ON A THEOREM OF BRUDNO OVER
NON-ARCHIMEDEAN FIELDS

D. SOMASUNDARAM

A classical theorem of Brudno, dealing with the consistency of
summability with regular matrices is shown by example not to hold
over a non-archimedian field.

1.

Following Monna [1], attempts have been made in recent times to study
different summability methods over non-archimedian fields which are
complete in the metric of valuation. In all such attempts, as in [3], [4],
significant differences in contrast to the classical case have been
obtained. The object of the present short note is to prove by an example
that the classical theorem of Brudno [2] dealing with the consistency of
regular matrices is not true in general in the non-archimedean case. In
§2, we shall describe the necessary preliminaries, whereas in §3, we shall
establish our claim.

2.

Let K be a non-archimedian field which is complete under the metric
of valuation denoted by $| |$. We note that the valuation $| |$ is non-
archimedian if and only if $|n| < 1$ for every integer n considered as an
element of K. Thus, in a field with non-trivial non-archimedian
valuation, the sequence $\{1, 2, 3, \ldots\} = \{n\}$ is a bounded sequence in the
metric of valuation.

Received 18 September 1980.
Let $A = (a_{np})$, $n, p = 1, 2, 3, \ldots$, be a matrix defined over such a field. For $n = 1, 2, 3, \ldots$, let us write

$$y_n = \sum_{p=1}^{\infty} a_{np} x_p .$$

For every sequence $x = \{x_n\}$ defined over K, let $\{y_n\}$ be convergent for each n. y_n is called the A-transform of x. If $y_n \to y$ as $n \to \infty$ in the metric of valuation, then x is said to be A-summable to y. A is said to be convergence preserving if $\lim y_n$ exists for every convergent sequence x. A is called regular if in addition $\lim y_n = \lim x_n$. Such regular matrices are also known as Toeplitz matrices. The theorem given below is practically contained in [1].

Theorem (Monna). A matrix $A = (a_{np})$ is a regular matrix defined over K if and only if $\sup_{n,p} |a_{np}| \leq M$ where M is a constant, $\lim_{n \to \infty} a_{np} = 0$ for every fixed p, $\sum_{p=1}^{\infty} a_{np} A_{np} = 1 + A$ as $n \to \infty$.

The following is the classical Brudno theorem on a regular matrix for which a simple proof was given by Petersen [2].

Theorem (Petersen). Let every bounded sequence summable by a Toeplitz matrix A also be summable by a Toeplitz matrix B. Then it is summable to the same value by B as by A.

Petersen [2] established this theorem by showing that if two regular matrix methods $A = (a_{mn})$ and $B = (b_{mn})$ sum bounded sequence $\{s_n\}$ to different sums, then there exists a bounded sequence which is summed by A but not by B.

3.

In this section we shall give examples of two regular matrices A and B over K such that every bounded sequence summed by A is also summed by B and show that there exists a bounded sequence summable by these two regular matrices to two different sums.
Let \(A = (a_{np}) \) and \(B = (b_{np}) \) be defined as follows:

\[
a_{np} = \begin{cases}
 n + 1 & \text{when } p = n, \\
 -n & \text{when } p = n+1, \\
 0 & \text{for all other values of } n \text{ and } p;
\end{cases}
\]

\[
b_{np} = \begin{cases}
 n + 2 & \text{when } p = n, \\
 -(n+1) & \text{when } p = n+1, \\
 0 & \text{for all other values of } n \text{ and } p.
\end{cases}
\]

The matrix \(A \) satisfies the conditions of the theorem of Monna given in §2 as seen below.

(i) Since \(|n+1| = \max(|n|, 1)\) and \(|n| < 1\), we have \(|n+1| = 1\). Hence we have from this \(\sup_{n,p} |a_{np}| \leq \sup(|n+1|, |n|) = 1 \).

(ii) Since each column of \(A \) contains infinitely many zeros and \(|n+1| = 1\) and \(|n| < 1\), \(a_{np} \to 0 \) as \(n \to \infty \).

(iii) \(\sum_{p=1}^{\infty} a_{np} = n + l - n = 1 + l \) as \(n \to \infty \).

Hence \(A = (a_{np}) \) is a regular matrix. In a similar manner, we can verify that \(B \) is also a regular matrix over \(K \).

As a next step, we shall show that every bounded sequence summed by \(A \) is also summed by \(B \). For this let \(\{x_n\} \) be any bounded sequence. If \(y_n \) is the \(A \)-transform of \(x_n \), then we have \(y_n = (n+1)x_n - nx_{n+1} \). If \(y'_n \) is the \(B \)-transform of \(x_n \), then

\[
y'_n = (n+2)x_n - (n+1)x_{n+1}.
\]

The relation between \(y_n \) and \(y'_n \) is easily seen to be

\[
y'_n = y_n + (x_n - x_{n+1}).
\]

Hence \(|y'_n| \leq \max\{|y_n|, |x_n - x_{n+1}|\} \leq |y_n| + \lambda \) where \(|x_n| \leq \lambda \) for all \(n \), \(\lambda \) being a constant. Thus we have \(|y'_n| \leq |y_n| + \lambda \).

If \(\{y_n\} \) is convergent, then \(\{y'_n\} \) is also convergent. Thus if
\(\{x_n\} \) is summable by \(A \), then it is summable by \(B \) also. This shows that
the bounded convergence field of \(A \) is contained in the bounded
convergence field of \(B \).

We establish our claim by showing that there exists a bounded sequence
summable by these two regular matrices to two different sums. For this
consider the bounded sequence \(N = \{n\} = \{1, 2, 3, \ldots\} \) in \(K \). The
\(A \)-transform of the sequence \(N \) gives rise to the sequence
\(\{y_n\} = \{0, 0, 0, 0, \ldots\} \). So \(N \) is \(A \)-summable to 0. The \(B \)-transform
of the sequence \(N \) gives rise to the sequence \(\{y'_n\} = \{-1, -1, -1, \ldots\} \).
So \(N \) is \(B \)-summable to -1. Hence given two regular methods \(A \) and \(B \)
defined over \(K \) such that every bounded sequence summed by \(A \) is also
summed by \(B \), there exists a bounded sequence \(N = \{n\} \) summable by \(A \)
and \(B \) to two different sums which cannot happen in the case of the
classical Brudno's theorem. This establishes our claim.

References

Math. Soc. 31 (1956), 324-326.

(1972), 129-140.

Department of Applied Mathematics,
Autonomous Post Graduate Centre,
University of Madras,
Coimbatore 641 041,
Tamil Nadu,
India.