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Abstract Homological properties of several Banach left L1(G)-modules have been studied by Dales
and Polyakov and recently by Ramsden. In this paper, we characterize some homological properties of
L∞

0 (G) and L∞
0 (G)∗ as Banach left L1(G)-modules, such as flatness, injectivity and projectivity.
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1. Introduction and preliminaries

Throughout this paper, G denotes a locally compact group with the identity element e,
the modular function ∆ and a fixed left Haar measure λ. As usual, let L1(G) denote the
group algebra of G as defined in [5] equipped with the norm ‖ · ‖1 and the convolution
product ∗ of functions on G defined by

(φ ∗ ψ)(x) =
∫

G

φ(y)ψ(y−1x) dλ(y)

for all φ, ψ ∈ L1(G) and locally almost all x ∈ G. Also, let L∞(G) denote the Banach
space as defined in [5] equipped with the essential supremum norm ‖ · ‖∞. Then L∞(G)
is the dual bimodule of the Banach L1(G)-bimodule L1(G) under the pairing

〈f, φ〉 =
∫

G

f(x)φ(x) dλ(x)

for all φ ∈ L1(G) and f ∈ L∞(G). The left and right module actions of L1(G) on L∞(G)
are given by the formulae

φ · f = f ∗ φ̃ and f · φ =
1
∆

φ̃ ∗ f

for all f ∈ L∞(G) and φ ∈ L1(G), where φ̃(x) = φ(x−1) for all x ∈ G. Let L∞
0 (G) denote

the closed subspace of L∞(G) consisting of all g ∈ L∞(G) that vanish at infinity: that is,
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for each ε > 0, there is a compact subset K of G for which ‖gχG\K‖∞ < ε, where χG\K

denotes the characteristic function of G \ K on G. Then L∞
0 (G) is a closed submodule

of the Banach L1(G)-bimodule L∞(G); in fact, for each g ∈ L∞
0 (G) and φ ∈ L1(G), we

have φ · g, g · φ ∈ C0(G), the space of all continuous functions on G vanishing at infinity.
Hence, the dual space L∞

0 (G)∗ of L∞
0 (G) is also a Banach M(G)-bimodule with the dual

actions

〈φ · m, g〉 =
〈

m,
1
∆

φ̃ ∗ g

〉
and 〈m · φ, g〉 = 〈m, g ∗ φ̃〉

for all φ ∈ L1(G) and m ∈ L∞
0 (G)∗. For an extensive study of L∞

0 (G) and L∞
0 (G)∗,

see [7] (see also [6] for the compact group case).
Homological properties of several Banach left L1(G)-modules have recently been stud-

ied by Dales and Polyakov [2] and by Ramsden [8]. However, homological properties of
the Banach left L1(G)-modules L∞

0 (G) and L∞
0 (G)∗ have not been studied so far. Our

aim in this paper is to characterize some properties of L∞
0 (G)∗ and L∞

0 (G) as Banach
left L1(G)-modules, such as flatness, injectivity and projectivity in terms of G.

2. Projectivity of L∞
0 (G) and L∞

0 (G)∗

Let E and F be two Banach spaces and denote by B(E, F ) the Banach space of all
bounded operators from E into F . An operator T ∈ B(E, F ) is called admissible if
T ◦S ◦T = T for some S ∈ B(F, E). In the case where A is a Banach algebra and E and
F are Banach left A-modules, AB(E, F ) denotes the closed linear subspace of B(E, F )
of all left A-module morphisms. An operator T ∈ AB(E, F ) is a retraction if there exists
S ∈ AB(F, E) with T ◦ S = IF , the identity operator on F ; in this case, F is called a
retract of E.

A Banach left A-module P is called projective if, for Banach left A-modules E and
F , each admissible epimorphism T ∈ AB(E, F ) and each S ∈ AB(P, F ), there exists
R ∈ AB(P, E) such that T ◦ R = S.

Our first result characterizes projectivity of L∞
0 (G) as a Banach left L1(G)-module.

Theorem 2.1. Let G be a locally compact group. Then L∞
0 (G) is a projective Banach

left L1(G)-module if and only if G is finite.

Proof. It is well known that L∞(G) is a projective Banach left L1(G)-module if and
only if G is finite [2, Theorem 3.3]. We therefore only need to recall that G is compact
if there is a projective Banach left L1(G)-module E with C0(G) ⊆ E ⊆ L∞(G) [2,
Theorem 3.1]. �

We now describe projectivity of L∞
0 (G)∗ as a Banach left L1(G)-module.

Theorem 2.2. Let G be a locally compact group. Then L∞
0 (G)∗ is a projective Banach

left L1(G)-module if and only if G is discrete.

Proof. It is clear that if G is discrete, then L∞
0 (G) is the space of all functions on G

vanishing at infinity, and so L∞
0 (G)∗ = L1(G). So, the ‘if’ part follows from the fact that

L1(G) is always a projective Banach left L1(G)-module [2, Theorem 2.4].
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To prove the converse, suppose that L∞
0 (G)∗ is a projective Banach left L1(G)-module.

We will show that G is discrete.
On the one hand, C0(G) is a closed submodule of the Banach L1(G)-bimodule L∞

0 (G),
and its dual C0(G)∗ is a projective Banach right L1(G)-module with the dual actions
〈φ · µ, g〉 = 〈µ, g · φ〉 for all φ ∈ L1(G) and µ ∈ C0(G)∗ if and only if G is discrete [2,
Theorem 2.6]. On the other hand, each retraction of a projective Banach left L1(G)-
module is projective [3]. We therefore only need to prove that C0(G)∗ is a retraction of
the Banach left L1(G)-module L∞

0 (G)∗.
To this end, let P : L∞

0 (G)∗ → C0(G)∗ be the restriction map, so that P is a left
L1(G)-module morphism. Now, let u be an extension of the Dirac measure δe at e from
C0(G) to a bounded functional on L∞

0 (G), and define the map Q : C0(G)∗ → L∞
0 (G)∗

by Q(µ)(g) = 〈u, µg〉 for all µ ∈ C0(G)∗ and g ∈ L∞
0 (G), where

(µg)(x) =
∫

G

g(xy) dµ(y)

for locally almost all x ∈ G. Since Q(µ)(g) = 〈µ, g〉 when µ ∈ L1(G) or g ∈ C0(G), it
follows that Q is a right inverse for P. Moreover, Q is a left L1(G)-module morphism;
indeed, for φ ∈ L1(G), µ ∈ C0(G)∗ and g ∈ L∞

0 (G), we have φ · µ ∈ L1(G) and g · φ ∈
C0(G), and so

Q(φ · µ)(g) = 〈φ · µ, g〉 = 〈µ, g · φ〉 = Q(µ)(g · φ) = φ · Q(µ)(g).

This shows that C0(G)∗ is a retraction of L∞
0 (G)∗. �

3. Injectivity of L∞
0 (G) and L∞

0 (G)∗

A Banach left A-module I is called injective if, for Banach left A-modules E and F ,
each admissible monomorphism T ∈ AB(E, F ) and each S ∈ AB(E, I), there exists
R ∈ AB(F, I) such that R◦T = S. Similar definitions apply for Banach right A-modules.

To study injectivity of the Banach left L1(G)-module L∞
0 (G), we require two essential

lemmas. But first, let E be a Banach left L1(G)-module and recall that a map T ∈
B(L1(G), E) has compact support if there is a compact subset K of G such that T (φ) = 0
in E for all φ ∈ L1(G) with φχK = 0 in L1(G).

Lemma 3.1. Let G be a locally compact group that is σ-compact and non-compact.
Let � : B(L1(G), C0(G)) → L∞

0 (G) be a continuous linear operator that is also a left
L1(G)-module morphism. If T ∈ B(L1(G), C0(G)) has compact support, then �(T ) = 0.

Proof. Let (eγ)γ∈Γ be a bounded left approximate identity for L1(G). For each γ ∈ Γ ,
define the map �γ : B(L1(G), C0(G)) → C0(G) by

�γ(T ) = �(T ) · eγ

for all T ∈ B(L1(G), C0(G)). Then �γ : B(L1(G), C0(G)) → C0(G) is a continuous linear
operator that is also a left L1(G)-module morphism. If T ∈ B(L1(G), C0(G)) has compact
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support, then �γ(T ) = 0 for all γ ∈ Γ [2, Lemma 3.5]. It follows that

�(T )(φ) = lim
γ

�(T )(eγ ∗ φ) = lim
γ

(�(T ) · eγ)(φ) = lim
γ

�γ(T )(φ)

for all φ ∈ L1(G). Therefore, �(T ) = 0 as required. �

Lemma 3.2. Let G be a locally compact non-compact group. Then L∞
0 (G) is not

complemented in L∞(G).

Proof. Since G is a locally compact non-compact group, there exists a sequence
(xn)n�1 of disjoint elements of G and a compact symmetric neighbourhood U of e such
that the sets xnU for all n � 1 are pairwise disjoint [5, 11.43 (e)]. Choose a compact
symmetric neighbourhood V of e with V V ⊂ U , and set Vn := xnV for n � 1. Then for
any compact subset K of G, there exists a natural number NK � 1 such that Vn ∩K = ∅
for all n � NK .

Now, let I : l∞ → L∞(G) and R : L∞
0 (G) → c0 be the linear maps defined by

I((αn)) =
∞∑

n=1

αnχVn

for all (αn) ∈ l∞, and by

R(g) =
(

1
λ(Vn)

∫
Vn

g(x) dλ(x)
)
n�1

for all g ∈ L∞
0 (G). Clearly, both maps are continuous. Next, suppose on the contrary

that there exists a continuous linear projection P : L∞(G) → L∞
0 (G). If Q : l∞ → c0 is

the composition R ◦ P ◦ I, then I((αn)) ∈ L∞
0 (G) for all (αn) ∈ c0, and we have

Q((αn)) = R

( ∞∑
m=1

αmχVm

)

=
(

1
λ(Vn)

∫
Vn

( ∞∑
m=1

αmχVm
(x)

)
dλ(x)

)

= (αn).

So, Q : l∞ → c0 is a projection which contradicts the fact that c0 is not complemented
in l∞ (see for example, [4, Theorem 0.1.16]). �

Let A be a Banach algebra and let E be a Banach left A-module. Then B(A, E) is a
Banach left A-module with (a · T )(b) = T (ba) for all a, b ∈ A and T ∈ B(A, E). Define
the left A-module morphism Π : E → B(A, E) by the formula Π(ξ)(a) = a · ξ for ξ ∈ E

and a ∈ A. Before we state the following result from [2, Proposition 1.7], let us recall
that E is called faithful if A · ξ �= {0} for all ξ ∈ E \ {0}.

Proposition 3.3. Let A be a Banach algebra and let E be a faithful Banach left
A-module. Then E is an injective Banach left A-module if and only if there exists a left
A-module morphism ρ : B(A, E) → E with ρ ◦ Π = IE .
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We are now ready to characterize injectivity of the Banach left L1(G)-module L∞
0 (G).

Theorem 3.4. Let G be a locally compact group. Then L∞
0 (G) is an injective Banach

left L1(G)-module if and only if G is compact.

Proof. The ‘if’ part follows from the fact that L∞(G) is always an injective Banach
left L1(G)-module [2, Theorem 2.4].

For the converse, suppose on the contrary that L∞
0 (G) is an injective Banach left

L1(G)-module but G is not compact. In view of Proposition 3.3, there exists a left L1(G)-
module morphism ρG : B(L1(G), C0(G)) → L∞

0 (G) such that ρG ◦ ΠG = IL∞
0 (G), where

ΠG : L∞
0 (G) → B(L1(G), C0(G)) is the canonical embedding defined by ΠG(g)(φ) = φ ·g

for all g ∈ L∞
0 (G) and φ ∈ L1(G). As in the proof of Lemma 3.4 in [2], there exists

an open, non-compact and σ-compact subgroup H of G and a linear isometric operator
Q : B(L1(H), C0(H)) → B(L1(G), C0(G)) with the following properties:

(1) Q is a left L1(H)-module morphism,

(2) Q ◦ ΠH = ΠG ◦ I on C0(H),

where I : L∞
0 (H) → L∞

0 (G) and ΠH : L∞
0 (H) → B(L1(H), C0(H)) are the natu-

ral embeddings. An argument similar to the proof of Lemma 3.4 of [2] shows that
Q ◦ ΠH = ΠG ◦ I on L∞

0 (H). Now, let R : L∞
0 (G) → L∞

0 (H) be the restriction map
and note that the linear operator ρH := R ◦ ρG ◦ Q : B(L1(H), C0(H)) → L∞

0 (H) is a
continuous left L1(H)-module morphism. Moreover,

ρH ◦ ΠH = R ◦ ρG ◦ Q ◦ ΠH = R ◦ ρG ◦ ΠG ◦ I = R ◦ I = IL∞
0 (H).

Now, choose a sequence (Kn) of compact subsets of H with Kn � intKn+1 such that
H =

⋃∞
n=1 Kn, and let P : L∞(H) → B(L1(H), C0(H)) be the continuous map given by

the formulae

P (f)(φ) =
∞∑

n=1

(χKn\Kn−1φ) · (χKn
f)

for all f ∈ L∞(H) and φ ∈ L1(H). We show that the map ρH ◦ P is a projection of
L∞(H) onto L∞

0 (H).
To prove this fact, let L∞

00(G) be the space of all g ∈ L∞
0 (G) with ‖gχG\K‖∞ = 0 for

some compact subset K of G, and note that L∞
0 (G) is the ‖ · ‖∞-closure of L∞

00(G). So,
it suffices to show that (ρH ◦ P ) is the identity on L∞

00(H). Take h ∈ L∞
00(H) and choose

m � 1 such that h vanishes outside Km almost everywhere. Define T0 = P (h) − ΠH(h)
and note that T0 has compact support Km. Then ρH(T0) = 0 by Lemma 3.1. Therefore,

(ρH ◦ P )(h) = ρH(T0) + ρH(ΠH(h)) = h.

That is, ρH ◦P is a projection of L∞(H) onto L∞
0 (H), which contradicts Lemma 3.2. �

Let ϕG be the augmentation character on L1(G) that is defined by

ϕG(φ) =
∫

G

φ(x) dλ(x)
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for all φ ∈ L1(G). Let E be a Banach left L1(G)-module. Following [2], a functional
Λ ∈ E∗ is called augmentation invariant whenever 〈Λ, φ · ξ〉 = ϕG(φ)〈Λ, ξ〉 for all ξ ∈ E,
φ ∈ L1(G). In the case where there exists a non-zero augmentation-invariant functional
in E∗, then E is said to be augmentation invariant.

Recall that a locally compact group G is called amenable if L∞(G) is an augmentation-
invariant Banach left L1(G)-module. The class of amenable groups includes all compact
groups and all abelian locally compact groups; however, the discrete free group F2 on
two generators is not amenable (see [9] for more details). Here, we characterize locally
compact groups G for which L∞

0 (G) or its dual is augmentation invariant.

Proposition 3.5. Let G be a locally compact group. The following then hold.

(i) The Banach left L1(G)-module L∞
0 (G) is augmentation invariant if and only if G

is compact.

(ii) The Banach left L1(G)-module L∞
0 (G)∗ is always augmentation invariant.

Proof. (i) We need only note that, if G is non-compact, zero is the only augmentation-
invariant functional in L∞

0 (G)∗ [5, 17.19(c)].

(ii) Let {Cα} be the family of all compact subsets of G directed by upward inclusion.
Then (χCα

) is a bounded approximate identity for the C∗-algebra L∞
0 (G). Define Λ ∈

L∞
0 (G)∗∗ to be a weak∗ cluster point of (χCα). We show that Λ is an augmentation-

invariant functional in L∞
0 (G)∗∗: that is,

〈Λ, φ · m〉 = ϕG(φ)〈Λ, m〉

for all φ ∈ L1(G) and m ∈ L∞
0 (G)∗. To see this, recall from [7, Proposition 2.6] that m can

be approximated in the norm topology by functionals with compact carrier in L∞
0 (G)∗,

i.e. functionals n for which there is a compact subset C of G with 〈n, g〉 = 〈n, gχC〉
for g ∈ L∞

0 (G). We may thus assume that there is α0 with 〈m, g〉 = 〈m, gχCα0
〉 for

g ∈ L∞
0 (G); by the norm density of functions with compact support in L1(G), we may

also assume that φ = φχCα0
almost everywhere. Choose α1 � α0 with C2

α0
⊆ Cα1 and

note that, for every α � α1 and x ∈ Cα0 ,(
1
∆

φ̃ ∗ χCα

)
(x) = ϕG(φ)χCα(x);

indeed, for each ψ ∈ L1(G), we have
〈(

1
∆

φ̃ ∗ χCα

)
χCα0

, ψ

〉
=

∫
G

∫
G

1
∆(y)

φ(y−1)χCα(y−1x)χCα0
(x)ψ(x) dλ(y) dλ(x)

=
∫

G

∫
G

φ(y)χCα(yx)χCα0
(x)ψ(x) dλ(y) dλ(x)

=
∫

G

∫
G

φ(y)χCα0
(x)ψ(x) dλ(y) dλ(x)

= ϕG(φ)〈χCα0
, ψ〉.
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It follows that

〈Λ, φ · m〉 = lim
α

〈φ · m, χCα〉

= lim
α

〈
m,

1
∆

φ̃ ∗ χCα

〉

= lim
α

〈
m,

(
1
∆

φ̃ ∗ χCα

)
χCα0

〉

= ϕG(φ) lim
α

〈m, χCα〉

= ϕG(φ)〈Λ, m〉,

which completes the proof. �

A Banach left A-module F is called flat if F ∗ is an injective Banach right A-module.

Theorem 3.6. Let G be a locally compact group. The following assertions are then
equivalent.

(a) G is amenable.

(b) L∞
0 (G) is a flat Banach left L1(G)-module.

(c) L∞
0 (G)∗ is an injective Banach left L1(G)-module.

Proof. It is shown in [8, Theorem 3.4.2] that if an augmentation-invariant Banach
left L1(G)-module E is the dual left module of a Banach right L1(G)-module, then E is
injective as a Banach left L1(G)-module if and only if G is amenable. In fact, this result
was proved for faithful Banach left L1(G)-modules in [2]. Now, the equivalence of (a)
and (c) follows from Proposition 3.5 together with the fact that L∞

0 (G)∗ is the dual left
module of the Banach right L1(G)-module L∞

0 (G). Similarly, G is amenable if and only if
L∞

0 (G)∗ is an injective Banach right L1(G)-module. The proof is therefore complete. �

We conclude this work with a result on the flatness of the Banach left L1(G)-module
L∞

0 (G)∗. First, we state the following proposition communicated to us by Ramsden.

Proposition 3.7. Let A be a Banach algebra with a bounded approximate identity
and let E be a Banach left A-module. Then E is flat as a Banach left A-module if and
only if the closed submodule A · E is flat. In particular, the quotient module E/A · E is
always flat.

Proof. First we show that the quotient module F := E/A · E is flat. To that end,
let (eγ) be a bounded right approximate identity for A. For each γ, define ργ : F →
(A� ⊗̂F )∗∗ by ργ(ξ) = (e� − eγ) ⊗ ξ for all ξ ∈ F , where A� is the algebra formed
by adjoining an identity e� to A. Regard (ργ) as a bounded net in B(F, (A� ⊗̂F )∗∗) =
(F ⊗̂ (A� ⊗̂F )∗)∗. Since A · F = {0}, the weak∗ cluster point ρ of this net is a left A-
module morphism such that π∗∗ ◦ ρ = iF , where iF : F → F ∗∗ is the natural embedding
into the second dual and π : A� ⊗̂F → F is the canonical map defined by π(b ⊗ ξ) = b · ξ
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for all b ∈ A� and ξ ∈ F . This is equivalent to F being flat as a Banach left A-module
(see [3, Exercise VII.2.8] or [9, Lemma 4.3.22]).

Now, since A has a bounded approximate identity, it follows from [1, Corollary 2.9.26]
that the short exact sequence 0 → A · E → E → F → 0 of Banach left A-modules is
weakly admissible: that is, the adjoint of the quotient map q : E → E/F has a bounded
left inverse. Since F is flat, the result follows from [3, Proposition VII.1.17]. �

Theorem 3.8. Let G be a locally compact group. Then L∞
0 (G)∗ is a flat Banach left

L1(G)-module.

Proof. For each φ ∈ L1(G), let φ also denote the functional in L∞
0 (G)∗ defined by

〈φ, g〉 =
∫

G

φ(x)g(x) dλ(x)

for all g ∈ L∞
0 (G), and recall from [7] that φ ·m ∈ L1(G) for all m ∈ L∞

0 (G)∗. Now, let u

be a weak∗ cluster point of an approximate identity (eγ) in L1(G) bounded by 1. Then,
for every φ ∈ L1(G), using the weak∗ continuity of the map k �→ φ · k on L∞

0 (G)∗, we
conclude that φ · eγ → φ ·u in the weak∗ topology of L∞

0 (G)∗. It follows that φ ·u = φ. It
follows that L1(G) · L∞

0 (G)∗ = L1(G). The result therefore follows from Proposition 3.7
and the fact that L1(G) is always a flat Banach left L1(G)-module [2, Theorem 2.4]. �
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