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Abstract
The present paper aims at stressing the importance of the Hofmann–Streicher groupoid model for Martin
Löf Type Theory as a link with the first-order equality and its semantics via adjunctions. The groupoid
model was introduced by Martin Hofmann in his Ph.D. thesis and later analysed in collaboration with
Thomas Streicher. In this paper, after describing an algebraic weak factorisation system (L, R) on the cate-
gory C -Gpd of C -enriched groupoids, we prove that its fibration of algebras is elementary (in the sense of
Lawvere) and use this fact to produce the factorisation of diagonals for (L, R) needed to interpret identity
types.
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1. Introduction
The work that Martin Hofmann produced in his Ph.D. thesis (Hofmann 1997) was revolutionary
at the time. As for many relevant mathematical results, it would require time to be digested, appre-
ciated in full and complemented by the scientific community. When it happened, the effect was
stunning as the reader can appreciate browsing through Univalent Foundations Program (2013).
The groupoid model which was presented in Hofmann’s thesis and put to use in two papers in
collaboration with Thomas Streicher (Hofmann and Streicher 1994; 1998) became immediately
the benchmark for various independence results in type theory whose applications in automated
theorem proving were being developed.

The proof-relevant character of dependently typed languages makes equality in that context a
much subtler concept than equality in the first-order logic. While the latter has a robust and ele-
gant algebraic description in terms of adjunctions in Lawvere (1970), there is nothing comparable
to it for the semantics of equality in dependent type theories. The result of Hofmann and Streicher
(1998) showed that it was possible to make sense of the proof-relevant character of equality in
Martin-Löf type theory using the structure provided by groupoids.

As already mentioned, this result was pivotal in the recognition of structures from homotopy
theory in the semantics of identity types and to the birth of Homotopy Type Theory. The impor-
tance of the Hofmann–Streicher groupoid model as the first step towards algebraic treatments of
higher equalities is universally recognised.

The present paper relates the groupoid model with the first-order equality and its semantics via
adjunctions. More specifically, we prove that the fibration of groupoids in the Hofmann–Streicher
model is elementary (in the technical sense specified in Section 2). An analysis of this structure
shows that, in the groupoid model, it gives rise to the Hoffman–Streicher interpretation of the
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identity types. In fact, it is possible to reconstruct the interpretation of identity types (including
the elimination rule) from the elementary structure of the fibration.

For this reason, in Section 3, we exhibit a new class of examples with groupoids enriched in
a category C with finite limits, which form a category C -Gpd also with finite limits. We begin
describing an algebraic weak factorisation system (L, R) on C -Gpd that will serve as providing
the interpretation of type dependency. This algebraic weak factorisation system is the enriched
version of the algebraic weak factorisation system on Gpd which is part of the canonical (or folk)
algebraic Quillen model structure on Gpd . We then prove that the fibration R-Alg �� C -Gpd
of algebras for the monad on the right functor R is elementary, generalising the standard (Set -
enriched) case.

We then proceed to investigate the relationship between this elementary structure and the
structure needed to interpret identity types in a fibration of algebras for an algebraic weak factori-
sation system which, as shown in Gambino and Larrea (2021), amounts to a suitable functorial
factorisation of diagonals. In Section 4, we prove that the algebraic weak factorisation system
on C -Gpd does have such a factorisation. As it clearly appears from the proof, the construction
of such a factorisation makes heavy use of the elementary structure of the fibration R-Alg ��

C -Gpd . This observation indicates that it should be possible, given an algebraic weak factorisa-
tion system on a category C with weak finite limits, to isolate conditions that would ensure the
existence of a suitable factorisation of diagonals from the assumption that the fibration of algebras
is elementary. We leave this question to future investigations.

Section 5 concludes the paper with the observation how the above construction can be iter-
ated. In the specific case of the enrichment in Gpd , the enrichment produces the categories of
n-groupoids, together with forgetful functors. Each of these is equipped with an algebraic weak
factorisation system whose fibration of algebras is elementary.

2. Elementary Fibrations
Let p: E �� B be a functor. An arrow ϕ in E is said to be over an arrow f in B when p(ϕ)= f .
For A in B , the fibre EA is the subcategory of E of arrows over idA. In particular, an object E in E
is said to be over A when p(E)=A, and an arrow ϕ is vertical when p(ϕ)= idA.

Recall that an arrow ϕ: E �� F is cartesian if, for every χ : E′ �� F such that p(χ) factors through
p(ϕ) via an arrow g:A′ ��A, there is a unique ψ : E′ �� E over g such that ϕψ = χ , as in the
left-hand diagram below. And an arrow θ : E �� F is cocartesian if it satisfies the dual universal
property of cartesian arrows depicted in the right-hand diagram below.

E

p

��

B

E′

ψ �������� χ

��E
ϕ

�� F

A′

g �����
����

����

��A �� B

E

υ ��

θ �� F
ω

��������

F′

A

��

�� B g
�����

����
����

B′

(1)

Once we fix an arrow f :A �� B in B and an object F in EB, a cartesian arrow ϕ: E �� F over f
is uniquely determined up to isomorphism, that is, if ϕ′: E′ �� F is cartesian over f , then there is a
unique vertical isomorphism ψ : E′ �� E such that ϕψ = ϕ′.

Clearly, every property of cartesian arrows applies dually to cocartesian arrows. So for an arrow
f :A �� B in B and an object E in EA, a cocartesian arrow θ : E �� F over f is uniquely determined
up to vertical isomorphism.

In the following, we often write cartesian arrows as �� and vertical arrows as ��� .
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A functor p: E �� B is a fibration if, for every arrow f :A �� B in B and for every object E in
EB, there is a cartesian lift of f into E, that is, an object f ∗E and a cartesian arrow f �E: f ∗E �� E
over f ; so part of the diagram (1) becomes

E

p
��

f ∗E
f �E

�� E

B A
f

�� B

(2)

A cleavage for the fibration p is a choice of a cartesian lift for each arrow f :A �� B in B and object
F in EB, and a cloven fibration is a fibration equipped with a cleavage. In a cloven fibration, for
every f :A �� B in B , there is a functor f ∗: EB �� EA called reindexing along f . Henceforth, we
assume that fibrations come with a cleavage.

Example 2.1. Let pAsm denote the category whose objects are pairs (A, α) where A is a set and
α:A �� P (N) a function, and whose arrows are pairs (f , r) as in the diagram:

A

f
��

α

����
���

���
�

P (N)

B β

�����������

r
��

where f :A �� B is a function and r:
⋃

a∈A α(a) ��
⋃

b∈B β(b) is a total function obtained as the
restriction of a partial recursive function to the two subsets such that for all a ∈A and all n ∈ α(a)
it holds that r(n) ∈ β(f (a)). Composition is (f , r)(f ′, r′)= (ff ′, rr′) The functor dom: pAsm ��

Set acting as the first projection is a cloven fibration. Given a function f :A �� B and (B, β)
over B, the arrow (f , i): (A, βf ) �� (B, β) with i= λx.x is over f . It is actually cartesian. Indeed
for every (g,ψ): (C, γ ) �� (B, β) and k: C ��A with fk= g, consider (k,ψ): (C, γ ) �� (A, βf ),
it is (f , idN)(k,ψ)= (fk,ψ))(g,ψ). For uniqueness, take (k,ψ ′), from (g,ψ)= (f , idN)(k,ψ ′)=
(g,ψ ′), follows ψ =ψ ′.

A fibration p: E �� B has finite products if the base B has finite products as well as each
fibre EA, and each reindexing functor preserves products. Equivalently, both B and E have finite
products and p preserves them, see (Hermida 1994, Corollary 3.7).

Notation 2.2. When we write 1 we refer to any terminal object in B and, similarly for objects A
and B in B , when we write A× B, pr1:A× B ��A and pr2:A× B �� B, we refer to any diagram of
binary products in B . Universal arrows into a product induced by lists of arrows shall be denoted
as 〈f1, . . . , fn〉, but lists of projections 〈pri1 , . . . , prik〉 will always be abbreviated as pri1,...,ik . In
particular, as an object A is a product of length 1, sometimes we find it convenient to denote the
identity onA as pr1, the diagonalA ��A×A as pr1,1 and the uniqueA �� 1 as pr0. As the notation
is ambiguous, we shall always indicate domain and codomain of lists of projections and sometimes
we may distinguish projections decorating some of them with a prime symbol.

We shall employ a similar notation for terminal objects, binary products and projections in a
fibre EA, as�A, E∧A F, π1: E∧A F �� E and π2: E∧A F �� F, dropping the subscript in�A and∧A
when it is clear from the context. Moreover, given objects E in EA and F in EB, write
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E � F

����
��
��
��

���
��

��
��

� (pr1∗E)∧A×B (pr2∗F)
π1

����
��
�

π2
		
		

		
	

:=
E F E pr1∗E pr2∗F

pr�E1� �
pr�F2 �� F

for a product diagram of E and F in E , where we employed the notation introduced in (2) in the
diagram on the right-hand side. Given a third object G and two arrows ϕ1:G �� E and ϕ2:G �� F,
we denote the induced arrow into E � F also as 〈ϕ1, ϕ2〉.

Example 2.3. The fibration dom: pAsm �� Set introduced in 2.1 has finite products. Let
h:N ��N×N be a recursive bijection and denote its inverse by k:N×N ��N. The product
(A, α)∧ (A, α′)= (A, k[α · α′]) where α · α′(a)= α(a)× α′(a)⊆N×N. The two projections are
π1 = pr1h and π2 = pr2h. To verify that this is a product over A take (idA, r1) and (idA, r2) from
(A, γ ) to the first and the second factor. The universal arrow is k〈r1, r2〉 as if f is such that
π1f = pr1hf = r1 and π2f = pr2hf = r2, then hf = 〈r1, r2〉, so f = khf = k〈r1, r2〉. The terminal
object over A is�A = (A, a 
→ {0}) introduced in Example 2.1.

Recall from Streicher (2020) that an arrow ϕ: E �� F is locally epic with respect to p if, for every
pair ψ ,ψ ′: F �� F′ such that p(ψ)= p(ψ ′), whenever ψϕ =ψ ′ϕ it is already ψ =ψ ′.

Example 2.4. Recall the fibration dom: pAsm �� Set introduced in Example 2.1 and fix a non-
empty subset S⊆N. Let δSA:A×A �� P (N) be the function defined by the assignment:

δSA(a, a
′)=

⎧⎨⎩ S if a= a′

∅ otherwise
Take any s ∈ S. The arrow (�A, λx.s):�A �� δSA is weakly cocartesian over �A in the sense that
whenever one considers a situation as the one in the diagram below:

pAsm

dom

��

Set

�A

(g, r) 



(�A, λx.s) �� δSA

β

A

g ��

�A �� A×A k
��















B

there is an arrow (k, t): δSA �� β in pAsm that makes the triangle commute (take as t the con-
stant function whose unique value is r(0)). The arrow (�A, λx.s) is locally epic with respect to
dom if and only if S= {s}—a sort of Uniqueness of Identity Proofs. Indeed, suppose S= {s} and
let (k, t′): δSA �� β make the triangle above commute. Recall that t= t′ are equal if they agree on⋃

(a,a′)∈A×A δSA(a, a′)= {s} which is turn is the image of λx.s. The claim follows from the equality
t′(λx.s)= t(λx.s). Conversely let (�A, λx.s) be cocartesian. The following diagram over�A

�A

(�A, λx.s) 



(�A, λx.s) �� δSA

δSA

can be filled only by one arrow, and this is necessarily the identity (idA×A, λx.x). But also the arrow
(idA×A, λx.s) makes the triangle commute and λx.s= λx.x implies S= {s}.
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Fibrations are ubiquitous in mathematics and in this paper we are interested in those called
elementary in Lawvere (1970), Jacobs (1999), and Maietti and Rosolini (2013a; 2015) that encode
the notion of equality as particular fibred left adjoints.

Definition 2.5. A fibration with products p: E �� B is elementary if for every pair of objects B and
A in B , reindexing along the parametrised diagonal pr1,2,2: B×A �� B×A×A has a left adjointE

B,A: EB×A �� EB×A×A, and these satisfy:

Frobenius Reciprocity: for every E over B×A and F over B×A×A, the canonical arrow:

E

B,A(pr1,2,2
∗(F)∧ E) �� F ∧ E

B,AE

is an isomorphism, and
Beck–Chevalley Condition: for every pullback square:

B×A

pr1,2,2
��

f ×A
�� Z×A

pr1,2,2
��

B×A×A
f ×A×A

�� Z×A×A

and every E over Z×A, the canonical arrow:

E

B,A(f ×A)∗E �� (f ×A×A)∗ E

Z,AE

is an isomorphism.

Example 2.6. Faithful elementary fibrations are the elementary doctrines of Maietti and Rosolini
(2013a;b). They are complete with respect to the (∧,�,= )-fragment of First Order Predicate
Logic over a many sorted signature. Thus, if p is such a fibration, then any E in the fibre over
B×A can be seen as a well-formed formula with free variables in a context y: B, x:A. In partic-
ular, the value of the left adjoint E

B,A(E) is (isomorphic to) the formula E∧ x= x′ in the context
y: B, x:A, x′:A.

Example 2.7. For the fibration dom: pAsm �� Set in Example 2.1, the assignment E

B,A(B×
A, ϕ)(y, x, x′)= ϕ(y, x)∧ δ{0}A (x, x′) shows that dom is elementary. The reader may find many
other instances of elementary fibrations in Emmenegger et al. (2021).

Remark 2.8. It is well known that for f :A �� B an arrow in the base B of a fibration p: E �� B ,
the reindexing functor f ∗: EB �� EA is right adjoint if and only if the arrow f has cocartesian
lifts at every E ∈EA. We refer to Emmenegger et al. (2021, Section 4) for a reformulation of the
Frobenius Reciprocity and the Beck–Chevalley condition in terms of cocartesian lifts.

In the following definitions, we introduce the notions required to state the characterisation of
elementary fibrations.

Definition 2.9. Let p: E �� B be a fibration with finite products. We say that p has strictly
productive loops if

(i) (Existence of loops) for every A in B there is a loop on A, that is, an object IA over A×A and
an arrow ρA:�A �� IA over pr1,1:A ��A×A;

(ii) (Loops are productive) for every A, B in B , there is a vertical arrow χA,B: IA � IB ��IA×B ;

https://doi.org/10.1017/S096012952100030X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952100030X


Mathematical Structures in Computer Science 963

(iii) (Loops are strictly productive) for every A, B in B the following diagram commutes

�A×B
ρA � ρB

�����
���

���
�� ρA×B



��
���

���
��

IA � IB
χA,B

�� IA×B

Example 2.10. The fibration dom: pAsm �� Set as in 2.1 has strictly productive loops: let IA =
δ
{0}
A and define ρA = (�A, λx.0) and χA,B = (idA×B×A×B, λxy.0).

Notation 2.11. Let p: E �� B be a fibration with loops. Given E over A, we find it convenient to
write δE for the arrow 〈pr�(pr1

∗E)
1,1 , ρA!E〉: E �� (pr1∗E)∧ IA. We shall also need a parametric version

of it. We write δBE for the arrow 〈pr�(pr1,2∗E)1,2,2 , θ〉: E �� (pr1,2∗E)∧ (pr2,3∗IA), where θ : E �� pr2,3∗IA
is the unique arrow over pr1,2,2 obtained by cartesianness of pr2,3∗IA �� IA from the composite:

E
!E ��� �B×A

pr��A2 �� �A ρA �� IA

and pr1,1pr2 = pr2,3pr1,2,2: B×A ��A×A.
We write

�p :=
{
pr1,2,2: B×A �� B×A×A

∣∣A, B objects in B
}

(3)

the class of arrows of the form pr1,2,2: B×A �� B×A×A, for B,A in B , and

�p :=
{
δBE : E �� (pr1,2

∗E)∧ (pr2,3∗IA)
∣∣ X, B in B ;E over B×A

}
(4)

the class of arrows of the form δBE in E , for A, B in B and E over B×A.

Definition 2.12. Let p: E �� B be a fibration with strictly productive loops. We say that p has
strictly productive transporters if for every E over A

(i) (Carriers exist) there is a loop ρA:�A �� IA on A together with a carrier for the loop ρA at E,
that is, an arrow tE: (pr1∗E)∧ IA �� E over pr2:A×A ��A;

(ii) (Carriers are strict) the following diagram commute

(pr1∗E)∧ IA
tE

��



















E

δE
��������������

idE
�� E

Example 2.13. Consider the fibration dom: pAsm �� Set and loops as as in 2.10. Let h:N ��N×
N and k:N×N ��N be a recursive bijections as in 2.3. A carrier for δ{0}A at (A, ϕ) is (pr2, λx.pr1hx).

Remark 2.14. The reader may have noticed that the condition of carriers is simply for objects
in the fibre over A. But strict productivity of loops allows to generate carriers also in the fibre
over B×A as follows. Given F an object in the fibre over B×A, one first considers the carrier
tF : (pr1,2∗F)∧ IB×A �� F for the loop ρB×A at F, which is an arrow in E over pr3,4: B×A× B×
A �� B×A. On the other hand, by strict productivity one obtains a composite arrow:
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pr2,3∗IA ��

���
∼
��

IB×A

�B � IA
ρB � idIA

�� IB � IA

χB,A

���

over pr1,2,1,3: B×A×A �� B×A× B×A. Applying (pr1,2∗F)∧− to it and post-composing with
tF gives us the desired arrow pr1,2∗F ∧ pr2,3∗IA �� F.

Remark 2.15. Suppose f :A ��A′ is an arrow in B and write Kf for (f × f )∗IA′ an object over
A×A. Applying the previous Remark 2.14 to the object A with parameter A as well, and taking K
as F, one obtains an arrow:

pr1,2∗Kf ∧ pr2,3∗IA k �� Kf
(f × f )�IA

�� IA

over A×A×A
pr1,3

�� A×A . Composing k with the reindexing of the loop ρA:�A �� IA
along f × f , one obtains an arrow f̂ : IA �� IA′ .

Remark 2.16. With the notation of Remark 2.15, the product IA � IB is Kpr1 ∧Kpr2 for pr1:A×
B ��A and pr2:A× B �� B the two projections. From this, one obtains a commutative diagram:

�A×B
ρA � ρB

�����
���

���
�� ρA×B



��
���

���
��

IA � IB
〈p̂r1, p̂r2〉�� IA×B

where p̂r1: IA×B �� IA and p̂r2: IA×B �� IB are as in Remark 2.15. When both ρA � ρB and ρA×B
are locally epic, χA,B and 〈p̂r1, p̂r2〉 are inverse of each other.

The request of local epicity is necessary as one easily sees with the fibration in Example 2.4
taking loops with card (S)≥ 2.

We are at last in a position to state the characterisation theorem that we shall use in the next
section.

Theorem 2.17. A fibration p: E �� B with products is elementary if and only if the following hold
(i) p has strict productive loops;
(ii) p has strict carriers for its loops;
(iii) the arrows in�p are locally epic with respect to p.

Proof. See Emmenegger et al. (2021, Theorem 4.8).

Remark 2.18. Since faithful fibrations are equivalent to indexed posets, the equivalence in
Theorem 2.17 gives Proposition 2.4 of Emmenegger et al. (2020).

Remark 2.19. Given a weak factorisation system (L , R ) on a category C with finite limits, there
is a fibration R �� C and, in fact, a full comprehension category:

R
��
��

�
� � �� C 2

����
��

C
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The fibration R �� C always has strict productive transporters, but the loops are locally epic
if and only if the left arrows rA in a factorisation of the diagonal pr1,1:A ��A×A have unique
solutions to lifting problems. It follows that the fibration R �� C is not elementary in general
but it is so when, for instance, the weak factorisation system (L , R ) is an orthogonal factorisation
system. We refer the interested reader to the examples and to Section 5 of Emmenegger et al.
(2021).

3. Enriched Groupoids
Let C be a category with finite limits and let C -Gpd be the category of C -enriched groupoids and
C -enriched functors with respect to the symmetric monoidal structure of C given by finite prod-
ucts. There is an algebraic weak factorisation system (L, R) on C -Gpd whose fibration of algebras
for the monad on R is elementary and such that these algebras are the C -enriched isofibrations
with a splitting. In the following, we present that algebraic weak factorisation system and describe
the enriched isofibrations.

Recall that a C -enriched groupoid A consists of a set |A|, a family
(
homA(A,A′)

)
A,A′∈|A| of

objects of C , and three families:(
1

1A �� homA(A,A)
)
A∈|A|

(
homA(A1,A2)

invA1,A2 �� homA(A2,A1)
)
A1,A2∈|A|

(
homA(A1,A2)× homA(A2,A3)

cmpA1,A2,A3 �� homA(A1,A3)
)
A1,A2,A3∈|A|

(5)

of arrows in C , where 1 is the terminal object of C , satisfying the usual equations. Given x: X ��

homA(A1,A2) and y: X �� homA(A2,A3) in C , we shorten cmpA1,A2,A3〈x, y〉 as x · y and invA1,A2x
as xi.

A C -enriched functor F:A ��B consists of a function |F|: |A| �� |B| and a family(
homA(A1,A2)

FA1,A2 �� homB(|F|(A1), |F|(A2) )

)
A1,A2∈|A|

of arrows in C satisfying the usual functoriality conditions. We may drop subscripts when these
are clear from the context. The standard reference for enriched category theory is Kelly (1982),
but see also Borceux (1994, Chapter 6). One difference with the general theory, which makes
the groupoid case more manageable, is that the symmetric monoidal structure in C used for the
enrichment is cartesian.

Remark 3.1. As C has finite limits, it follows easily that C -Gpd has finite limits as well. In par-
ticular note that, for any product diagram A

P1←− P
P2−→B, it is |P| ∼= |A| × |B| and, for every

X, Y ∈ |P|, it is homP(X, Y)∼= homA(|P1|(X), |P1|(Y))× homB(|P2|(X), |P2|(Y)) and these isos
commute with the structure maps 1, inv and cmp.

For a C -enriched groupoid A, we shall denote as �(A) the groupoid whose set of objects is
|A| and whose set of arrows �(A)(A,A′) consists of the global sections 1

y−→ homA(A,A′). A
C -enriched functor F:A ��B induces a functor �(F): �(A) �� �(B) and � is in fact a functor
C -Gpd �� Gpd .

Recall that an algebraic weak factorisation system on a category C consists of a pair of functors
L, R: C 2 �� C 2 that give rise to a functorial factorisation f = (Rf )(Lf ) of arrows of C , together
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with suitable monad and comonad structures on R and L, respectively, with a distributivity law
between them. We refer the reader to Grandis and Tholen (2006), Garner (2008), and Bourke
and Garner (2016) for a precise definition and the basic properties of algebraic weak factorisation
systems. We shall denote as M the functor codL= domR: C 2 �� C . In particular, every f : X �� Y
in C fits in a commutative triangle as shown below:

X

Rf ���
��

��
��

��
f

�� Y

Mf
Lf

�����������

(6)

Proposition 3.2. Let C be a category with finite limits. There is an algebraic weak factorisation
system (L, R) on C -Gpd .

Proof. For a C -enriched functor F:A ��B between C -enriched groupoids, we begin by construct-
ing the factorisation in (6).

Define the C -enriched groupoid MF as follows. The set |MF| consists of triples (A, B, 1 x−→
homB(B, |F|(A))) with A ∈ |A| and B ∈ |B|, and whose family of hom-objects is given, on objects
(A, B, x) and (A′, B′, x′), by the equaliser below:

homMF(x, x′)
ex,x′

�� homA(A,A′)× homB(B, B′)
(x!) · (Fpr1) ��

pr2 · (x′!)
�� homB(B, |F|(A′)) (7)

The three families of arrows in (5) are easily induced from those of A and B using functoriality of
F and the universal property of the above equalisers. The C -enriched functor RF:MF ��B maps
an object (A, B, x) to B and its component on (A, B, x) nd (A′, B′, x′) is given by:

homMF((A, B, x), (A′, B′, x′))
(RF)x,x′ := pr2ex,x′ �� homB(B, B′)

The C -enriched functor LF:A ��MF is defined on objects by |LF|(A)= (A, |F|(A), 1|F|(A)). It
follows that the composite:

homMF(|LF|(A), |LF|(A′))
e1A,1A′

�����
����

����
����

���
∼ �� homA(A,A′)

homA(A,A′)× homB(|F|(A), |F|(A′))

pr1
�����������������

is an iso in C and we may take the component (LF)A,A′ to be its inverse.
The action of M extends to a functor M: C -Gpd 2 �� C -Gpd : given also G:C ��D and an

arrow (H,K): F ��G in C -Gpd 2, the C -enriched functor M(H,K):MF ��MG is defined on
objects by:

|M(H,K)|(A, B, x) :=
(
|H|(A), |K|(B), 1 KB,|F|(A)x−−−−−→ homD(|K|(B), |GH|(A))

)

https://doi.org/10.1017/S096012952100030X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952100030X


Mathematical Structures in Computer Science 967

and the component of M(H,K) on (A, B, x), (A′, B′, x′) is the (unique) top arrow making the
diagram below commute:

homMF(x, x′)
M(H,K)x,x′

��

ex,x′
��

homMG(Kx,Kx′)

eKx,Kx′
��

homA(A,A′)×homB(B, B′)

(x!) · (Fpr1)
��

pr2 · (x′!)
��

HA,A′×KB,B′
�� homC(|H|(A), |H|(A′))×homD(|K|(B), |K|(B′))

(Kx!) · (Gpr1)
��

pr2 · (Kx′!)
��

homB(B, |F|(A′))
KA,|F|(A′)

�� homD(|K|(B), |GH|(A′))
The actions of L and R extend to functors C -Gpd 2 �� C -Gpd 2 similarly.

Clearly, F= (RF)(LF). It follows that the functor R is pointed, with transformation Id . �� R
given by L and, dually, that L is copointed.

The component of the multiplication μ: R2 �� R on F is defined as follows. Elements of |MRF|
are those ((A, x), y) where (A, 1 x �� homB (B1, |F|(A)) ∈ |MF| and 1 y �� homB (B2, B1)) maps an
element of |MRF|. We define

μF(A, x, y) := (A, y · x).
The action on arrows is induced by:

homA (A,A′)× homB (B1, B′1)× homB (B2, B′2)
pr1,3

�� homA (A,A′)× homB (B2, B′2).

The component of the comultiplication δ: L �� L2 on F is defined as follows. Elements of |MLF|
are those (A1, (A2, x), a) where A1 ∈ |A|, (A2, 1 x �� homB(B,A2)) ∈ |MF| and 1 a �� homA (A2,A1).
Note that a induces a unique global element of homMF ((A2, x), |LF|(A1)). We define

δF(A, x) := (A, (A, x), 1A).
The action on arrows is induced by:

homA (A,A′)× homB (B, B′)
pr1,1,2

�� homA (A,A′)× homA (A,A′)× homB (B, B′).

It is now not difficult to see thatμF and δF are natural in F andmake the pointed functor R into
a monad and the copointed functor L into a comonad and, in fact, make L and R the underlying
functors of an algebraic weak factorisation system on C -Gpd .

When the category C is the category Set of sets and functions, it is well known that the algebras
for the monad on R are split (cloven) isofibrations, see e.g. van Woerkom (2021) (Chapter 7). In
the enriched case, a definition of a fibration enriched over a suitable fibration T betweenmonoidal
categories is given in Vasilakopoulou (2018). Specialising to the case where T is the identity func-
tor on a cartesian category C , this notion reduces to that of a fibration that is also a C -enriched
functor. By further specialising to the case of isofibrations, one reaches the notion of C -enriched
isofibration. As we show in Proposition 3.4, these are the algebras for the monad on R.

Let us first give an alternative characterisation of the C -enriched groupoidMF for a C -enriched
functor F:A ��B.

Remark 3.3. For a C -enriched groupoidB, let us denote the C -enriched groupoidMIdB as Iso(B).
Its objects are triples (B2, B1, 1

y−→ homB(B1, B2)) and, unfolding (7), one sees that hom-objects
consist of commuting squares inB. There is aC -enriched functor 〈cB, dB〉: Iso(B) ��B×Bwhere
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dB := RIdB, the function |cB| maps (B2, B1, y) to B2, and (cB)y,y′ := pr1ey,y′ : homIso(B) (y, y′) ��

homB (B2, B′2).
Given a C -enriched functor F:A ��B, there is a pullback in C -Gpd :

MF F′ ��

〈c′
B
, RF〉

��

Iso(B)

〈cB, dB〉
��

A×B
F× IdB

�� B×B

(8)

where |c′
B
|(A, B, x)=A and (c′

B
)x,x′ = pr1ex,x′ , the C -enriched functor F′ is the identity on objects

and F′x,x′ is the unique arrow induced by (FA,A′ × id)ex,x′ .
Note also that, since the global section functor �: C �� Set preserves limits, the C -enriched

groupoid MF is in fact the enrichment of the (Set -enriched) groupoid which appears in
(Emmenegger et al. 2021, Section 5) for the (Set -enriched) functor F.

Proposition 3.4. Let C be a category with finite limits. The algebras of the monad on R are
the C -enriched split isofibrations, namely C -enriched functors F:A ��B equipped with a function
c: |MF| �� |Iso(A)| such that

(i) cA ◦ c(A, x)=A
(ii) Fc0(A,x),A ◦ c(A, x)= x, where c0 := |dA| ◦ c: |MF| �� |A|,
(iii) c(A, 1FA)= 1A, and
(iv) c(A, y · x)= c(c0(A, x), y).

Proof. Let F:A ��B be an algebra with structure map S:MF ��A and define c0(A, x) := |S|(A, x)|.
Since S ◦ LF= IdA, in particular it is |S|(A, 1|F|(A))=A and we define

1

x̂
����

���
���

���
���

�
c(A, x)

�� homA (c0(A, x),A)

homMF ((A, x), (A, 1|F|(A)))
Sx,1|F|(A)

�������������������

where x̂ is the global element induced on the equaliser (7) by the pair (1A, x). Condition (i) holds
by construction. As Fc0(A,x),A ◦ Sx,1|F|(A) = pr2 ◦ ex,1|F|(A) , condition (ii) is satisfied. Condition (iii)
follows immediately from the functoriality of S on identities since, for every (A, 1 x �� homB (B,A)),
the identity 1(A,x) is the global element induced by the pair (1A, 1B). Since SμF = SM(IdB, S), in
particular it is c0(A, y · x)= c0(c0(A, x), y). Condition (iv) then follows from commutativity of the
diagram:

homMRF ((A, x, y), (A, 1|F|A, 1|F|A))

μF
��

M(IdB, S) �� homMF ((c0(A, x), y), (A, 1|F|A))

S
��

homMF ((A, y · x), (A, 1|F|A)) S
�� homA (c0(A, y · x),A)

by precomposing it with

hom ((A, x, y), (A, x, 1B))×hom ((A, x, 1B), (A, 1|F|A, 1|F|A))
cmp

�� hom ((A, x, y), (A, 1|F|A, 1|F|A))
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and using functoriality of μF and S, as well as commutativity of

homMF ((A, 1|F|(A)), (A′, 1|F|(A′)))

S1|F|(A),1|F|(A)
��

homA (A,A′)

LFA,A′
������������������

id �� homA (A,A′)

which follows from S ◦ LF= IdA. Thus F is an enriched split isofibration.
Conversely, let F:A ��B be an enriched functor and let c: |MF| �� |Iso(A)| be as in the state-

ment. We need to construct an enriched functor S:MF ��A that makes (F, S) an algebra for the
monad on R. For (A, x) ∈ |MF|, define |S|(A, x) := c0(A, x). For (A, x), (A′, x′) ∈ |MF|, define Sx,x′
as the composite below:

hom ((A, x), (A′, x′))

Sx,x′
������

�����
�����

�����
�����

�����
�����

�����
〈c(A, x)!, id, c(A′, x′)!〉

�� hom (c0(A, x),A)×hom (A,A′)×hom (c0(A′, x′),A′)

pr1 · pr2 · (pr3)i
��

hom (c0(A, x), c0(A′, x′))

Functoriality of S then follows from the groupoid laws of A. Condition (ii) ensures that S defines
a morphism from F to RF over B and conditions (iii) and (iv) ensure that S is an algebra map.

Notation 3.5. We adopt the notation in Gambino and Larrea (2021) and denote as R-Alg ��

C -Gpd the fibration of algebras for the monad on R.

Theorem 3.6. The fibration R-Alg �� C -Gpd is elementary.

The proof of Theorem 3.6 is given in the remainder of the section.
Thanks to the characterisation of elementary fibrations in Theorem 2.17, it is enough to check

that R-Alg �� C -Gpd has strictly productive transporters (see Definitions 2.9 and 2.12), which
we do in Lemmas 3.7 and 3.9, and that certain arrows are locally epic in Lemma 3.10. Not only are
these conditions easier to verify than the existence of left adjoints to certain reindexing functors,
but Lemmas 3.7 and 3.9 also expose part of the structure that makes C -Gpd suitable to interpret
Martin-Löf ’s identity types. We elaborate on this in the next section.

Lemma 3.7. The fibration R-Alg �� C -Gpd has strictly productive loops.

Proof. LetB be a C -enriched groupoid. To provide a loop onB, we first need an object IB of R-Alg
in the fibre over B×B. To this aim, we show that there is a C -enriched functor sB:M〈cB, dB〉 ��

Iso(B) making the C -enriched functor 〈cB, dB〉 defined in Remark 3.3 an algebra for the monad
on R. The function |sB|maps ((B2, B1, y), b2, b1), with bi: 1 �� homB(B′i, Bi), i= 1, 2, to

(B′2, B′1, 1
b1·y·(b2i)−−−−−→ homB(B′1, B′2)).

and the family component on (y, b2, b1), (z, c2, c1) is the unique arrow in

homM〈cB,dB〉((y, b2, b1), (z, c2, c1))

(sB)(y,b2,b1),(z,c2,c1)
��

e �� homIso(B)(y, y′)×homB(B′2, C′2)×homB(B′1, C′1)

pr2,3
��

homIso(B)(|sB|(y, b2, b1), |sB|(z, c2, c1)) e �� homB(B′2, C′2)×homB(B′1, C′1)
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given by the universal property of the equaliser in the bottom row. It follows that

IB := (〈cB, dB〉, sB)
is an algebra for the monad on R.

Let now rB := LIdB:B �� Iso(B). To have a loop on B, it is enough to show that
(pr1,1, rB): IdB �� 〈cB, dB〉 is a morphism of algebras from (IdB, RIdB) to IB, that is, that the
diagram of C -enriched functor below commutes

MIdB

RIdB
��

M(pr1,1, rB)
�� M〈cB, dB〉

sB
��

B
rB �� Iso(B)

On an object (B2, B1, y) it is

rB(RIdB)(B2, B1, y)= rB(B1)= (B1, B1, 1B1 )= sB(1B2 , y, y)= sBM(pr1,1, rB)(B2, B1, y).
On arrows from (B2, B1, y) to (B′2, B′1, y′), it amounts to the commutativity of the back square
below, which follows from the commutativity of the front square, where we dropped indices from
hom-objects, families of arrows and equalisers of the form (7):

This choice of loops is strictly productive. Indeed, |Iso(A×B)| ∼= |Iso(A)| × |Iso(B)| by
Remark 3.1 and, for 1 x �� homA(A1,A2), 1 y �� homB(B1, B2), 1 x′ �� homA(A′1,A′2) and 1 y′ ��

homB(B′1, B′2),
homIso(A×B)(〈x, y〉, 〈x′, y′〉)∼= homIso(A)(x, x′)× homIso(B)(y, y′)

because Remark 3.1 ensures that the corresponding equalisers are isomorphic. The isomorphism
Iso(A×B)∼= Iso(A)× Iso(B) extends to an isomorphism of algebras:

(〈cA×B, dA×B〉, sA×B)∼= (〈cA, dA〉, sA)× (〈cB, dB〉, sB) (9)

which clearly commutes with the loops.

Remark 3.8. The isomorphism in (9) is the same as the one arising in Remark 2.15. That this
must be the case will be clear after we have proved that R-Alg �� C -Gpd is indeed elementary.

Lemma 3.9. Given an algebra (F:A ��B, S:MF ��A) in R-Alg, there is exactly one carrier for the
loop (pr1,1, rB): (IdB, RIdB) �� (〈cB, dB〉, sB) and it is (pr2, S): pr1∗(F, S)∧ (〈cB, dB〉, sB) �� F.
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Proof. By Remark 3.3, we may assume, without loss of generality, that the underlying func-
tor of the algebra pr1∗(F, S)∧ (〈cB, dB〉, sB) is the diagonal D:MF ��B×B in the pullback
of Remark 3.3. The structure map SD:MD ��MF is induced by those on F and 〈cB, dB〉
and maps an object

(
(A, B, x), 1 〈b1,b2〉−−−→ homB(B1, FA)×homB(B2, B)

) ∈ |MD| to the object(
S(A, B1, b1), B2, 1

b2·x·b1i−−−−→ homB(B2, B1)
) ∈ |MF|. A carrier, if it exists, is of the form (pr2, T)

where the C -enriched functor T:MF ��A has to fit in the commutative diagram:

MF

D
��

T �� A

F
��

B×B
pr2 �� B

and, since it has to be a homomorphism of algebras, the following diagram must commute

MD
M(pr2, T) ��

SD
��

MF

S
��

MF T �� A.

(10)

Moreover, the strictness condition imposes that the diagram:

A

LF
��

IdA
���

��
��

��
��

MF T �� A

(11)

commutes. Note also that there is a C -enriched functorH:M(RF) ��MD such that SDH =μF , the
multiplication for themonad on R, andM(pr2, T)H =M(IdB, T). Precomposing diagram (10) with
H and using (11) together with a triangular identity for the monad, the commutative diagram:

MF

M(IdB, LF)
���

���
��

IdMF

��

IdMF
��

M(RF)
M(IdB, T) ��

μF
��

MF

S
��

MF T �� A.

shows that the only possible choice for T is the structural functor S:MF ��A, and it is straightfor-
ward to see that that choice makes diagrams (10) and (11) commute.

It follows from Lemma 3.7 and Lemma 3.9 that the fibration R-Alg �� C -Gpd has strictly
productive transporters.

Recall the definition of the class of arrows�p as in (4) of Notation 2.11. When p is the fibration
R-Alg �� C -Gpd , it consists of those arrows of the form:

(F, S)
δIF = (pr1,2,2, 〈IdA, rBpr2F〉)

�� (pr1,2∗(F, S))∧ (pr2,3∗(〈cB, dB〉, sB)) (12)

for (F:A �� I×B, S:MF ��A) in the fibre of R-Alg over I×B. In the following, we simply write
� for this class.
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Lemma 3.10. The arrows in� are locally epic with respect to R-Alg �� C -Gpd .

Proof. Let (F:A �� I×B, S:MF ��A) be in R-Alg, write D:A×B Iso(B) �� I×B×B for the
underlying functor of (pr1,2∗(F, S))∧ (pr2,3∗(〈cB, dB〉, sB)) and let SD:MD ��A×B Iso(B) be its
structure map. Note that there is a C -enriched functor K:A×B Iso(B) ��M(pr1,2,2F) mapping
(A, B, x) to(

A, (|F|(A), B), 1 〈1|F|(A),x〉−−−−−→ homI×B(|F|(A), |F|(A))× homB(B, pr2|F|(A))
)

and that the composite M(IdI×B×B, 〈IdA, rBpr2F〉)K:A×B Iso(B) ��MD is a section of SD. Then
for every vertical morphism H: (D, SD) �� (G, T), it is

H =HSDM(IdI×B×B, 〈IdA, rBpr2F〉)K = TM(IdI×B×B,H〈IdA, rBpr2F〉)K.
As δIF = (pr1,2,2, 〈IdA, rBpr2F〉), algebra morphisms out of (〈cB, dB〉, sB) are determined by their
precomposition with δIF .

This concludes the proof of Theorem 3.6, that the fibration R-Alg �� C -Gpd is elementary.

Remark 3.11. The value of the left adjoint to reindexing along a parametrised diagonal
pr1,2,2: I×B �� I×B×B at an algebra (F, S) over I×B is given by a cocartesian lift of pr1,2,2
at (F, S), see Remark 2.8. By Theorem 3.6, the class � provides a choice of cocartesian lifts. It
follows that the value of the left adjoint at (F, S) is the codomain of the arrow δIF in (12).

Remark 3.12. We have seen in Remark 2.19 that a sufficient condition for the right class of
a weak factorisation system to give rise to an elementary fibration is the factorisation system
being orthogonal. The underlying weak factorisation system of the a.w.f.s. on C -Gpd from
Proposition 3.2 is not orthogonal and the above proof rather makes use of the structure given
by the a.w.f.s. itself and, crucially, of the possibility to factor a suitable section of SD through
M(IdI×B×B, 〈IdA, rBpr2F〉).

4. Enriched Groupoid Models of Identity Types
We have seen in the previous section that there is an algebraic weak factorisation system (L, R)
on C -Gpd such that the fibration R-Alg �� C -Gpd is elementary. That fibration is also part of a
comprehension category:

R-Alg
����

���
U �� C -Gpd 2

�����
��

C -Gpd .
(13)

where the functor U forgets the algebra structure.
When C is the category Set of sets and functions, the comprehension category (13) is equiva-

lent to the Hofmann–Streicher groupoid model in Hofmann and Streicher (1998). The choice of
a loop on a groupoid B given in the proof of Lemma 3.7 coincides with the interpretation, in the
groupoid model, of the identity type and its reflexivity term on the type interpreted by B. In fact,
strict productive transporters in R-Alg �� Gpd ensure that the upper component rB:B �� Iso(B)
of a loop (pr1,1, rB): IdB �� IB has the left lifting property against algebras for the monad and, also,
algebras for the pointed endofunctor (Emmenegger et al. 2021, Section 5). These lifts provide an
interpretation for the eliminator of the identity type on B.

It is then natural to ask under which hypotheses on C the comprehension category of
enriched groupoids in (13) interprets identity types. As described in Gambino and Larrea (2021)
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(Section 2), in the context of an algebraic weak factorisation system (L, R) on a category C with
finite limits, an interpretation of the identity type can be obtained from a suitable functorial
factorisation of diagonals A ��A×X A, for f :A �� X an object in C 2. We hasten to add that defi-
nitions and results in Gambino and Larrea (2021) (Section 2) are cast in terms of algebras for R as
a pointed endofunctor. Nevertheless, these definitions and results can be phrased and proved in
terms of algebras for R as a monad as well, see van Woerkom (2021).

A functorial factorisation of diagonals in a category C with finite limits is a functor P: C 2 ��

C 2 ×C C 2 that maps f :A �� X to a factorisation of the diagonal A ��A×X A. Recall from
Gambino and Larrea (2021) and van Woerkom (2021) that a stable functorial choice of path
objects for an algebraic weak factorisation system (L, R) consists of a lift:

R-Alg P ��

��

L-Coalg×C R-Alg

��

C 2 P �� C 2 ×C C 2

of a functorial factorisation of diagonals P that is stable, in the sense that the right-hand
component:

C 2 P �� C 2 ×C C 2 pr2 �� C 2

maps cartesian squares to cartesian squares, that is, taking the right-hand component commutes
with pullback.

Note that the functorial factorisation of diagonals provided by the algebraic weak factorisation
system itself

A
f

�� X � �� A
Lpr1,1

�� Mpr1,1
Rpr1,1

�� A×X A

does lift to a functor between algebras as above, simply by equipping its values with the cofree
and free structure, respectively. However, it is an observation that goes back to van den Berg
and Garner (van den Berg and Garner 2012, Remark 3.3.4) that this factorisation of diagonals is
seldom stable as free structures need not be stable under pullback. In what follows, we investigate
how to obtain a stable functorial choice of path objects for the algebraic weak factorisation system
on C -enriched groupoids described in the proof of Proposition 3.2 from the elementary structure
on R-Alg �� C -Gpd .

Proposition 4.1. Let C be a category with finite limits. The algebraic weak factorisation system
(L, R) on C -Gpd from Proposition 3.2 has a stable functorial choice of path objects.

Proof. The choice of loops given in the proof of Lemma 3.7 provides a factorisation of diagonals
over terminal arrows:

B
� �� B

rB �� Iso(B)
IB �� B×B

and, as loops are cocartesian arrows, this assignment extends to a functor:

C -Gpd
(r−, Iso(−), I−)

�� C -Gpd 2 ×C -Gpd C -Gpd 2.
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In order to extend this functor further to a functorial factorisation of diagonals C -Gpd 2 ��

C -Gpd 2 ×C -Gpd C -Gpd 2, consider the set:

|PFA| :=
∑

(X,A1,A2)∈|X|×|A|×|A||F|(A1)=X=|F|(A2)

{
1 a �� homA(A1,A2)

∣∣∣ FA1,A2a= 1|F|(X)
}

for F:A ��X an object in C -Gpd 2. There is an obvious inclusion |V|: |PFA| �� |Iso(A)|, and
functions |rF|: |A| �� |PFA| and |IF|: |PFA| �� |A×X A| mapping A to (|F|(A),A,A, 1A) and
(X,A1,A2, a) to (X,A1,A2), respectively. Note that

homIso(X)(FA1,A2a, FA′1,A′2a
′)= homIso(X)(1|F|(X), 1|F|(X′)),

for (X,A1,A2, a), (X′,A′1,A′2, a′) ∈ |PFA|. Defining homPFA(a, a′) := homIso(A)(a, a′), we obtain a
C -enriched category PFA and a C -enriched functor V : PFA �� Iso(A) which is full, faithful and
injective on objects, that is, PF(A) is a C -enriched full subcategory of Iso(A). These fit in a pullback
square in C -Gpd which is the one in the back of diagram (??). It is then easy to see that the
functions |rF| and |IF| extend to C -enriched functors making the diagram (??) commute:

The assignment F 
→ (rF , PFA, IF) is easily seen to be functorial. To see that it is also stable, it
is enough to observe that, whenever the left-hand square in C -Gpd below is a pullback, so is the
right-hand square:

A

F
��

H �� B

G
��

X
K �� Y

Iso(A)

Iso(F)
��

Iso(H)
�� Iso(B)

Iso(G)
��

Iso(X)
Iso(K)

�� Iso(Y)

Therefore we have constructed a stable functorial factorisation of diagonals P: C -Gpd 2 ��

C -Gpd 2 ×C -Gpd C -Gpd 2. To obtain a stable functorial choice of path objects it is enough to equip
IF and rF with algebra and coalgebra structures, respectively, for F a C -enriched functor.
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For the former, by functoriality of F the function |sA|: |M〈cA, dA〉| �� |Iso(A)| restricts along
the inclusion |V|: |PFA| �� |Iso(A)| as shown below:

|MIF|
|sF|

��
�
�
�
�

|M(F× F,V)|
�� |M〈cA, dA〉|

|sA|
��

|PFA| |V|
�� |Iso(A)|

where an element of |MIF| consists of an element (X,A1,A2, a) ∈ PFA, an element (X′,A′1,A′2) ∈
|A×X A| and a triple 1 〈x,a1,a2〉−−−−→ homX(X′, X)× homA(A′1,A1)× homA(A′2,A2) such that
FA′1,A1a1 = x= FA′2,A2a2, and it is sent by |sF| to (X′,A′1,A′2, a1 · a · a2i). As PFA is a C -enriched
full subcategory of Iso(A), the component of sF on a pair of elements of |MIF| is simply given
composing the corresponding components of M(F× F,V) and sA. It is straightforward to check
that the pair (IF , sF) is an algebra for the monad on R.

To construct a coalgebra structure on rF , note that an element of |MrF| consists of A ∈ |A|,
(X,A1,A2, a) ∈ |PFA| and a pair 1 〈a1,a2〉−−−→ homA(A1,A)× homA(A2,A) such that a2 · a= a1.

Consider the function |tF|: |PFA| �� |MrF| that maps (X,A1,A2, a) to (A2, (X,A1,A2, a), 1
〈a,1A2 〉−−−−→

homA(A1,A2)× homA(A2,A2)). The component of tF on a pair (X,A1,A2, a), (X′A′1,A′2, a′) is
the arrow induced by the equaliser defining homMrF as depicted below:

homPFA(a, a′)
(tF)a,a′

��

〈(cA)a,a′ , id〉
��

〈(dA)a,a′ · a′, (cA)a,a′ 〉
��

homMrF ((A2, a, 〈a, 1A2〉), (A′2, a′, 〈a′, 1A′1〉))

e
��

homA(A2,A′2)× homPFA(a, a′)

(〈a, 1A2〉!) · 〈pr1, pr1〉
��

pr2 · (〈a′, 1A′2〉!)
��

homPFA(a, 1A′2 )

A comprehension category is suitable to interpret identity types if it has a pseudo-stable choice
of Id-types, see Gambino and Larrea (2021) (Definition 1.4). Indeed in this case, its right adjoint
splitting can be equipped with a strictly stable choice of Id-types that allows for a sound inter-
pretation of identity types, see Gambino and Larrea (2021) (Theorem 1.6) and Warren (2008)
(Theorem 2.48).

Theorem 4.2. The comprehension category:

R-Alg U ��

����
���

C -Gpd 2

�����
��

C -Gpd

has a pseudo-stable choice of Id-types. Hence, its right adjoint splitting models identity types.

Proof. Proposition 59 in van Woerkom (2021) ensures that a stable functorial choice of path
objects in R-Alg �� C -Gpd yields a pseudo-stable choice of Id-types in the associated compre-
hension category (13). It thus follows from Proposition 4.1 that the comprehension category
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associated with the fibration R-Alg �� C -Gpd has a pseudo-stable choice of Id-types. By
Gambino and Larrea (2021) (Proposition 1.9 and Theorem 1.6), its right adjoint splitting models
identity types.

5. Iterations of Enrichment
In this section, we intend to analyse the enrichment over the category Gpd of groupoids
themselves. The first direct consequence of Theorem 3.6 is the following.

Theorem 5.1. The fibration R-Alg �� Gpd -Gpd is elementary.

Proof. As remarked in Remark 3.1, the category Gpd has limits.

Remark 5.2. One may wonder if there is any gain in enriching over the category Cat of all
categories. But Cat -Gpd =Gpd -Gpd .

Indeed, Gpd -Gpd is clearly a full subcategory of Cat -Gpd . But a Cat -enriched groupoid is a
2-category with an inverse:

B
f−1

��

g−1
�� A

��
α∗ ��

with respect to horizontal composition for each 2-arrow A
f

��

g
��
B

��
α ��

. Taking the following

whiskering of α∗

A
g

�� B
f−1

��

g−1
�� A

��
α∗ ��

f
�� B

gives the required 2-arrow, inverse for A
f

��

g
��
B

��
α ��

with respect to vertical composition.

The next result is the application of Theorem 4.2 to the case at hand.

Theorem 5.3. The full comprehension category associated with the fibration R-Alg �� Gpd -Gpd
has a pseudo-stable choice of Id-types.

Since the category Gpd -Gpd has finite limits by Remark 3.1, one sees immediately that there is
the possibility to iterate the last two results.Write nGpd for the category of n-groupoids, that is, let
0Gpd be the category Set and let (n+ 1)Gpd be the category of nGpd -enriched groupoids.Write
(Ln+1, Rn+1) for the algebraic weak factorisation system on (n+ 1)Gpd from Proposition 3.2.

Theorem 5.4. The fibration Rn+1-Alg �� (n+ 1)Gpd is elementary and the comprehension
category associated with the fibration Rn+1-Alg �� (n+ 1)Gpd has a pseudo-stable choice of
Id-types.
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These models can be seen as the Hofmann and Streicher’s groupoid model lifted to (n+ 1)-
groupoids. In particular, in these models, Uniqueness of Identity Proofs holds for all the identity
types, which are constructed in the proof of Proposition 4.1. In fact, the fibre of IB over a pair
of objects (B2, B1) is the discrete (n+ 1)-groupoid on the set | homB (B1, B2)|. Indeed, an arrow
(b2, b1): (B2, B1, 1

x−→ homB (B1, B2)) �� (B′2, B′1, 1
x′−→ homB (B′1, B′2)) in Iso(B) is vertical with

respect to IB if and only if b1 = idB1 and b2 = idB2 and thus, necessarily, x= x′.
The elementary fibrations underlying these models arrange into a chain of forgetful functors:

· · · �� Rn+1-Alg ��

��

Rn-Alg ��

��

· · · ��

· · ·
R1-Alg

��

· · · �� (n+ 1)Gpd �� nGpd �� · · · �� Gpd

each of which preserves limits and the elementary structure. The limit of the bottom chain of cat-
egories is the category ωGpd of strict ω-groupoids. It is reasonable to expect that the elementary
fibration over it interprets identity types. However, types in this model would most likely be 1-
types, as this is the case for each fibration in the above limit diagram. Thus, we expect this model
to be different from the model in strict ω-groupoids of Warren (2011).

Note
1 Jacopo Emmenegger’s work was partially funded by EPSRC grant EP/T000252/1. Giuseppe Rosolini’s work was partially
supported by INdAM-GNSAGA.
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