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ON THE FIELDS OF RATIONALITY FOR CURVES

AND FOR THEIR JACOBIAN VARIETIES

TSUTOMU SEKIGUCHI

Introduction

Throughout the paper, a scheme means a noetherian scheme. By a

curve C over a scheme S of genus g, we mean a proper and smooth S-

scheme with irreducible curves of genus g as geometric fibres. In the

previous paper [15], the author showed that the field of moduli for a non-

hyperelliptic curve over a field coincides with the one for its canonically

polarized jacobian variety, and in [16], he gave a partial result on the

coincidence of the fields of rationality for a hyperelliptic curve and for

its canonically polarized jacobian variety. In the present paper, we will

discuss the isomorphy of the isomorphism schemes of two curves over a

scheme and of their canonically polarized jacobian schemes, by using

Oort-Steenbrink's result [12]. Our result is as follows:

Let C and C be two curves over a scheme S, P(C) and P(O) be their

canonically polarized jacobian schemes, respectively. If C and Cf are non-

hyperelliptic, the canonical map

Isom,(C, CO > Isom5(P(C0, P(C))/{± 1}

is isomorphίc. If C and C" are hyperelliptic and S is a scheme over

Spec(Z[l/2]), the canonical map

Isom5(C, CO > Isoms(P(C% P(C))

is isomorphίc.

As a corollary to this result, we get the following:

Let C be a non-hyperelliptic curve over a field of any characteristic or

a hyperelliptic curve over a field of characteristic Φ 2. If the polarized

jacobian variety P(C) is rational over a field k, then C is also rational over

k and vice versa. In particular, the field of moduli for C coincides with
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the one for P(C).

We will start with reviewing Oort-Steenbrink's result in § 1, and in

§ 2, we will discuss the isomorphism schemes of curves and of polarized

abelian schemes. In § 3, we will state the result about the fields of

rationality for curves. Lastly, as an appendix, we will give an estimation

of possible prime factors of the order of an automorphism of an abelian

variety, which is a transfer of one of Homma's results [5] on curves to

the case of abelian varieties.

§ 1. Oort-Steenbrink's result

Let Mgtn (resp. Agtlt7l) be the moduli scheme of curves of genus g

(resp. of principally polarized abelian varieties of dimension g) with level

n-structures (in the sense of [14]). According to the works of Mumford

and Popp (cf. [9] and [14]), the following is known.

THEOREM 1.1. When n ^ 3, Mgtn and AgΛtn are fine moduli schemes,

and they are smooth and quasi-protective over Spec (Z[l/ra]).

For a positive integer m, we put M^==Λfίfn<S>Z[l/m7i] and A<$tn=

AgtUn ® Z[l/mri\. Let Jn: Mgt7l -> AgΛ%n be the Torelli map defined by (C, a)

->(P(C),α), where C is a curve of genus g, P(C) = (J(C), λ(C)) is the

canonically polarized jacobian variety of C and a: J(C)n->(ZlnZ)2g is a

level n-structure on C. Now, let G be the constant group scheme con-

sisting of {± 1}. We define an action of G on Mgtn by (C, a) -* (C, — a).

Then obviously there exists a geometric quotient Vg>n=Mgi7lIG, and Jn

induces a morphism c: Vgt7l -> AQjUn.

DEFINITION 1.2. A curve C over a scheme S is said to be hyperelliptic,

when there exists an S-involution σ of C such that Cl(σ} is a curve of

genus 0 over S.

As for hyperelliptic curves, Laudal-L0nsted's result [7] asserts,

THEOREM 1.3. (Laudal-L0nsted). Let n^>3. Then there exists a fine

moduli S^ec(Z[lln])-scheme HPgn for hyperelliptic curves of genus g with

level n-structures. And it is precisely attained by a closed subscheme of

MOtn which is smooth of relative dimension 2g—l over Spec(Z[l/π]).

Under these notations, Oort-Steenbrink's result [12] is formulated as

follows:
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THEOREM 1.4 (Oort-Steenbrink). Let n^S. Then r. V™n -> A(

g\n and

Jn: HPfn -> Af^n are locally closed immersions. In particular, even if

characteristic 2, c is a locally closed immersion at every non-hyperelliptic

point.

DEFINITION 1.5. We say a polarized abelian variety (X, X) is decom-

posable, when there exist polarized abelian varieties (Xi9 λt) (ί = 1, 2) and

an isomorphism (X1χX29 λίχλ2) >̂ (X, λ). When (X, λ) is not decomposable,

we say that it is indecomposable.

The following is an elementary criterion for decomposability of a

principally polarized abelian variety, which was settled during a conver-

sation with Dr. R. Sasaki.

LEMMA 1.6. A principally polarized abelian variety (X, X) over a field

is decomposable if and only if there exist effective divisors Dλ and D2 such

that λ — φDl+D2, where φD:X->X is the homomorphism defined by x •->

T*ΘX(D)®OZ(- D) for a divisor D on X.

Proof. Since the "only if" part is obvious, it suffices to show the "if"

part. Let ifo(A) be the connected component of K e r ^ . ) containing the

origin for each i = 0,1. Since K0(D0) Π 2ζ>(A) c Ker(φDo+Dl) = Ker(Λ) = {0},

the canonical map c: K0(D0) X K0{D^) -> X is injective. So we have only

to check the equality

dim K0(DQ) + dimiζXA) = dimX.

Now we put dimX = g, dim ifo(A) = Si for i = 0,1 and D = Do + Dv

Then the polynomial PJji) defined by the Euler-Poincare characteristic

χiΘxiDi + nD)) has gt as the multiplicity of n = 0 (cf. Kempf's appendix

to [10]). Hence, by Riemann-Roch theorem, P^ή) has the leading term

where (Dξ~gi-Dfiι) means the intersection number. On the other hand,

by using ^-adic representation, we have

= άeg(φDi+nD)
1 o φDi+nD) = d e t T£(φ^ o φ D i + n D ) .

Here note that φ^1oφD.+nDeEnd(X). Hence P^n)2 has rational|integral

coefficients (cf. [11], Chap. IV, § 19, Theorem 4); in particular,
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is integral. Moreover.Jsince

we get

V J / 10 if

and

Q.E.D.

Obviously the points of AgΛtn corresponding to indecomposable abelian
varieties form a Zariski open subset, which we denote by UgfUn. Then,
noting the compatibility of the specializations of a curve and of its
polarized jacobian variety (cf. [13], Lemma 6 or [15], Proposition 4.1), we
get,

COROLLARY 1.7. If n >̂ 3,

and

are closed immersions.

§2. Isomorphism schemes of curves and abelian varieties

Let S be a scheme, C, C be two curves over S, and P, P' be two
polarized abelian schemes over S. Then by Grothendieck's theory in FGA,
there exist isomorphism schemes

Isom5(C, CO • S

and

Isom5(P', P) > S

representing the functors from the category of S-schemes to the category
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of sets:

T\ >IsomΓ(C X ST, C" X 8T)

and

T\ > IsomΓ(P' χ s T , P χ ST),

respectively. These schemes have the following property:

THEOREM 2.1. Isom^C, CO and Isom^P', P) are finite and unramίfied

over S.

The proof for curves is given by ([1], Theorem 1.11) and the one for

polarized abelian varieties follows similarly (cf. [16], Theorem 3.1).

Hereafter, we will discuss a relation between the isomorphisms of

curves and those of their polarized jacobian varieties. Now, let J: Isom s

(C, C) -> Isomβ(P(C"), P(Q) be the morphism defined by σ ^ Pic0O) for

a e Isoms(C, C). The next is a well-known result.

THEOREM 2.2. Let C and Cf be two curves over an algebraically closed

field k. Then we have

( i ) J : Isomfc(C, C) -> Isomfc(P(C"), P(C)) is ίnjectίve;

(ii) if C and C" are non-hyper elliptic, the canonically induced map

J:Isomfc(C, C0->Isomft(P(C0,P(C))/{±l} is a bίjectίon;

(iii) if C and C" are hyper elliptic, J: Isomfc(C, CO -> Isomfc (P(C0, P(C))

is a bίjectίon (cf. [8] or [17]).

Combining these theorems, we obtain the following:

PROPOSITION 2.3. J: Isom^C, CO -> Isom5(P(C0, P(C)) is a closed im-

mersion.

Proof. Theorem 2.2 implies that J is radicial. On the other hand,

by using (EGA II, (5.4.3)) and (EGA IV4, (17.1.3)), we can deduce easily the

fact that J is proper and unramified. Hence, J is a closed immersion.

Q.E.D.

THEOREM 2.4. Let C and C; be two hyperelliptic curves over S. Assume

that S is a scheme over Spec (Z[l/2]). Then

J: Isom5(C, CO > Isoms(P(C"), P(Q)

is an isomorphism.
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Proof. It suffices to show our assertion for a suitably small open

neighbourhood at every point of S. So we may exchange S for a smaller

one.

Let Hg)Un be the fine moduli space of the principally polarized abelian

varieties with linear rigidifications and with level n-structures (cf. [9]).

Then Hgh4 is a principal covering of H^tl with Galois group Sp(g, ZjAZ)

(cf. [9], Lemma 7.11). Let π: HgΛΛ —> H™1A be the canonical map. If we

take S to be suitably small, P{Cf) has a linear rigidification. Hence P{C)

with this linear rigidification defines an S-valued point

(n.b., we have assumed that S is over Spec (Z[1/2])). Since π is etale, i/

we take the fibre product S' = S XH

{ 2\1HgΛΛ:

xBmiHtΛΛ^S

HgΛΛ > HgtUί,

S' becomes an etale, a fortiori, faithfully flat covering of S. Since HgΛΛ

is a fine moduli space, υ! determine a level 4-structure a of C's, — C Xs S'

-> S'. So C's> with a defines an S'-valued point

a: 8' >MgΛ.

Here a factors through the hyperelliptic locus HPgi, for we have assumed

that C is hyperelliptic.

Now we take any S^scheme /: S" —> S' and any S^-valued point τ of

l&omsίP(C's)9P(C8)). Then τ{aXs,S") is a level 4-structure of P(CS)

XS,S" = P(C5,,), and (C^, τ(α X^ S/;)) determines an S"-valued point b of

HPgi. Since τ induces an isomorphism between (P{Cf

s>), a X5> S") and

(P(Cs»),τ(a Xs'S'% we get the equality

J4(αo/) =

Hence, by Oort-Steenbrink's result Theorem 1.4, we have

aof= b,

that is, there exists an isomorphism

φ: (CV, τ(α X 8. S'O) > (C^, α X5, S ; / ).
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Since J(φ) induces the isomorphism between level 4-structures a X S>S"

and τ(a X 5,S"), by Serre's theorem (cf. [11], Chap. IV, § 21, Theorem 5),

we have

J(φ) X fi,, Spec (*(*")) = τ X *, Spec (*(«"))

for every point s" of S". Hence, by the rigidity (cf. [9], Corollary 6.2),

we get the equality

J(φ) = τ .

This implies the surjectivity of

J: ΊsomACy, C's.) • Isonv(P(C^), P(CS,,)),

and combining with Proposition 2.3, we obtain the isomorphy of

J8,: Isom5,(C5,, C'8) • Isoms,(P(C^), P(CS)).

Moreover, since S' is faithfully flat over S, by using the descent theory

(cf. EGA IV2, Proposition (2.7.1)), we get the isomorphy of

J: Isom5(C, CO > Isom5(P(C"), P{C)).

Q.E.D.

The similar result for non-hyperelliptic curves is also established in

a similar way as above.

THEOREM 2.5. Let C and C be two non-hyperelliptic curves {i.e., every

geometric fibre of C and Cf is non-hyperelliptic). Let G be the constant

group scheme consisting of {± 1}. Obviously G acts naturally on Isom 5

(P(C0, P(Q) and the geometric quotient Isom 5 (P(C0, P(C))IG exists. Then

the natural map

J: Isom5(C, CO • Isom5(P(C0, P(C))/G

is an isomorphism.

Proof. For brevity we put / = Isom5(C, CO and J= Isom 5 (P(C'))> P(C)).

First we note that G acts freely on the open subset Ngt7l consisting of

non-hyperelliptic points in Mgf7l (n ^ 3) and on /, respectively. Hence the

canonical maps Ng>n —> NgiJG and J-+ J = JjG are principal homogeneous

fibre bundles. In view of Theorems 2.1 and 2.2, we get that J is proper,

radicial and unramified, and so a closed immersion.
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Now, in a similar way as in the proof of Theorem 2.4, there exist an

open neighbourhood at each point of S, which we denote also by S, and

a faithfully flat covering S' -> S, such that S is a scheme over Spec(Z[l/n])

for some n ^ 3 and P{C'S) has a level n-structure a. Let S" be any Sf-

scheme, and τ be any S^-valued point of /. Since π: J-+J is faithfully

flat, if we take the fibre product

π': S'" -*• S" is also faithfully flat. Now τ' defines an isomorphism

τ': (P{C'S) X S,S'", cc X S,S'") - ^ (P(CS,) X S,S'", τ'{a X S,S'"))

Hence, by using Theorem 1.4 and Serre's theorem as in the proof of

Theorem 2.4, we obtain an isomorphism

*': (CV, vr(α X δ,S'")) - ^ (σ s», α X a.S'")

with an /S^'-valued point v of G, and the equality

J(σ') = vr.

Here we consider the following commutative diagram:

Pi*

Homs<(S", /s.) > Hom,,(S'", 7 )̂ = £ Homs,(S'" x VS'", 7β.)

4 7Ϊ ft A
Homs,(S", Λ<) — • Honiβ-ίS"', Λ-) = $ Hom^ίS"' X ^ S " ' , Λ-).

According to the descent theory (cf. SGA 1, Ex. VIII, Theorem 5.2), the

horizontal lines are exact. By our construction of σ',

Jipfσ') = ptπ{τ>) = p*π{τ') = J(p*σ').

Since J is a monomorphism, we get the equality

pfσ' = pfσ'.

Therefore, there exists σ e Homs,(S', /) which induces </, and so

J(σ) = f.

Thus we obtain the bijectivity of
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J : Hom^S", I8.) • Hom^S", 1 /),

and the isomorphy of

J : Is > Js,.

Once more using the descent theory, we obtain the fact that J is iso-

morphic over S, and we are done. Q.E.D.

Lastly, we note the fact that if P19 P2 and P 3 are polarized abelian

schemes over S, then the composition morphism

o : Isoms(P19 P2) x Isom5(P2, P3) —•> I s o m ^ , P3)

induces naturally a morphism

7 : Isom5(P2, P3)/G X Isom^P,, P2)jG > Isom^Λ, P3)/G .

§ 3. Fields of rationality for curves

We will discuss in this paragraph a relation between the fields of

rationality for a curve and for its jacobian variety as an application of

the result in the preceding paragraph.

THEOREM 3.1. Let S be a scheme over Spec(Z[l/2]), and S' be a

faithfully flat S-scheme. Let C be a hyperellίptic curve over S' and P be

a principally polarized abelian scheme over S such that there exists an

isomorphism

^>PX SS'.

Then there exist a curve C over S and isomorphisms

f: C X SS' - ^ > σ and φ: P(C) - ^ > P

such that

φs,oj(f>) = φ>.

The same result can be obtained for non-hyperelliptic curves.

THEOREM 3.2. Let S' be a faithfully flat S-scheme, C be a non-

hyperelliptic curve over S' {i.e., C" has non-hyperelliptic curves as geometric

fibres), and P be a principally polarized abelian scheme over S having an

isomorphism

^>Pχ SS'.
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Then there exist a curve C over S and isomorphisms

f':CxsS'-=z+C and

such that

The proofs of these theorems can be done in a similar way. So we
will give only the one of the latter.

Proof of Theorem 3.2. We put S" = S' x 8S' and p,: S" -+Sf: the
projections to the ί-th component for i — 1, 2. For short, we put V =
Isoms,,(p*C,p*C), J' = Isoms,,(p*P(C'),p*P(C')) and /' = J'/G, where G
= {± 1}. By our assumption, there exists a descent deta φ e Hoπv(S", / ') ;
that is, it satisfies the following:

Δ*φ = lPitn and p%φ = p?2φ op*φ ,

where Δ: Sf -+ S" = S7 X ^S7 is the diagonal morphism and pυ: S' X ̂ S'
X SS' —> S7/ is the projection to the (ί, j)-th component. Therefore, π(^) =

φ e Homs/ίS ,̂ /0 satisfies the same condition

d*Φ = ϊp(c> and pj!^ = p#β <>p*φ .

Hence, by virtue of Theorem 2.5, we get an isomorphism σ e Ή.oms,,(S", Γ)
satisfying the condition

J*(7 = lc, and pfzσ = p%σ op*σ .

Thus, by using (SGA 1, Ex. VIII, Proposition 7.8), we can descent C over
S. Q.E.D.

As direct consequences of Theorems 3.1 and 3.2, we obtain the following
corollary.

COROLLARIES 3.3. Let k be a field of characteristic p, and k0 be a sub-
field of k. Let C be a hyperellίptic curve over k with p Φ 2 or a non-
hyperelliptic curve over k with any p. If there exists a principally polarized
abelian variety P over k0 such that P® kJk ~ P(C), there exists a curve Co

over k0 such that Co ® kok ^ C. In particular, the field of moduli for C
coincides with the one for P(C).

Appendix. Prime orders of an automorphism of an abelian variety
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We begin this appendix by transferring one of Homma's results [5]

on curves to the case of abelian varieties.

PROPOSITION Al. Let X be an abelian variety of dimension g over an

algebraically closed field of any characteristic, and λ: X —> X be a principal

polarization.

( 1 ) Let σ be an automorphism of X of prime order q. Then we have

( i ) q£2g+l;

(ii) if we denote by P(ή) the polynomial defined by άeg(σ — nlx),

2dim(Ker (σ — 1)) = the multiplicity of 1 as a zero of P(ή);

(iii) if q = 2g + 1, dim(Ker(σ - 1)) = 0;

(iv) if dim(Ker((7 — 1)) = 0 (in particular, if X is simple),

q = (2gjr) + 1 for some positive integer r.

( 2 ) Assume that (X, X) is indecomposable (cf. Definition 1.5). Let a

be an automorphism of (X, λ) or prime order q. Then we have

q = 2g+l or q^g+1.

Remark. The estimation (1), (i) is more or less a well-known fact.

Proof. Let P(ή) be the polynomial defined by deg(σ — nlx) as in (1),

(ii). Then P(ή) is a monic polynomial of degree 2g with integral co-

efficients, and it is equal to άet(T4(σ) — nE), where T£ means the ^-adic

representation and E is the unit matrix (cf. [11], Chap. IV, § 19, Theorem

4). Since T£(σ) has the prime order q, its eigen-values are 1 or primitive

g-th roots of the unity. So P(x) must be of the following type:

( * ) P(x) = (x~ l ) 8 ^ - 1 + xQ~2 + + l) r

with e Ξ> 0, r 2> 1 and 2g = e + r(q — 1).

Thus we obtain the first inequality

We put K = the connected component of Ker (σ — 1) containing the origin,

and Y = Im((7 — 1). Let ε: K-> X and c: Y-> X be the canonical inclusions.

Then σ — 1 factors through Y:
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Since σ(σ — 1) = (σ — ϊ)σ, σ acts on Y, so we put τ = σ\γ. Thus we obtain

a commutative diagram

lκ X τ \ \ σ

+ ε + c Ψ
Kx Y —>X.

Obviously, (1 + a + + σ 9 " 1 )^ - 1) = 0, and so Ker(σ — 1) Π Yd Yq =

Ker(glF). Hence τ — 1 F : Y-> Y and ε + c: K X Y-> X are isogenies. Since

1^ X τ = (ε + 0"Me + 0 in End°(if X Y) = End(if X Y) ® ZQ9 we get

P(x) = (x — iyάimK(xq-ί + χq~2 + . . + l ) r .

This implies that

(**) det(τ — 1) = qr and e = 2 dim if.

Thus we obtain the assertion (ii). (iii) and (iv) are direct consequences

of ( * ) and (**).

Next we will expand the proof of (2). So, hereafter we assume that

σλσ = λ and q < 2g + 1. Then for any y e Y, if we take a point xeX

such that π(x) = y,

έλc(y) = έ^ττ(x) = έΛ(σ — ϊ)(x) = — έ(σ — l ) ^ " 1 ^ ) = 0.

That is, ελc = 0. In particular,

(***) HY) = MX) -

Dualizing the equality ελc = 0, we have cλε = 0. Therefore, if we put ε*λ

= έλε and c*λ = cλc, we obtain a commutative diagram

Kx Y ε + e >X

e*λ Xc*λ\ \ λ

if X Y > X .

So, noticing our assumption the indecomposability of (X, λ), ε + i can not

be an isomorphism, that is,

Moreover, for zeK,
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Ker(e*λ) B z <=φ έλε(z) = 0

ε(z) e λ~\τtY) = c(Y) (note (***))

Hence order (Kf) Y) = deg(ε*λ) must be a square of an integer larger than

1 (cf. [11], Chap. IV, § 23, Theorem 4). Since order (IΓΓ) Y) divides deg(τ - 1)

= q% we get

This inequality and (*) yield the inequality

q£g+ 1.

Q.E.D.

As a direct consequence of Proposition Al, we obtain the following:

COROLLARY A2 (Homma). Let C be a curve of genus g over an alge-

braically closed field of any characteristic, and σ be an automorphism of C

of prime order q. Then we have

( 1 ) 4 = 2£+l or q^g+1;

(2) if q = 2g + 1, genus of C/<(X> = 0.

In the rest of this appendix, we will discuss an estimation of a power

of a prime number dividing the order of the automorphism group of a

polarized abelian variety.

PROPOSITION A3. Let P = (X, X) be a polarized abelian variety of

dimension g over an algebraically closed field of characteristic p(^> 0). Let

q be an odd prime integer, and qu be the maximal power of q dividing the

order of the automorphism group Aut(P) of P. Then we have

where [ ] means the Gauss symbol.

Proof We choose a prime integer I such that i Φ 2, p and t (mod q)

generates the unit group (Z/q2Z)x of Z/q2Z. Then, as is well-known, £

(rnodq71) generates the unit group {Z\qnZY of Z\qnZ. Hence qe is the

maximal power of q dividing Sk — 1 if and only if q — 1 divides k and

qe~ι is the maximal power of q dividing k.
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On the other side, by Serre's theorem (cf. [11], Chap. IV, § 21, Theorem

5), the canonical map

Aut(P) > Aut(X,) ~ GL2g{ZβZ)

is injective, and the order of Aut(P) divides the order

of GiL2g{ZβZ). Therefore, by combining this with the above notice, we

get the inequality

^ 5.(i

Q.E.D.

COROLLARY A4. Let P and qu be as in Proposition A3. // q = 2g + 1,

then u<*l. Ifq = g+lorq = g^>5, then u <^2. If q = g = 3, then

Note that in general the estimation in Proposition A3 is best possible.

In fact, there exists the following example.

EXAMPLE. Let q be an odd prime integer, and (Y, λγ) be a principally

polarized abelian variety of dimension (q — l)/2 with an automorphism a

of order q. Some examples of such polarized abelian varieties (Y, λγ) are

given by Homma [5] as jacobian varieties of some curves, and he determines

all such curves. Now we set X = Yr, λ = Πλγ:X-+X and P = (X, X).

Note that g = d imZ = r (q — l)/2. Let σt = 1F X X l r X σ* X lr X

X lγ e Aut(P), and <Sr =—> Aut(P) be the inclusion giving the permutations

of factors of X = Yr, where © r is the symmetric group of degree r. More-

over, let A = [{Sr, σt\i = 1, , r}]Dfi = [{^U = 1, , r}] be the subgroups

of Aut(P), generated by ©r and σ/s. Then obviously B is a normal sub-

group of Ay and we get an exact sequence

1 > B • A • <3 r • 1 .

Hence, if qu is the maximal power of q dividing the order of Aut(P),

and so
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u =

Addendum. In the preceding paper ([15], Proposition 4.1), the author
discussed the compatibility of the specializations of a curve and its polar-
ized jacobian variety over the same valuation ring. But that proof con-
tained a mistake, and actually there exists a counter example to the
compatibility of the specializations of them over the same valuation ring.
The author notices here that an essential correction of the proof of ([15],
Proposition 4.1) is given by Theorems 3.1 and 3.2.
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