 
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Satisfying mechanical balance to lead order in E yields 

-crzz p H - Z, Sxz 
aH 

-E-(H - Z) 
ax 

(5) 

where the subscripts denote tensor components. From 
Equations (3) and (5) we obtain 

au 
-uag(T) (6) 

az 

where 

2E2 aH 
g(Y) - Yw(9y2), Y(X,Z,t) - u ax(H - Z), 

v 

u -sgn [:~, K = Eis, e (7) 

The basal boundary condition is provided by a sliding law 
(see section 4) for a discussion of the type proposed by 
MorIand and others (1984), viz. 

Y(Z = F) = PIL(ji)U(Z = F) (8) 

where P = K(H - F) and lL(ii) is a function representing 
bed roughness; using this with Equations (6) and (8) we 
obtain 

aH 

'I' ax 
U(Z F) (9) 

ILP IL 

the second equality only being valid to leading order in E. 

By integrating Equations (6) with (7) subject to the basal 
condition (9), we obtain U(Z), 

Z 

U(Z) 

aH 
ax 

IL 
Ufa(C)g(Y' )dZ' . 

F 

Then by differentiating U with respect 
incompressibility condition 

au aw 
- + 0, 
ax az 

and the kinematic basal condition 

aF 
- + U(Z 
aT 

aF 
F) - - W(Z 

ax 
F) 

to X, 

B*(H) 

(10) 

using the 

where B* = B*(X,H,T) is the rate at which ice is melting 
at the base, an expression for W(Z) is obtained of the form 

[ a2 
H aH aF BC ] W(Z) = W ,-, -, -'H - F,C,Z . 

ax2 ax ax ax 
(11 ) 

By substituting Z = H in relations (10) and (11) and 
substituting these expressions in the kinematic surface 
condition 

aH 
- + U(Z 
aT 

aH 
H)- - W(Z 

ax H) Q*(H) (12) 

where Q* = Q*(X,H,T) is the rate of accumulation on the 
surface, an evolution equation for H 

(13) 
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is obtained, where 

G = G -, -, H - F C Z G = G -,-,-, H - F C Z [
aH aF ] [ aH aF ac ] 

2 2 ax ax '" 1 1 ax ax ax ' , 

and it may be shown that G
2
(·, · ,0,·,·) = 0, G1(0,., . ,.,.,.) 

= 0. 
The temperature C evolves according to the spatially 

two-dimensional advection-dissipation-diffusion equation 

ac = ,)a2c + E2a2C] _ uac _ wac + E, (14) 
aT lax2 ax2 ax az 

XL < X < xR, F(X,T) < Z < H(X,T). 

Here, B is a constant diffusion coefficient, E a reaction 
term, and E a typical aspect ratio introduced during the 
scaling. With the above scaling and with Equation (3) we 
have (see Morland (1984) for the derivation): 

13 

auaH 
E gd 0 az ax(H - Z) / 2'f!::. (15) 

where 'f = 2 x 103 J kg- 1 K - 1 is the specific heat capacity 
of ice and ).. = 7 x 107 J K -1 m-I a-I is the thermal 
conductivity of ice. We consider the case symmetric about 
the divide, and select E = 0.005 (thus, horizontal conduction 
may be ignored, see relation (14», do = 2000 m, 
qm = I m a-I, which gives B = 0.021 and a unit time-step 
of 2000 year. The reaction term E arising from internal 
dissipation is as given in Equation (IS). Given U, H, and 
aHl ax as being all 0(1), then its magnitude at most is 
about 0.5. 

Boundary conditions consist of (i) a Dirichlet condition 
applied to the upper surface according to 

C = FF + LH (16) 

where CF is a constant and L is the lapse rate (with the 
scaling we use, the dimensionless lapse rate is equal to the 
lapse rate in K / IOO m); and (ii) a Neumann condition 
applied to the base representing a constant geothermal heat 
flux plus the heating due to sliding, given by the product 
of the shear stress at the base Y(Z = F) and the sliding 
velocity U(Z = F). In scaled form, we find that the basal 
Neumann condition is given by 

ac 
az -+ 

)..!::. 

aH 
F) --(H - F) 

ax 
(17) 

)..!::. 

where :;: is the geothermal heat flux = 1.576 x 106 J m- 2 a-I 
= 0.05 W m-2. 

It will be seen that the dimensionless basal power 
generation 0 = U(H - F)aH / ax is 0(1) at the margin, 
though longitudinal gradients ao/ ax are a bit above this . 
With the scaling used in Equation (17), the quantity a2CI 
azax may reach O(I / E), implying similar magnitudes for 
longitudinal derivatives of the temperature and the rate 
factor a(C) (relation (4». Inspection of relationship (14) 
shows that horizontal conduction may still be ignored; it 
may also be shown that the reduced model momentum 
balance is still respected, though with error O(E) rather than 
O(E 2). We must take this as a warning that there are likely 
to be problems at the margin. 

The ice-sheet inception is from a snow-pack where the 
snow line Z = R(X,t) intercepts with the topography 
(Fig. 2). Above the snow line, ice accumulates while below 
it any ice will melt. For our calculations we introduce the 
accumulation function Q(H*), where H* = H - R(X,t) 
defined by 

Q(O) 
aQ(H*) 

12.5, H* < ° 0; 
BH* 
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Fig. 2. Contours of the accumulation Q*(X,Z), and the 
snow line Z = R(X). The ice sheet is symmetric about 
X = I and is initiated from the area X > 0.95. In areas 
above the Q = 0.5 contour the accumulation is 0.5 m/ a. 

Q(0.25) 0.5; 
BQ( H*) 

BH* 
0.0. H* > 0.25 

with the function Q(H*) for 0 < H* < 0.25 being defined 
by the cubic fitted through these points with slopes defined 
above. As an initial temperature at T = 0, we use Co(X,Z) 
= CF + LZ. 

Hindmarsh and Hutter devised a finite-difference fixed 
domain method in which the ice sheet is mapped on to a 
rectangle; thus, stretched coordinates are used in both 
directions in contrast to Jensen (1977), who used a fixed 
domain method in the vertical domain only. A consistent 
second-order accurate Crank-Nicholson scheme is used to 
step the calculation through time. Multi-point up-winding is 
used to eliminate the spurious modes associated with 
hyperbolic equations. The resulting equations are non-linear 
and are solved by a Newton-Raphson scheme which 
includes expansions with respect to the mapping terms. The 
resulting matrix has a nested bordered form and is 
inverted by a pre-conditioned conjugate-gradient scheme. 

We use a discretization of 21 points in the vertical and 
31 in the horizontal. The time-step is not constant, as at 
points where the variables are changing rapidly and 
convergence of the Newton-Raphson iteration becomes 
difficult, the algorithm automatically cuts the time-step. In 
all calculations the maximum time-step was set to 
t;.T = 0.25, corresponding to a time-step of 500 year. These 
discretizations are not fine enough to prevent cumulative 
error over glacial time-scales from becoming very large; 
however, the purpose of the calculations is to illustrate the 
modes of operation of ice sheets which do not require 
extremely accurate calculations. 

Hindmarsh and Hutter found that in most instances the 
ice reached the melting point locally. Thus, the preceding 
model breaks down unless amendments are introduced. 
Physically, two situations may arise (Fowler, 1980): either a 
temperate volume will form with ice and water co-existing, 
or the ice will only reach melting at the very base. In the 
former situation, the enthalpy density of the ice is increased 
by increasing the water content. This may be redistributed 
(Hutter, 1982; Fowler, 1984) by movement of the interstitial 
water. In the latter case, the enthalpy content of the ice 
does not increase, but the water is supposed to drain in 
some unspecified way. 

While the latter situation may arise beneath an ice 
sheet, we do not have a formal guarantee that it will do so 
under all the situations considered. However, modelling two­
phase flow requires computation of the water content using 
constitutive relations which are not yet well established 
(Hutter, 1982; Hutter and others, 1988). It also introduces a 
new moving-boundary problem within the (moving) 
ice-sheet domain, and thus changes the structure of the 
problem, making it even more complex. 
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The simplest remedy is to adopt the "enthalpy" methods 
(Elliot and Ockendon, 1982) where the effect of the latent 
heat is represented by an increased specific heat over a 
narrow temperature range. Normally, the specific heat is set 
to a value appropriate to the molten phase at temperatures 
above the melting point, but in our case this is not 
meaningful, and we let the specific heat capacity tend to 
infinity as the temperature approaches the melting point. 
This is equivalent to letting the water drain from the ice 
sheet without any adjustment to the continuity equation, 
and provides an infinite sink for heat entering the system. 

The formal specification is as follows. Let /\ represent 
the internal energy of the ice. Then, for simplicity 
considering vertical diffusion and dissipation only, the 
variation of /\(C) with time following the motion is given, 
using Equations (14) and (15), by 

d/\ dC a2c 
dCdT 

p'l'B-+ p'l'E. (18) 
BZ2 

We select for the variation of enthalpy with 
tem pera tu re 

/\(C) p'l'(C + 13.65 + ylcl-n) (19) 

where '( and n are arbitrary constants and 13.65 is the 
scaled melting temperature of ice. The first term in 
Equation (19) represents normal linear variation, while the 
last is a hyperbolic term which tends to infinity as C tends 
to zero; this prevents temperatures from rising above zero. 

Differentiating Equation (19) with respect to 
temperature (remembering we are differentiating the 
modulus of a negative number) gives dA/dC 
p'l'(I + ll'{lcln-l) and, by defining a new function i3 by 

B = 1/ (1 + nyICI-n-l), 

substitution into Equation (18) gives 

dC 

dT 

TJ1is relation replaces Equation (14). 

(20) 

(21 ) 

In our calculations we have used two models (Fig. 3, 
graphs A and B) for the dependence of B, one requiring 

0.8 

x 0.6 0 
E 

::i 

::i 

<C2. 0.4 (3= 
1+ny IC J-1n

+
11 

A: n = 1 Y = 0.033 

0.2 B: n = 1 Y =0.0033 

C : _ 11_ = J-0 9 5 e7S C 
11 max . 

0 
-1 - 0.8 - 0.6 -0.4 -0.2 0 

TEMPERATURE 

Fig. 3. Pseudo-latent heat B: (A) Model I, (B) Model 2, 
and (C) basal roughness IL(C)/ lLmax plotted against scaled 
temperature. 
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rather less heat to raise temperatures near melting point 
than the other. The validity of the approximations depends 
upon the context and is discussed further below. 

4. THE BASAL BOUNDARY CONDITION AND 
MOVEMENT OF THE MARGINS 

In this paper we have used the form (i.e. relation (8» 
of the sliding law introduced by Morland and others (1984) 
which permits sliding motion at the margin despite the 
presence of zero shear stress, and requires the bed resistance 
to disappear with overburden. A mathematically similar form 
has been used by Budd and Smith (1981), while a 
(Iinearized) Weertman (1957) form, 

Y(Z F) IlU(Z F), (22) 

for example, does not permit sliding at the margin. The 
functional form of these sliding laws has experimental 
verification (Morland and others (1984) from the Greenland 
ice sheet; Budd and others (1979) from laboratory data), but 
we do not wish to present it as based upon any greater 
physical significance than that of well-posedness, though it 
can be readily changed so that effective pressure replaces 
pressure . A sliding law does not necessarily imply a discrete 
interface at which slip is occurring, but merely implies 
some enhanced basal motion, possibly on sub-grid 
dimensions. The theoretical complexity of constructing 
sliding laws for ice sheets has been illustrated by Lliboutry 
(1987a), who postulated the necessity for three scales of re­
normalization . 

Ice-sheet or glacier advance at the margin may be due 
to sliding or by ice over-riding. The latter requires an 
infinite slope at the margin and a significant role for 
longitudinal stresses in the momentum balance. Reduced ice­
sheet models which do not permit sliding at the margin do, 
nonetheless, exhibit marginal advance. This may be 
justifiable (though it has not been rigorously proved or 
even attempted for glacier models) by appeal to a ·weak" 
principle (Elliot and Ockendon, 1982) which says that in 
some average sense the margin motion is computed 
correctly. It should be noted, however, that the truncation 
error of such schemes, where it can be derived, is often 
the spatial discretization interval to a power less than one 
(e .g. Elliot, 1987), an error rather greater than that normally 
associated with discretizations of parabolic equations. This 
matter will be considered in a future paper. 

By explicitly permitting margin sliding, it is possible to 
derive a formula for the translation speed of the margin 
(e .g. Hindmarsh and others, 1987; Hindmarsh and Hutter, 
1988). This permits fixed domain methods to be used 
(Hindmarsh and others) which retain second-order accuracy. 
These algorithms, when run with specification of a very 
resistant bed, predict very little margin motion and very 
steep slopes at the margin, which is contrary to the result 
predicted by "weak" formulations. This poses the question as 
to whether the "weak" formulation is a convergent 
approximation to the real problem in the case of no 
marginal sliding. We shall address whether this is important 
through the results of our calculations. 

Probably all glaciologists would agree that temperature 
affects "sliding" to some degree, even though there is little 
agreement as to the mechanisms. We have included 
calculations in which the roughness coefficient Il is 
temperature-dependent. The dependence is purely heuristic, 
and is designed to see the influence of longitudinal 
variations in the bed roughness that are as sharp as the 
Morland-Hutter model permits. We adopt the model equation 

Ilm.JI - exp(mC)l + Ilminexp(mC). (23) 

This yields maximum sliding resistance at low temperatures 
and gives a sliding resistance of Ilmin at melting . The higher 
m is, the shorter the transition zone between cold sliding 
and warm sliding is. We use Ilmin/ llmax = 0.05 and m = 7.5 
(Fig. 3, graph C). 
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5. RATES OF OPERATION AND MAGNITUDES OF THE 
COMPONENTS 

The formulation of the model above shows that there 
are a large number of parameters and boundary conditions 
which may be varied in order to alter the response of the 
ice sheet. These include the distribution of atmospheric 
temperature, geothermal heat, ablation and accumulation, 
topography, isostatic response, and the sliding law. We have 
not yet analysed the response of the ice sheet to variations 
in all these parameters, nor is it obvious that this is the 
best way to analyse this system or to present its operation. 
Instead, we present what we believe to be the key features 
of the ice-sheet system, identify the time-scales over which 
they operate and illustrate the results with some of the 
calculations we have carried out. 

These time-scales are deduced from relations (14) and 
(13). The coefficients of advection, conduction, and reaction 
are I, B, and I, respectively, each of these having the 
meaning of inverse dimensionless time. Thus, l i B and I are 
dimensionless conduction or dissipation times. 

The temperature-evolution equation has three types of 
contribution: conduction, advection, and dissipation. The 
conduction coefficient /3 = 0.021, which implies a 
conduction time of 50 or 100000 years with the scaling we 
have used here . Near the margin, the dissipation time is 
0(1), and, as will be seen, the contribution from basal 
friction is even greater. The result of this is that dissipation 
time-scales are 2000 year or less. An advection time may 
be estimated by computing the time it takes for heat to be 
advected into the basal layer where conduction is important 
(Morland, 1984). For an ice sheet 2 km thick, we obtain 
time-scales of the order of 10 000 years. 

Lliboutry (1987b, p. 217) postulated two thermal time­
scales for ice sheets, one belonging to the basal boundary 
layer and one for the ice sheet as a whole. We argue that, 
since the boundary layer arises as a response to (a) 
dissipation terms or (b) advection (when advection and 
conduction are of the same magnitude; Morland, 1984), it is 
not useful to attribute it a time-scale in its own right, but 
rather to let this time-scale arise naturally from the 
time-scales of the processes which cause it to be. 

lt is evident that the basal temperature of the ice will 
couple with the temperature field in the bedrock so as to 
alter the geothermal heat flux into the ice. We shall show 
that the problem is one-dimensional and then estimated 
likely deviations in the heat flux . The maximum depth of 
interference of a 100 000 year temperature cycle into the 
Earth is no more than 3 km (Birch, 1948). Similar results 
have been obtained by Ritz (1987) and Waddington (1987) . 
This cold wave would never reach the base of the 
lithosphere, and in consequence it is not correct to consider 
the problem as being steady. Since the depth of penetration 
is of the same magnitude as the ice-sheet thickness, we use 
the length scales of the ice-sheet problem to normalize the 
bed heat-transfer problem. The heat-transfer equation is 
then exactly as Equation (14) with no advection and any 
dissipation is due to radiative decay. The aspect ratio E of 
the problem is the same and we may infer that horizontal 
conduction is negligible provided that the boundary 
condition (i.e. the ice temperature and the geothermal heat 
flux at the depth of maximum interference) has 0(1) 
longitudinal second derivative . As will be seen, this is 
respected everywhere except perhaps at the margin. The 
coupled ice-bed problem may therefore be solved in the 
bed by integrations of the diffusion equation over the 
vertical dimension through time. If we ignore heat 
production in the lithosphere, we can make estimates of the 
gradients induced by possible temperature variations. 

It may be shown (e.g. Carslaw and Jaeger, 1959) that, 
if a sinusoidal surface-temperature variation is applied to an 
infinite medium, the maximum gradient of temperature [acl 
aZlmax is 

where CA is the amplitude of the applied temperature 
variation and T L is the period of the variatIOn (in 
dimensionless time) and we use the fact that the thermal 
conductivities of ice and rock are very similar. Using the 
Morland scaling and letting CA = 0.5, i.e. an amplitude of 
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10 K and assuming that a reasonable lower bound to time 
of the temperature change is 100 year, gives [8C/ aZlmax 
20 (cf. the scaled steady geothermal temperature gradient, 
1.0). For time periods of 10000 years, the maximum 
temperature gradient is 2. Thus, transient perturbations to 
the bed-temperature field will significantly affect the 
geothermal heat flux over short time periods. These 
transient values are comparable in magnitude with the 
maximum basal heating. 

The height-evolution Equation (13) has three terms: a 
diffusive term, an advective term, and a source term. The 
diffusion term reaches its maximum at the divide, where it 
is 0(1). The second derivative of height a2H/ aX2 is usually 
at a minimum at the divide and is rarely above 0.2, 
implying a kinematical time-scale of 10000 year or greater 
at the divide. At the margin, the diffusion disappears while 
the advection coefficient and slope are minimally 0( I) and 
often approach 10, implying kinematical time-scales here of 
the order of hundreds or maximally 2000 year. The 
accumulation is 0(1) at maximum, implying an accumulation 
time-scale of thousands of years, while marginal ablation is 
commonly O( I 0), implying time-scales of hundreds of 
years. 

6. CALCULA nONS ILLUSTRA TING THE MODES OF 
OPERATION 

We may now see how these processes combine in 
determining the evolution of the temperature and surface 
profiles of an ice sheet. We initiate all the calculations from 
the snow-pack (Fig . 2). Unless stated otherwise, we use 
model I (Fig. 3, graph A) to represent the effect of latent 
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algorithm. 

6.1. Ice-sheet formation 

this was the smoother of the 
better performance from the 

Figure 4 shows the evolution of a symmetric ice sheet 
from a snow-pack of negligible thickness to a near-steady 
state . This run was carried out with constant roughness 
(11 = I) and aR/ aX = -0.25, with a basal temperature CF = 
-1.1 (probably rather cool) and a lapse rate L = -\.0. What 
transpires to be the characteristic pattern emerges rather 
early. High dissipation from internal deformation but 
principally from basal friction causes temperatures just 
inside the margin to rise very quickly. In the calculation 
reported by Hindmarsh and Hutter (1988) there was no 
constraint upon temperatures rising above the melting point 
and the calculation failed. Here, we prevent the ice sheet 
from reaching the melting point by increasing the specific 
heat capacity near the melting point to simulate the latent 
heat. This approach to the melting point is very rapid. At 
small thickness the conductive efficiency is greater and the 
attainment of melting is delayed . 

As the ice sheet grows, cold ice is introduced from 
higher altitudes and advected down and out. The effect of 
this may be seen in Figure 5, which is a contour plot of 
basal temperature against time. Consider a fixed position 
(e.g. X = -<J.5); then moving vertically represents movement 
in time. The temperature is not specified until the ice sheet 
overrides this point, which happens after 9 kyear. The cold 
ice warms very quickly as a result of geothermal heat and 
frictional heating. Afterwards, the ice cools monotonically; 
this process occurs for all X. At the base of the divide the 
ice begins to cool after 10 kyear, the advective time-scale. 
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characteristic pattern of a molten zone inside the margin evolves very early . Length unit = 400 km, 
height unit = 2 km. 
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'Fig . 5. Evolution of basal temperature for the same case as 
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Also, the width of the warm patch (temperature greater 
than -I · C) widens through time. 

These patterns have occurred in all calculations of an 
ice sheet with realistic dimensions we have carried out. 
Inspection of the magnitude of the basal power-generation 
terms and the geothermal heat term shows that the former 
term is the most important one. Figure 6 includes a typical 
plot of basal power generation against position. 

As the ice sheet evolves it relaxes into a near-steady 
state . A true equilibrium is not reached after long times, 
because cold ice introduced at high altitudes eventually 
reaches the margin and has a slight cooling effect. In some 
calculations, we have observed a slight retreat of the margin 
associated with extra steepening as a result of this effect. 
However, near the margin, the dominant processes affecting 
the evolution of temperature are the creation of heat by 
dissipation which is conducted away, as the small thickness 
of the ice sheet here means that conduction is very 
efficient. Thus, the advection of cold into the marginal 
areas does not have a significant mechanical effect. 
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Fig. 6. Comparison of surface profiles for various base 
temperatures and lapse rates. Length unit = 400 km, height 
unit = 2 km; and the dimensionless basal power generation 
Cl for case F. 
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6.2. Variation of surface temperature 
We varied the lapse rate L = -0.25, -0.5, -1 .0, and 

simultaneously the temperature at Z = 0 (CF = -0.1, CF = 
-1.1). For CF = -1.1, varying the lapse rate had virtually 
no effect on the profile of the ice sheet (Fig . 6). A lower 
lapse rate implied a slightly lower and wider ice sheet, but 
the differences were very small. A rather greater difference 
was seen in the width of the warm patch , which was twice 
as broad for L = -0.25 as for L = -1.0. 

With the warmer case (CF = -0.1), again very little 
difference was noted in the ice-sheet geometry, though the 
range of variation was more dependent upon lapse rate. For 
the case of L = -0.25, the warm patch extended from 
margin to divide (Fig. 7), though slight cooling of the 
divide was exhibited at later stages . Use of the second 
model for the representation of the latent heat (Fig. 3, 
graph B) produced very little difference in the computed 
profiles. 

At the margin, the differences in the temperature field 
and the profile geometry are slight as the temperature is 
driven rapidly to its maximum permissible value by dissipa­
tion, and thus the marginal areas are comparable from one 
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Fig. 7. Cross-section and temperature contours of an ice 
sheet with C(Z) = -0.1 - 0.25Z (case F of Figure 6). 
Length unit = 400 km, height unit = 2 km. 

case to another. The fact that there is sufficient heat 
production to raise rapidly the basal temperature to the 
maximum permissible value means that the structure of the 
marginal field is essentially self -regu latory. Though the 
temperature can vary somewhat between cases near the 
surface of the ice sheet, these areas make little contribution 
to the kinematic advection term because of the low stress in 
association with the non-linear nature of the flow law 
which enables deformation at high temperatures. 

6.3. Sensitivity to bed roughness 
It can be argued that by introducing enhanced basal 

deformation ("sliding") into our model we have 
simultaneously introduced the result of self -regulation from 
basal frictional heating. Furthermore, by setting the basal 
sliding parameter jL to be O( I), which is at least as great as 
the maximum contribution to deformation from the ice 
deformation, we have introduced the insensitivity to thermal 
coupling. The obvious way of answering these criticisms is 
to carry out calculations with very high basal friction 11. As 
explained above, our formulation does not predict any 
margin advance with infinite basal resistance, and we doubt 
that the "weak" formulations which do are producing 
sensible answers. We are therefore limited to considering 
some contribution to motion from sliding. However, using 
higher values of jL (= 10) produced a problem in the 
calculation (Fig. 8). A bulge appears in the ice sheet just 
behind the margin . This seems to be due to the fact that 
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Fig. 8. Illustrating the bulge formed when the very mobile 
warm layer just behind the bulge catches up with the 
resistant margin . Compression causes the warm ice to be 
directed upwards from the molten base. Length unit = 

400 km , height unit 2 km. 

warm, fluid ice, driven by the steep slope, is forced to 
compress . In consequence, vertical velocities are directed 
upwards which advects warm ice, making the bulge even 
more warm and soft. In the part of the ice sheet near the 
surface, the dominant mode of heat transfer is advective , 
which drives the ice into a forced (Dirichlet) boundary 
condition at a very much colder temperature which produces 
very large gradients (cf. Oerlemans and van der Veen, 1984, 
fig . 5.1) and leads to numerical problems. 

There is a possibility that this bulge is non-physical 
and due to the fact that the height-evolution profile 
equations are nearly hyperbolic near the margin; however, 
the stability conditions of Spalding (1972) are not violated 
and the same effect does not occur in the isothermal case. 
The bulge may in effect be a non-l inear wave which is 
trying to break. In any case, the conditions of the 
Morland-Hutter model are being violated and a more 
refined model of the margin mechanics is needed . The 
Morland-Hutter model is also being violated sensu stricto by 
the closely spaced temperature contours. However, it is 
unlikely that any severe mechanical violation is occurring 
because of the low stresses in these areas. The fact that the 
contours are very closely spaced is again a consequence of a 
forced boundary condition being applied to a hyperbolic 
outlet. 

We have carried out a series of calculations varying the 
bed roughness and the snow- line gradient. These have a 
significant influence on the ice-sheet profiles, but it is 
evident that this is for mechanical and kinematical reasons 
rather than through any thermo-mechanical coupling. The 
zone just inside the margin always reaches the melting 
point, while the temperature at the base of the divide 
either adopts a cooling mode, associated with thick ice 
sheets and high lapse rates , or else a warming mode 
associated with low lapse rates and thin ice sheets. 

We have also carried out a number of calculations 
where the bed roughness is dependent upon temperature. 
The model of temperature dependence has been described 
above and is depicted in Figure 3, graph C. The parameters 
are quite arbitrary and were used so as to introduce the 
maximum possible sensitivity to temperature while not 
breaking the caveats of the Morland-Hutter model (in 
effect, ensuring that longitudinal gradients remain 
negligible). Calculations varying eF and the lapse rate L 
were also carried out. 

The calculations were found to be more sensitive to 
the bulging problem, and no steady-state conditions with 
cold margins were obtained. In many instances, inception 
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from warm conditions did not provide an answer, because 
these dictated a non-resistant warm bed which did not 
allow a thick ice sheet to build up. Figure 9 shows (a) 
transient ice sheets, each with the same lapse rate L = -I , 
but with differing eF (-0.01, -0.1, -1.1). The coldest case 
develops a bulge after 8500 year. All three are shown 7500 
year after inception, where it is seen that the cold est 
conditions produce the biggest ice sheet. The two warmer 
cases are shown after 31 000 year, where they are near 
kinematical steady state. The cooler case is substantially 
bigger and has a cold-bottomed divide, and a substantially 
larger margin slope. 

6.4. Formation of continental-sized ice sheets 
In order to allow a continental-sized ice sheet to build 

up, a very stiff cold bed was needed (jL = 10). One 
interesting calculation was carried out with a stiff bed but 
a warm margin and a lapse rate of -1.0 for t ~ 60000 
year and -0.5 for t > 60000 year. In the period before the 
change of lapse rate, the characteristic cold-bottomed divide 
pattern evolves (Fig . 10a-d), and the margin posit ion is 
nearly steady by 60000 year, though the divide is still 
building and its base is still cooling (Fig. 10e). The steady 
profile is rather more peaked than the other profiles, and 
its peakiness is reminiscent of Antarctic and Greenland 
profiles (e.g. Martin and Sanderson, 1980; Dowdeswell and 
McIntyre, 1987). This suggests that the peakiness of ice 
rises is due to the existence of a warm margin (or an ice­
stream-drained margin) and a cold-based divide . Note also 
that the ice sheet continues to grow for more than 10000 
year after the lapse-rate change, a decrease in height not 
occurring until after 72 000 year. Naturally, it took the 
advective time-scale (ID 000 year) for this temperature 
change to be discernible at the base of the divide. The 
thinner flanks were affected first by the warming, and the 
divide became even more peaked. Thus, the peaky divides 
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Fig. 10 . The evolution of an ice sheet with a temperature-dependent bed roughness and C(Z) = -{J.O I 
- Z for T ~ 60000 a, and C(Z) = -{J.OI - -{J.5Z for T > 60000 a. Graphs (a)-(d) show evolution of 
temperature and profiles, (e) displays contours of basal temperature against position and time, and (f) 
shows depth contours against position and time . Notice peaky profiles characteristic of Greenland and 
Antarctica, the long survival of the divide altitude after the beginning of the warm phase because 
cold is being advected towards the sensitive base of the divide. The response of the basal temperature 
(e) shows a delay of 20000 years, and the ice sheet shows significant loss of altitude (f) durin g the 
later stages of the calculation . 

of Greenland and Antarctica may well be kinematical relicts 
of the last glacial periods as margin retreat has probably 
not been sufficient to have had a kinematical effect on the 
divide areas. 

We have carried out calculations for several values of 
the lapse rate, and found that there appeared, as with the 
cases of no dependence of jJ. on temperature, to be two 
modes of divide behaviour. For cold divides, an initial 

transient period of warming was folJowed by steady cooling_ 
This steady cooling did not have any effect on the kine­
matics, because the bed - roughness temperature-dependence 
model caused the resistance to be constant at low 
temperatures, and the ice was so cold that even these high 
bed resistances were the dominant contribution to deforma­
tion . Figure I la shows the temperature distribution obtained 
after 60000 year with CF = -{J.Ol, L = -{J.5 (case A). The 

65 https://doi.org/10.3189/S0260305500006960 Published online by Cambridge University Press

https://doi.org/10.3189/S0260305500006960


Hindmarsh and others: Thermo-mechanically coupled ice sheets 

f­
I 

2.00 .,.-------------------, 

0) PROFILE 

1.75 C = - 0.0 I - O. 5 H 

1.50 

1.25 

(:J 1.00 
w 
I 

w 
:::E 
f-

-13 
O}5 

0.50 

0.25 -9-----1 
60 kyr __ ------5--------~ 

o +--.---,---.£;:::::"==;===r- I =;===;===j 
- 3 - 2.5 - 2 - 1. 5 -I - 0.5 0 0.5 

POSITION 
120.-------~.---------------, 

lOO 

80 

60 
A 

1.0 

20 

B 

D C 

c) MARGIN 

POSIT ION 

O+---~~--~--~~~~ 
-2 -1.5 -1 -0.5 

POSI TION 
o 0.5 

1./.0 

1.20 

1.00 

f-

~ 0.80 
w 
I 

0.60 

0.1.0 

0.20 

b) DIVIDE HEIGHT 
A 

B 

O+---.'---r--.---.---r-~ 
o 

-0.002 

-0.001. 

-0006 

-0.008 

w 
a:: 
::::> 
>­« 
a:: 
w 
a.. 
:::E 
w 
f-

20 

.. ' 

1.0 60 80 100 
TI ME kyr 

.. , . , . . . ,. 

A 

d) TEM PERATURE 
AT BASE 
OF DIVIDE 

120 

- 0.01 +---.-----,----,------,----,------1 
o 20 1,0 60 

TIME kyr 
80 lOO 120 

Fig. I!. Illustrating warm-bottomed divides with cases (a) C(Z) = --0.01 - 0.50Z; (b) C(Z) = --0.01 -
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Figure ll(c) margin posi tion against time; Figure Il(d ) temperature at the base of the divide against 
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graphs b, c, and d show the divide height, the margin 
position, and the basal temperature at the divide as 
functions of time for the surface-temperature functions 
given in the caption . In case A, the divide height and the 
span increase monotonically with time, whereas the base 
warms for 20000 year and then cools as a result of cold 
ice being advected in, though the ice sheet remains warm­
bottomed. In case B (a very low lapse rate of L = --0.25), 
the ice sheet grows for about 30000 year and then 
decreases slowly; meanwhile the divide temperature 
continued to warm. 

The ice sheets displayed no evidence of a propensity to 
collapse as a result of having a warm-based d ivide, because 
the warming of the divide is driven by conduction, the 
slowest acting of all the processes. This means that the ice 
sheet has more than enough time always to adjust 
kinematically to the new temperature distribution. 

Since the warming was conduction-driven, we 
investigated the effects of changing the thermal inertia by 
(i) setting L = --0.25 but changing the pseudo-latent heat 
representation to model 2 (Fig. 3, graph B) (case C); and 
(ii) setting L = --0.5 and increasing the geothermal heat 
gradient by a factor of 20 (case D). The results of these 
calculations are nearly the same (Fig. 11); this is quite 
remarkable in view of the differences between cases A and 
B. The reason appears to be the nearly identical heating 
histories of the divide base, which arises from the low 
thermal inertias of the system. The ice sheet is prevented 
from becoming over-thickened because the warm base of 
the divide permits greater deformation, and shows monotone 
relaxation into steady state. 

66 

We have also carried out calculations with an 
undulating topography and ones with isostatic deflection 
included . These made no difference to the modes of 
operation of the system as described above. Calculations 
which included a temperature-field warming as X decreased 
also had no effect upon the mode of operation, though in 
this context we mention that it is extremely difficult to 
cause an ice sheet to advance over a soft bed. 

7. DISCUSSION 

We summarize the results: 

(i) The temperature field just in from the margin is 
dissipation-driven. The heat production in most cases is 
sufficient to bring the zone just inside the margin to the 
melting point. Conduction is more efficient over these small 
thicknesses and advection of cold into the area is not 
important. 

(ii) The temperature field at the base of the divide area 
can adopt two modes. One is a cold-based mode, where the 
ice sheet is thicker and the low temperatures are due to the 
advection in cold ice from altitude. The other mode is 
warm-based and is associated with thin ice sheets and warm 
conditions. This is not a bifurcation in the strict sense (cf. 
van der Veen and Oerlemans, 1984), but there is a sensitive 
range of parameter values which stimulates a bifurcation. 

We have not demonstrated a multiple steady-state 
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solution and, if there were one, then the fastest agent of 
heat transfer to produce a change from cold-based to 
warm-based is conduction, which operates upon a far slower 
time-scale than the kinematical processes of adjustment at 
the divide, meaning that a collapse is extremely unlikely 
(cf. the initiation waves of Fowler (1987) which operate on 
time-scales of hours and days to start valley-glacier 
surges). 

Ice sheets will grow until they have sufficient area in 
the ablation zone to balance the accumulation zone. The 
much higher velocities and the fact that ablation is an order 
of magnitude greater than accumulation means the areal 
extent of the accumulation is usually an order of magnitude 
greater than the ablation zone (see e.g. Fig. 2). The total 
ablation is, in consequence, quite sensitively dependent upon 
the geometry of the marginal areas, and this effect is 
amplified by the fact that ablation is greatest at the very 
margin. 

The equilibrium margin slope is dependent upon bed 
roughness and marginal ablation (e.g. Hutter, 1983; Morland 
and Smith, 1984), while the margin-slope evolution is 
dependent upon spatial derivatives of these quantities. In 
our model, the marginal temperature is defined by a 
Dirichlet condition. In cases where the bed roughness is 
temperature-dependent, this therefore defines the marginal 
roughness (see the great variation caused by temperature on 
margin slope in Figure 9, for example). 

There is a very large amount of evidence which 
indicates that processes of basal motion in marginal areas 
are rather different from those in core areas. We believe 
that the principal difference is the existence of large 
amounts of debris underneath the ice sheet (Boulton and 
Hindmarsh, 1987) which can deform. There is evidence 
from many areas (Boulton, 1987) that this was a significant 
process underneath at least the marginal areas of the 
Quaternary mid-latitude ice sheets. There is also evidence of 
foreland pushing by these ice sheets. We believe that this 
could only have occurred when the sediment was unfrozen; 
furthermore, the fact of foreland pushing implies that the 
stress distribution in the coupled ice-sheet/ substrate system 
is not simply that of the shear-stress gradient balancing the 
pressure gradient; stresses are also being transmitted 
longitudinally. 

The transmission of these stresses and the consequent 
strain-rates are dependent on the temperature of the 
foreland and in particular whether it is frozen or unfrozen . 
Geological evidence suggests that the foreland areas were 
permafrost areas. Exactly what this implies about the 
temperature of the ice at the margin is not clear as, 
according to our model, warm ice would be advected from 
the zones of high dissipation. (The fact that the ice cools 
down in our model is really a consequence of applying a 
forced boundary condition to a hyperbolic outlet.) The exact 
distribution of marginal temperature then becomes a very 
complex problem. Furthermore, the mid-latitude ice sheets 
were often flanked by very large pro-glacial lakes. These 
would have insulated the margins from the annual 
temperature variations and kept the area at the melting 
point. 

The thrust of these arguments is that the processes of 
enhanced basal deformation at the margin is dependent, 
perhaps quite significantly in view of the differing strengths 
of frozen and unfrozen sediments, upon details of the 
margin stress and temperature fields. The governing 
equations for ice-sheet-profile evolution (Equation (13» at 
the margin incorporate no diffusion, and are in principle 
sensitive to very small perturbations. The kinematical 
sensitivity of the margin is capable of amplifying these 
perturbations. It is likely that a more sophisticated model of 
margin mechanics would include diffusive or dispersive 
terms (as in Hutter, 1981) which might damp out 
sensitivity. We suggest that a more detailed model of the 
margin, including coupling with the bed, is necessary. 

Fowler's (1980) conjecture that only the base of an ice 
sheet will ever reach the melting point seems to be correct 
when vertical velocities are directed downwards. The bulging 
associated with compression will, however, advect warm ice 
upwards, meaning that the margins may become temperate. 
There is ample evidence to suggest that ice sheets do 
compress at the margin (Boulton, 1987). This means that 
some kind of representation of temperate ice will be 
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necessary in an ice-sheet model (see also the computations 
of Hutter and others (1986». In dissipation-driven areas, it 
does not seem that the details of our enthalpy formulation 
of the model are important, but are rather more so in the 
divide area. 

Comparison of our results of basal temperature with 
those of Oerlemans and van der Veen (1984, fig . 5.8) show 
that our computed warm patches lie somewhat closer to the 
margin than do those of Oerlemans and van der Veen . It is 
simple to explain this observation in terms of the different 
basal sliding laws used. In the cases where the basal slip is 
not temperature-dependent, using the Morland and others 
sliding law (relation (8» predicts basal power generation 
(relation (17» to vary as H(8H/ 8X)2, while Oerlemans and 
van der Veen, who use a Weertman functional form 
(relation (22», have the basal power generation varying as 
(H8HI BX)m, where m ~ 2. The geometry of ice sheets 
dictates that the Oerlemans and van der Veen position of 
maximum basal power generation must lie further in than 
ours. Since the margin is kinematically very sensitive, this 
implies that not only the magnitudes of the coefficients 
inserted into sliding laws are important but also the 
functional form, since if a Weertman form implies cold 
margins we should expect steeper ice-sheet surface gradients 
and larger ice sheets. 

A further inference that may be made from the basal 
temperature profiles is that regional refreezing is likely to 
be limited to a marginal zone. These show that a moving 
basal particle of ice is warmed nearly as far as the margin. 
It is only when heat is being removed from the ice that it 
can use the latent heat available in water. This is not a 
statement that regelation will not occur but that zones of 
refreezing should be limited. This statement must be 
qualified in a number of ways. First, in our model we have 
taken no account of the fact that the rheology of ice is 
implicitly pressure-dependent, as the correct temperature to 
chose (Rigsby, 1958) in the constitutive relation is the 
homologous temperature. Wet ice being moved into a region 
of lower pressure at a constant absolute temperature is 
having its homologous temperature lowered, and will 
therefore become stiffer, and susceptible to refreezing . 
Owing to the dissipation-dominated thermal behaviour near 
the margin, we doubt that the ice could cool down, but it 
may be that depressurizing in areas of thick ice from ice 
being forced upwards by topography could occur faster than 
heating by conduction, and refreezing would occur here . 
This may be the case at Byrd Station. However, if the 
marginal zone of refreezing is larger than our model 
suggests, the implication is that the marginal model needs 
improvement. We doubt that adopting a Weertman sliding 
law is sufficient. 

The difference in profiles obtained by the prescribed 
temperature fields of Morland and Smith (1984) and of 
Hutter and others (1986) may be explained in terms of the 
self -regulatory structures of ice-sheet temperature profiles. 
Morland and Smith produced very flat profiles when they 
had cold margins and warm divides. As we have shown, 
this temperature structure does not appear to be admissible 
because of the nature of the processes which determine the 
structure of temperature fields within ice sheets. 

These results have several implications for geological 
interpretations: 

(i) The sensitIvity of the marginal area increases the 
importance of the evidence from this area. The tectonic 
deformation of soft sediments beneath the ice sheet and the 
structures thereby formed contain information 
amplified by the kinematics of the margin 
implications on the scale of the ice sheet itself. 

which is 
to have 

(ii) Zones of refreezing are predicted to be limited except 
when topographic effects occur. If refreezing is important, 
this contains information about the functional form of the 
ice-sheet profile. The areal extent of warm ice, interpre­
table by geological evidence, is dependent quite sensitively 
upon the lapse rate, which may therefore be constrained by 
geological evidence. 

Finally, we have an alternative pOSItIOn on whether 
there is a shear-heating instability in ice sheets (see, for 
example, Clarke and others, 1977; Fowler, 1980; Yuen and 
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others, 1986). Since the marginal areas reach the melting 
point, there is always an approach to high temperature 
fueled by dissipation, i.e. the phenomenology of a 
shear-heating instability. However, because these high 
temperatures are attained very early, they are part of the 
ice sheet. We have shown that ice sheets can, nonetheless, 
grow with very warm margins. The divide areas produce 
very low shear heat and we have shown that kinematical 
adjustment is at least as fast as any warming process . Thus, 
the thermal phenomenology of a shear-heating instability 
will usually (always?) exist, but this ever-presence implies 
no spectacular kinematical consequences. 

8. CONCLUSIONS 

(i) Continental ice-sheet temperature fields evolve according 
to processes occurring at three time-scales: a dissipative 
time-scale of the order of thousands of years, an advective 
time-scale of the order of tens of thousands of years, and a 
conductive time-scale of the order of 100000 years. 
Dissipation is the most important process in the marginal 
areas, advection in the upper regions of the divide area, 
and conduction in the basal divide area. 

(ii) Ice-sheet kinematics have two time-scales: an advective 
one of thousands of years and a diffusive one of tens of 
thousands of years. They are most dominant in the marginal 
and central areas, respectively. 

(iii) Dissipation drives marginal temperatures up to the 
melting point very rapidly; however, the form of the sliding 
law we use probably exaggerates this effect. 

(iv) Temperatures at the base of the divide are able to 
adopt two modes: a cooling one, associated with thickening 
of the ice sheet and a warming mode associated with low 
ice sheets. The latter is produced by low lapse rates and 
low thermal inertia, but we have not conducted a full 
search of the possible parameter variations. We do not 
believe that the warming mode leads to an instability, as 
the warming is due to conduction which operates on a very 
much slower time-scale than does mechanical adjustment. 

(v) The marginal area shows extreme kinematical sensitivity 
and, with the model we use, acts to amplify the effects of 
the marginal mechanics. This fact is also true of other 
one-dimensional models. Longitudinal gradients are not 
negligible at the margin, and this problem is made more 
acute by the existence of deformable materials underneath 
these areas of ice sheets. The thermal regime at the 
marginal area could be of extreme importance, and 
blanketing by pro-glacial lakes could even be of importance 
in determining marginal motion. The kinematical sensitivity 
of the margin increases the importance of the deforming­
bed problem. 

(vi) The small-aspect ratio of the bed-temperature inter­
ference problem means that horizontal conduction of heat is 
not likely to occur except in marginal areas. The thermal 
inertia of the bed is important and may alter the 
geothermal heat gradient significantly. We do not believe 
that this will alter the modes of operation of ice sheets, 
because conduction is the slowest process operating and the 
ice sheet can therefore adjust to these changes . 

(vii) Continental ice sheets may have had temperate margins . 

(viii) The shear-heated approach to melting of the margins 
always seems to be present and seems to rule out the 
possibility of a shear-heated collapse of large ice sheets. 

(ix) The study has highlighted the inadequacies of numerical 
and mechanical models of the marginal areas. A more 
refined model of the mechanics and the coupled bed/ ice­
sheet thermal problem is needed and will dictate the 
numerical strategy needed . 
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