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ON COHEN AND PRIKRY FORCING NOTIONS
TOM BENHAMOU'Z) AND MOTI GITIK

Abstract.

(1) We show that it is possible to add x ™ -Cohen subsets to & with a Prikry forcing over «. This answers
a question from [9].

(2) A strengthening of non-Galvin property is introduced. It is shown to be consistent using a single
measurable cardinal which improves a previous result by S. Garti, S. Shelah, and the first author
[5].

(3) A situation with Extender-based Prikry forcings is examined. This relates to a question of H.
Woodin.

§0. Introduction.

0.1. Intermediate models of the tree-Prikry forcing. In many mathematical
theories, such as groups, vector spaces, topological spaces, and graphs, the study of
submodels of a given model is indispensable to the understanding of the model and in
some sense measures its complexity. In forcing theory, subforcings of a given forcing
generate intermediate models to a generic extension by the forcing. Hence, the study
of intermediate models is somehow parallel to the one regarding subforcings. There
are numerous classification results in this spirit, for example, some forcing such as
the Sacks forcing [34] and variants of the tree-Prikry forcing [25] do not have proper
intermediate models. Other forcings such as the Cohen forcing [24], Random forcing
[27]. Prikry forcing [20], and Magidor forcing [6, 8] have intermediate models of the
same type. A tree-Prikry forcing or its particular case, which will be central for us in
this paper, the Prikry forcing with a non-normal ultrafilter can behave differently.
For example, under suitable large cardinal assumptions, every x-distributive forcing
of cardinality « is a projection of this forcing. Actually, more is true, under the
assumption that x is k-compact there is a single Prikry-type forcing which absorbs
all the x-distributive forcings of cardinality & (see [19]). In the absence of very
large cardinals, the situation changes; indeed, Hayut and the authors [9] proved that
if a certain < k-strategically closed forcing of cardinality  is a projection of the
tree-Prikry forcing then it is consistent that there is a cardinal 4 with high Mitchell
order, namely o(1) > A*. In [6], the authors proved that starting from a measurable
cardinal (which is the minimal large cardinal assumption in the context of Prikry
forcing) it is consistent that there is a (non-normal) ultrafilter U, such that the Prikry
forcing with U projects onto the Cohen forcing Cohen(x, 1); this was improved later
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in [9] to a larger class of forcing notions called Masterable forcings. In the context of
Prikry-type forcings, the existence of such embeddings and projections allows one
to iterate distributive forcing notions on different cardinals (see [17, Section 6.4]).

It remained open whether it is possible to get more Cohen subsets of x after
forcing with the Prikry forcing with a k-complete ultrafilter U over k. This was
asked explicitly in [9].

The basic difficulty is that the size of Cohen(x, k) is £ and it is not hard to see
(Proposition 2.9) that this cannot happen, if U has the Galvin property.

We formulate a certain strengthening of the negation of the Galvin property, show
its consistency starting with a measurable cardinal, and finally apply it in order to
construct an ultrafilter U such that the Prikry forcing (for a formal definition of the
Prikry forcing with non-normal ultrafilter, see Definition 1.2) with it adds a generic
subset to Cohen(x, &7).

0.2. Extender-based Prikry forcing and a question of Woodin. Magidor and the
second author developed the Extender-based Prikry forcing in [21] to violate the
SCH under mild large cardinal assumptions. Later Merimovich [29, 30] presented
a variation of this forcing which will be used in this paper.

H. Woodin asked' in the early 90s whether, assuming that there is no inner model
with a strong cardinal, it is possible to have a model M in which 2% > R, .3, GCH
holds below X,,. there is an inner model N such that k = (R,,) is a measurable and
28 > (Nw+3)M

A natural approach to tackle Woodin’s question is to use the Extender-based
Prikry with interleaved collapses forcing, defined by the second author and Magidor
in [21]. This forcing collapses a measurable cardinal to X, and simultaneously
blows up the powerset of that measurable. Hence, if one can show that a generic
extension by the Extender-based Prikry forcing has an intermediate model where
k stays measurable and 2" is large, this will provide a positive answer to Woodin’s
question. In this paper we show that this approach is doomed. More precisely,
we address in general the question whether it is possible to add many subsets of
K {xq | @ < Ay, A > k™t with the Extender-based Prikry forcing over x such that
k remains a regular cardinal in V[(x, | @ < 4)]. We give a negative answer to this
question with respect to the Extender-based Prikry forcing as defined in [21] and
the Merimovich version of the forcing presented in [30, 31]. In particular, as a
consequence of our results (Theorems 4.5 and 4.6), the Extender-based Prikry
forcing cannot be used to answer Woodin’s question.

0.3. The Galvin property. F. Galvin [2], in the 70s, showed that if s<* = k and F
is a normal filter over k then the following combinatorial property holds:

For every {X; | i < k*} C F thereis I C [sk1]" such that N;¢; X; € F.

We denote this statement by Gal (F, k. k*). In particular, this holds for the club filter
Cub,, as it is a normal filter over a cardinal «.

In [1]. Abraham and Shelah constructed a model where Gal(Cub,+.k", k™)
fails for a regular . Garti [13, 14] and later together with the first author and

I'We would like to thank Mohammad Golshani for reminding us of the exact formulation of Woodin’s
question.
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Poveda [4] continued the investigation of the Galvin property for the club filter. The
Galvin property for x-complete ultrafilters over a measurable cardinal x was used
recently in [7, 18]. The question of failure of the Galvin property for such ultrafilters
was shown to be independent. Namely, in [7] the authors observed that in L[U]
every xk-complete ultrafilter has the Galvin property, and Garti, Shelah, and the first
author, starting with a supercompact cardinal, produced a model with a k-complete
ultrafilter which contains Cub, and fails to satisfy the Galvin property.

In Section 2, we isolate a property of sequences we call a strong witness for the
failure of Galvin’s property which implies in particular the failure of Galvin’s property.
This property is used in Theorem 2.6, where we start from a single measurable
cardinal, and construct a model with an ultrafilter which fails to satisfy the Galvin
property. This improves the initial large cardinal assumption of [5].

Later in Theorem 2.10, we were able to slightly modify the construction of
Theorem 2.6, construct an ultrafilter " and a strong witness for the failure of the
Galvin property for it, which serves to glue together initial segments of functions,
and obtain xT-mutually generic Cohen function on «. This idea is generalized to
longer sequences (and in turn to more Cohen functions) in Theorems 3.1 and 3.3.

Our main results are:

THEOREM 2.6. Assume GCH and let k be measurable in V. Then there is a cofinality
preserving forcing extension V* in which there is a k-complete ultrafilter W over &
which concentrates on regulars, extends Cub,,, and has a strong witness for the failure
of Galvin's property.

THEOREM 2.10. Assume GCH and that k is a measurable cardinal in V. Then
there is a cofinality preserving forcing extension V* in which GCH still holds, and
there is a k-complete ultrafilter U* € V* over & such that forcing with Prikry forcing
Prikry(U*) introduces a V *-generic filter for Cohen”” (k. k).

THEOREM 3.1. Assume GCH and that there is a (k, k*F)-extender over k in V.
Then there is a cofinality preserving forcing extension V* such that V* =25 = g™+,
in V* there is a k-complete ultrafilter W over & which concentrates on regulars, extends
Cub,,, and has a strong witness of length k™ for the failure of Galvin's property.

THEOREM 3.3. Assume GCH and that E is a (k, k™1 )-extender in V. Then there
is a cofinality preserving forcing extension V* in which 2* = k" and a non-Galvin
ultrafilter W € V'* such that forcing with Prikry(W) introduces a V *-generic filter
for Cohen"” (k. k*1)-generic filter.

THEOREM 4.5. Let Pg be the Extender-based Prikry forcing of [21], and G C P be
a generic. Suppose that A € V[G]\ V is a subset of k. Then k changes its cofinality
to win V[A].

THEOREM 4.6. Assume GCH, let E be an extender over k, and let Pr be the
Merimovich version of the Extender-based Prikry forcing of [29-31]. Let G be a
generic subset of P and let (A, | o < ™) be different subsets of k in V[G]. Then
there is I C k¥, 1 € V,|I| = & such that & is a singular cardinal of cofinality w in
VI{As | @ € I)]. In particular, there is no intermediate model of V[G] where k is
measurable and 2¢ > k™.
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This paper is organized as follows:

e Section 1: We provide the basic definitions and background for this paper.
e Section 2: We prove Theorems 2.6 and 2.10.

e Section 3: We prove Theorems 3.1 and 3.3.

e Section 4: We prove Theorems 4.5 and 4.6.

§1. Basics.

1.1. The forcing notions. In our notations p < ¢ means that ¢ is stronger than p.
We assume that the reader is familiar with the forcing method and iterated forcing.
Most of our notations are inspired by [12, 17] where we refer the reader for more
information regarding forcing and iterations. Let us present the definitions of the
forcing we intend to use:

DEerINITION 1.1. The forcing adding A-many Cohen functions to x denoted by
Cohen(x, 4) consists of all partial functions f : k x A — {0, 1} such that || < k.
The order is defined by f < g iff f C g.

DerFmNITION 1.2. Let U be a k-complete non-trivial ultrafilter over £ and let
7 : k — Kk be the function representing « in the Ult(¥V, U). The Prikry forcing with
U. denoted by Prikry(U). consists of all sequences (a. ..., a,, A) such that:

(1) {0y, ....ap) is a m-increasing sequence of ordinals below «, i.e., for every
1 <i<n o <zlap).
(2) A€ U, z(min(4)) > a,.
The order is defined by (a., ..., ay, 4) < (f1, ..., fm. B) iff:
(1) n <mandforeveryi <n,a; = B,
(2) foreveryn <i <m, f; € A,
(3) B C A.
If n = m we say that ¢ directly extends p and denote it by p <* ¢.

If U is normal then we can take = = id and the forcing Prikry(U) is the standard
Prikry forcing. The requirement that the sequence is n-increasing ensures that the
forcing Prikry(U) is forcing equivalent to the tree-Prikry forcing defined in [17].
Also, it enables to define a diagonal intersection suitable for the non-normal case,
namely, for {4; | i < k} C U define

A A ={a<k|Vi<znla)aec A4}

This kind of diagonal intersection instead of the standard one is used to prove the
Prikry property of Prikry(U).

Later we will need the easy direction of the Mathias criterion [28] for Prikry-
generic sequences, and the proof can be found in [3, Corollary 4.22]:

LeEmMA 1.3. Let G C Prikry(U) be a generic filter producing a Prikry sequence
{cn | n < w}. Thenforevery A € U, thereis N < w such that foreveryn > N, ¢, € A.

For more information regarding the tree-Prikry forcing see [17] or [3]. In the
following, we define the notion of lottery sum. The terminology “lottery sum” is due
to Hamkins, although the concept of the lottery sum of partial orderings has been
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around for quite some time and has been referred to, for example, as “disjoint sum
of partial orderings™:

DErINITION 1.4. Let Py, P; be two forcing notions. The lottery sum of Py and P,
denoted by LOTT(IPy, ;) is the forcing whose underlining setis Py x {0} UP; x {1}
and the order is define by (p.i) < (p’.j) iff i = jand p <p, p'.

The forcing LOTT(Py, Py ) generically chooses Py or P; and adds a V-generic filter
for it. As Hamkins observed in [22], iterating such forcing notions leaves a certain
amount of freedom when lifting ground model embeddings; this will be exploited in
most of our construction.

In Section 4 we will discuss the Extender-based Prikry forcing which was originally
defined by Magidor and the second author in [21]. A more recent variation of it is
due to Merimovich [29-31].

Let us present the two versions. Let E be a (k. A)-extender and j = jp: V —
Mg ~ Ult(V,E) the natural elementary embedding (see [23] for the definition of
extenders and related constructions) and suppose that /', : kK — & is a function such
that j(f;)(k) = A (our result uses A = kT and we can simply take f;(v) = v*F).
Let us first present the Merimovich version of the Extender-based Prikry forcing.

For each set of cardinality < k. d € [A\ k]=" with k € d. Define

E(d)={XeVi|( JX)}.

d)’!
If A € E(d) we can assume that for every v, u € A :d — k is order preserving,
k € dom(v), |v| < v(k),v(k) = u(k) — dom(v) = dom(u). Merimovich calls such
a set a good set.
DEerNITION 1.5. The conditions of Pg are pairs p = (f?, A?) such that:

(1) f?7:d — [Kk]<® is the “Cohen Part” of the condition. d € [\ kK]<“, k € d.
(2) 47 € E(d)is a good set.
(3) Forevery v € A” and a € dom(v), max(f”(a)) < v(k).

The order of Pg is defined in two steps: a direct extension is defined by (f, 4) <*
(g. B) if:

(1) fCe.
(2) B | dom(f):={v | dom(v) ndom(f)|v € B} C A.

A one-point extension of p = (f, A) for v € A4 is defined by p~v = (g, B) where:

(1) dom(g) = dom(f).
(2) Forevery o € dom(g).

(3) B = {1 € 4| upycgomn) (v(@) + 1) < ()},

An n-point extension p~ ¥ is defined recursively by consecutive one-point extensions.
A general extension is defined by p < ¢ iff for some v € [47]<?, p~V <* q.

As in [30], we will sometime replace the large set 4 in a condition (f, 4) with a
Tree T which is E (dom( f'))-fat.
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Let us now present the original version defined by Magidor and the second author
from [21]. Define for every k < a < A:

Uy ={XCk|aejX)}

These are P-point ultrafilters. For every o < f# < 4 we define that o <g f if there
is some f :k — k. j(f)(f) = c. This implies that / Rudin—Keisler projects Uy
onto U,. For every such pair o <z f fix such a projection g, such that 7, o = id.
The projections to the normal measure U, have a uniform definition, 7, . (v) = v°
where v? is the maximal inaccessible v* < v suchthat £, [ v* 1 v* — v*, f,(v*) > v,
and 7, . (v) = 0 if there is no such v*. Suppose that the system (U,. 7,5 | @ < f <
Ao <g B) is a nice system (see [21] or [17, Discussion after Lemma 3.5]). Let us
say that v is permitted for vy, ..., v, is v’ > max;_

DEFINITION 1.6. The conditions of the forcing Pg are pairs p = {f, T) such that:

) f A\ k= [K]7®. k € dom(f),
For each a € Supp(p) :=dom(f). =

' f(a) is a finite increasing sequence.

(1

(2)

(3) The domain of / has a <g-maximal element mc(p) := a = max(Supp(p)).

(@) 7y (o] (me(p)) = f(x).

(5) For every y € Supp(p). Tpe(p), (max(f (mec(p))) is not permitted to f (7).

(6) T is a U,,(,)-splitting tree with stem f (mc(p)). namely. for s € T'. either
s <t.ors>tandSuccr(s) :={a<k|s"a €T} eE Uypy-

(7) For every v € Succr(f (me(p))).

[{y € Supp(p) | v is permitted to f(y)}] < v°.
The order is defined p < ¢ if:

(1) Supp(p) € Supp(q).
For y € Supp(p). f49(y) is an end-extension of f7(y).

(2)

(3) f4(me(p)) € T”.

(4) Fory € Supp(p). f41())\ P (2) = (., (me(p)\ fP(me(p)) T (i +1).
where i is maximal such that f7(mc(p)) i 1s not permitted for 77(y).

1
(5) nmf(q),mC(p)Tq T

(6) Foreveryy € Supp(p).and v € Succrq(f4(mc(q))), such that v is permitted
for f4(y) (so by condition (7) there are only v’-many such y’s) then

Tone(q)3 (V) = Tne(p).y (Tome () mep) (V)

1.2. Canonical functions. The main construction of this paper uses the notion of
canonical functions:

DEFINITION 1.7. For every limit ordinal § < x*, fix a cofinal sequence 6 = {J; |
i < cf(0)}. Let us define inductively functions 7, : & — & fora < x™:

70(x) =0,
Tatp1(X) = 7o (x) + 1.

For limit 6, 75(x) = sup T, (x).
y<min(x.c/ ()
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PRrOPOSITION 1.8. Let A < & be a regular cardinal. Then:

(1) Forevery a < < it {v|1a(v) > 14(v)} is bounded in A.

(2) Foreveryany o < A*, 14 : 4 — A.

(3) For every normal measure V on A, and for every o < AT, [ta]y = .
(4) If A < k. then for every 5, t5(1) < A™T.

Proor. For (1), we prove inductively on f < A* that for every o < S, (1) holds.
For f# = 0 this is vacuous. The successor stage is also easy since for every x, 75(x) <
7p41(x) so if @ < f then by induction hypothesis there is £ < 4 from which 75
dominates 7,. i.e.. Vv € (£, 1).74(v) < 75(v). It follows that for the same &, 7,(v) <
7p+1(v). As for limit points §. Fix any o < J, then there is i < ¢f () < 4 such that
d; > a. By induction hypothesis there is &; < 4 such that 75, (v) > 7o(v) for every
v e (&, A). Let&* := max{¢&;.i} + 1 < A. It follows that for every v € (*, 1), v > i,
and hence

5(v) = sup  75,(v) > 15(v) > 1 (V).
y<min(v.cf(5))

Prove (2)—(4) by induction on a < A*. For a =0 this is trivial. Suppose
that (2)-(4) hold for o then clearly by induction hypothesis 7,41 : 4 — 4, and
Tas1(4) = 74 (4) + 1 < AT, namely (2) and (4) follow. Also, 1= {v < 4| 1,(v) +
1 = 7441(v)} € V, ane hence by the Los theorem and the induction hypothesis:

a+1=[t]y+1=[tas1lv.

Suppose that § < A1 is limit, then by induction hypothesis, for every x < 2 and
y <min(x, ¢f(d)) < 4, 75,(x) < A. It follows from the regularity of 4 that

75(x) = sup 75, (x) < 4.
y<min(x.cf(5))
This concludes (2). Also, (4) follows similarly using the regularity of A*. As for (3),
we use (1) to conclude that for every a <, {v < 4| 14,(v) > 75(v)} is bounded.
Hence by induction a = [7,]y < [t5]y. It follows that § < [t5]y. For the other
direction, suppose that [ /]y < [t5]y, then

E:={x<i]f(x)<wx)}eW.

By definition of 75, for every x € E. thereis y, < min(x. cf (9)) such that 75, _(x) >
f(x). The function x — y, is regressive, and by normality we conclude that there is
y* <cf(0)and E’ C E such that for every x € E'. f(x) < 75 ., (x). Hence [f]y <

[T(Fv*]V =0, <Jdandinturnd = [75]y. i

§2. The results where GCH holds.

2.1. Non-Galvin ultrafilter from optimal assumption. In [5], Garti, Shelah, and the
first author constructed a model with a k-complete ultrafilter which contains Cub,
and fails to satisfy the Galvin property. The initial assumption was a supercompact
cardinal and the construction went through adding slim Kurepa trees.

Here we present a different construction. Our initial assumption will be a
measurable cardinal and the property obtained will be a certain strengthening of the
negation of the Galvin property. It will be used further to produce many Cohens.
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Let us first present the stronger form of negation:

DeriNiTION 2.1, Let U be a k-complete ultrafilter non-normal over k. We call a
family {4, | @ < &*} C U a strong witness for the failure of the Galvin property iff
for every subfamily (4, | £ < k) of size & the following holds:

forevery (. x < { < [id]v. [id]v ¢A;‘£,

where (4, | { < ju(k)) = ju((4a, | € <K)).

REMARK 2.2. (1) Note that the interval [k, [id]y) is non-empty since U is not
normal.
(2) The family {4, | @ < "} witnesses the failure of the Galvin property for U.

E<r T

is not in U. Otherwise, suppose that (._, 4s, = B € U. Then [id]y € ju(B).
but jy(B) = Ne<jpin) Ao, - However. [id]y & A7, . for every (k< <[id]y.
Contradiction. ' -

PrOOF. Since whenever (4,, | ¢ < k) is a subfamily of size «. then (., 4

LemMa 2.3. Suppose that {A, | o < &1} is a strong witness for the failure of the
Galvin property of the ultrafilter U over k. Let U’ ={X Ck |k € jy(X)} be a
projection of U to a normal ultrdfilter, v — 7,0, (v) a projection map, and k : M0 —
My the corresponding elementary embedding. Assume that crit(k) = j (k) = [id]u.
Then [id]y & B. for every B € jy({Aas | @ < &T}) which is in rng(k) \ rng(ju).

PrROOF. Let B be as in the statement of the lemma. Pick A’ C j (k) such that
k(A’) = B. Then A’ € rng(j o). since otherwise its image B will be in the range of
Jju =k o jyo. Denote by

{4,

v

v<jpoT) = jpo{4i i< k™)),

{47 |v<jue™)}=jo{4i|i<kT}).

Since U is normal, thereis f : kK — x* such that 4’ = 4’
J0 (1))

_ n o , g
B = k() = k(4] (1m) = 47501100

and thus

Since B is not in the range of k. f is not constant. Recall that {4, | @ < k" } isa
strong witness for U being non-Galvin ultrafilter over . Apply this to the family
{4,y | v < &}. It follows that [id]y ¢ A’/’U(f.)(n) =B -

Before proving the main result of this section we present two preservation theorems
for being a strong witnesses for the failure of the Galvin property. These theorems
are not used later and the reader can proceed directly to Theorem 2.6.

THEOREM 2.4. Assume 2" = k. Suppose that the family {A, | & < T} isa strong
witness for U being a non-Galvin ultrafilter over k. Let U = {X C k | k € jy(X)}
be a projection of U to a normal ultrafilter, v — m,,.(v) a projection map, and k :
M0 — My the corresponding elementary embedding. Assume that crit(k) = j0(k)
and [id)y = jyo(k).
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Suppose that V'* is an extension of V in which all the embeddings j . ju . k extend to
an elementary embedding j* : V* — M j* 1 V* — M* k* : M" — M*. Define
U*={X Ck|[idly € j*(X)}.

Then {A, | a < k*} is a strong witness that U* is a non-Galvin ultrafilter over k.

Proor. Note that (k1)"" = (k). Just otherwise, (k*)" will be < (x7)"",
and then, j*(k) > (k*+)". This is impossible, since j* extends j;. The rest follows
from the previous lemma and the fact that [k, [id]y) C rng(k) \ rng(jy) since
crit(k) = jyo(k) = [id]v. -

THEOREM 2.5. Assume 2% = k™. Suppose that {4, | @ < &} is a strong witness
for U being a non-Galvin ultrafilter over k which contains Cub,, and be a witnessing
family.

Let V* be a k-c.c. extension of 'V in which jy extends to an elementary embedding
J¥i V= M*, where M* is a corresponding extension of My .

Define U* = {X C x| [id]y € j*(X)}.

Then {A, | a < K1} is a strong witness that U* is a non-Galvin ultrafilter over k.

PROOF. Suppose now that (4, | ¢ < k) is a subfamily of {4, | @ < &™} of size
Kin V*,

Work in V. Let as be a name of a;. By k-c.c., then for every ¢ < & there will be
s¢ € k™ of cardinality less than &, such that |- ¢ € s.

Let S = sup;_,, s¢. Enumerate S = (f; | i < k) such that weif ; € s; and §; € s,
where { < u then i < j, i.e., enumerate first 5o then s; and so on, such that the
resulting enumeration of S is of order-type . This is possible since each s; has
cardinality less than k. Define

C={v<r|VE<v(sup(y| B, €s:) <v)}.
Clearly, C is a club. Hence [id]y € jy(C). Then, by elementarity, for every { <
[id]y. and every f; € s;. i < [id]u.
Let us use the fact that the sequence (4, | & < £T) is a strong witness for U being
non-Galvin, hence [id]y ¢ A,/)’g’ for every k < { < [id]y. Fix any x < & < [id]v,
then by elementarity we have I o é € sé in My . Therefore there is some y < x such

that ol = f,. Clearly. y > . and by the closure property of [id]y. we conclude that
y < [id]y. Hence, in M*, [id]y ¢ A}, = A!,. as wanted. -
v ¢

THEOREM 2.6. Assume GCH and let k be measurable in V. Then there is a cofinality
preserving forcing extension V* in which there is a k-complete ultrafilter W over &
which concentrates on regulars, extends Cub,,, and has a strong witness for the failure
of Galvin's property.

Proor. The forcing is simply adding for each inaccessible o < x, a™-many
Cohen functions to . Namely, consider the Easton support iteration

(Pa.Qp|la<k+1.p<k)

such that for a < k, Q, is trivial unless « is inaccessible, in which case it is a
P,-name for Cohen(a,a™).
Let G := G, * g, be V-generic for P, x Q. Denote (fro | a<x™) be the

enumeration of the x* Cohen functions added by g.. The idea is that the sets
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which are going to be a strong witness for the failure of the Galvin property are
(Ao | @ < k™), where

Aa:{ﬂ<li|fn,a(ﬁ): 1}

The next step is to construct the measure for this witness by extending ground
model embeddings to V'[G]. Let U € V be a normal measure over « and consider
the second ultrapower by U and the corresponding commutative diagram

j1 ZZjUZV—)MUZZMl,jQZZjUziV—)MUZZZMZ
k:M; — M, j,=ko i,

where k is simply the ultrapower embedding defined in My using the ultrafilter
j1(U). Denote k1 = ji(k) and ks = j»(k), then k(K1) = k.
By Easton support and elementarity,

jl(Pn * gn) = Py * gfi * ,P(n‘nl) * g”l"
where P, . ) * Oy, is the quotient forcing above . which is forcing equivalent to
the continuation of the iteration above & using the same recipe as Py.

In V[G], let us first construct an M-generic filter for j| (P, * O.). Take G, * g, to
be the generic up to  including . Above &, from the point of view of V'[G], we have
kT -closure for Plx.ry)- By GCH . and since jj is an ultrapower by a measure, there are
only " -many dense open subsets of this forcing to meet. Therefore we can construct
in V[G] by standard construction an M,[G]-generic filter G, ) for P, . By
ki — cc of Qy,. we can find g,g1 which is M1[G * G, ,)]-generic for O, . We need to
change the values of g/, = (f1, o | @ < &) togs; = (fxa | @ < &]) such that for
everya < k", f x1.j1(a) | & = fra- This will ensure that the Silver criterion to lift an
elementary embedding holds, namely, ji'Gy x g C Gy * g * G, ) * &, - Also. we
would like to tweak the values of /., ; () (k) to ensure that the sets 4, are members
of the ultrafilter generated by . By the definition of A4,, the way to do this is to set
fnlAjl(a)(K’) =1

Formally, for each condition p € Cohen(k;, mf)Ml[G"*G*G(”-“I)
p* with dom(p*) = dom(p) and for every (y, a) € dom(p*),

frep().  y<6A () =a.
P ((y.a)) = 1. y=rAj(f)=c
p((y.)), else.

], define a function

Let g, := {p* | p € g/, }. Clearly, the functions (f, o | @ < &{) derived from g
satisfy that /', ;s | 6= fepand f, ; (k) =1forevery f < k™. It remains to
show that g, is generic:

LEMMA 2.7. The filter g., is Cohen(k.k])
M[G, * g * G

M{[Gx+xG*G .
1[GrxGx <“-“1>]-generlc ﬁlter over
K,l’il)]'

ProoF. First let us prove that g, C Cohen(k;. nf)Ml[GMG*G(
Cohen(k, Ii;r)Ml [GrxGx G

"“1)].Indeed, g[61 C
ss)! and for any p € g, .

Ml[Glc * G * G(n,nl)] ': |p| < K1,
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and hence dom(p)<, :={a | 3(y.a) € dom(p).y < k} is bounded in ;" while

Ji'&" is unbounded. It follows that there is § < ™ such that
dom(p)<. N ji'w™ C ji0.

Hence from the V-perspective, | dom(p)<, N j{'k"| < k. The difference between p
and p* is only on the coordinates of dom(p)<, N j{’s" and by closure of M,[G, *
g * G, )] to k-sequences it follows that

)MI[GN*G*G( MI[GN*G*G(N.Nl)]

'“‘1)], gx, C Cohen(k.k{)

To see that gy, is generic over Mi[Gy * G * G, )]. let D € M[Gy * G * G, . )]
be dense open. In Mi[G * G * G, ,)]. define D* to consist of all conditions p €
Cohen(k;. k). Such that

p* € Cohen(ki. ki

Vq.dom(q) = dom(p) A|{x | p(x) #q(x)}| <k = g€ D

then D* is dense open. To see this, pick any p € Cohen(m,nr)M' [Grx GG

enumerate by (g, | r < ) all the conditions ¢ such that
dom(q) = dom(p) A[{x | p(x) # ¢(x)}| < k.

Note 0 < 1 since £ is inaccessible in My[Gy * g * G, )]. We define inductively
and increasing sequence (p, | r < @), and exploit the ;-closure of Cohen(k;.x;")
to take care of limit stages. Define py = p, and suppose that p, is defined, let
Pl =g Up | (dom(p,)\ dom(p)).find p/ , <., € D which exists by density
and set

mx0) and

pra1=pr [ dom(p) U t,qy | (dom(41) \ dom(p)).
Then p, < p,4. Let

P* = Ur<o Pr

then p* has the property that for k many changes of p* from the domain of p stays
inside D. Namely any ¢ with dom(q) = dom(p*),

g | (dom(p*)\ dom(p)) = p* | (dom(p*) \ dom(p))

and [{x € dom(p) | p(x) # q(x)}| < k. ¢q | dom(p) = ¢, for some r, therefore ¢ >
t,+1 € D. Now we define inductively (p) | r < k7). p(¥) = p at limit we take union,
and at successor step we take p 1) = (p("))*. We claim that p, := U,_.+ p"") € D*.
First note that k™ < k;, hence |p.| < & (all the definition is inside My[G, * g, *
Gx.x)])- Let ¢ be any condition with dom(g) = dom(p*) and denote by

I = {x e dom(p.) | ¢(x) # p.(x)}

and suppose that |I| < k. Since dom(p,) = U,_.+ dom(p")) and dom(p")) is
C-increasing, there is j < k' such that 7 C dom(p"/)). The condition ¢ | I is
enumerated in the construction of pU*!, hence ¢ | dom(pY*tV) € D and since
Dis open, ¢ € D. This means that p, € D*.

Finally, by genericity of g, ., wecanfind p € D* N g, . By definition, p* € g, and
since dom(p*) = dom(p) and |{x | p(x) # p*(x)}| < kit follows that p* € D.
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Denote by H = G * g * G, ;) * &x,- then j'G C H. Let
Ji 1 VIG] = M\[H]
be the extended ultrapower and derive the normal ultrafilter over &,
U :={XCkl|rej(X)}

then U C U and j| = jy,. Indeed let ky : My, — M [H] be the usual factor map
ki(ju,(f)(&)) = ji(f)(k). We will prove that k; is onto and therefore k| = id.
For every 4 € M [H]. there is a name 4 € M, such that 4 = (4)y. My is the
ultrapower by U, hence there is f € V such that j;(f)(k) = 4. By elementarity
for every a < k, f(a) is a name. In V[G] define f*(a)= (f(a))s. then by
elementarity

ki(o, (f)(w) = ji(f*) k) = (i (1)) j6) = Ui ) E)u = (4)n = 4.

Denote by M; = M,[H] and consider j;(U;) € M;. Let us now define inside
M| an M,-generic filter for

j2(73f€ * gfi) = Przl * g”l * P(KZI,HQ) * gnza

in a similar fashion as H was defined. First we take H to be the generic for Py, * Q.
Note that M, is closed under x{-sequences with respect to M. Therefore, front the
M -point of view, P, ,.)* Ok, 18 K -closed. and we can construct an M>[H]-
generic filter G, ,.,) * g,’62 € M; for it. We change the values of g,gz a bit differently
from the way we changed the values of g; . If a < &{ is of the form ji(f) let
fryik(a)(k1) =1 (to guarantee that 4,’s belong to the ultrafilter generated by &)

and if o« € k] \ j{'&* let’ [\ k(a) (k1) = 0. Also, we would like that f, ., (0) = &.

Formally, for every p € Cohen(ks. k5 )Mz[H *Glenn)! define p* to be a function with

dom(p) = dom(p*) and for every (y, ) € dom(p*),
Frap(). v <mAa=k(p),

1, y =k Aa=k(ji(B)).
P ((y.a)) =10. y=riANa=k(B).B ¢ j'k".
K, y=0Aa =k,

p((y.a)). else.

Denote by g, = {p* | p € g,} € V[G] the resulting filter. It is important that
for each p € gJ. the set

X1 = jykT ndom(f)<x, = {j2(a) | I(y. j2(@)) € dom(f).y < 1}
has size at most . This ensured that X; € M;". Also, k" /ﬁ* i1s unbounded in H,;r

and conditions in Cohen(x;. k5 )M G m)] have Mo[H * G (s, xy)]-cardinality less
than k,. which guarantees that for each p € Cohen(ks. k5 ).

X> = k"w{ ndom(p)<,,

2Recall that k : M — M, is the factor map satisfying j, = k o j; defined by k([ f]v) = j»(f)(x).
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has size at most x;. Note that p* is definable in M* from the parameters p, X1, X> €
M. and p* differs from p at most on k;-many values. By the closure of M>[H *

G (s, xy)] tO K1-sequences from M7,

)Mz[H*G(Klﬁz)]

p* € Mu[H * G, )] and g., C Cohen(ky. &,

The genericity argument of Lemma 2.7 extends to the models M| and M;[H *
G(x, xy)]. hence g, is Mo[H * G, ,)]-generic. Denote by M3 = Ms[H * Gy, x,) *
gx,]. It follows that k can be extended (in V'[G]) to k* and also j, to j; = k* o j; :

V[G] — M} . Finally, let

W ={X € P"9 k) | k1 € j5(X)} € V[G]
Let us prove that ¥ witnesses the theorem:

Cram 2.8. Wis a k-complete ultrafilter over k such that:
(1) jw = j; and[id]w = k1.

(2) Cub, C W.

(3 ; {fa<k|cfla)=a}eW.

(4) (Ao | @ < k™) is a strong witness for the failure of the Galvin property.

Proor. Tosee (1), letusdenote by jy : V[G] — My the ultrapower embedding
by W and ky : My — M; defined by kw ([f1w) = j5(f)(k1) the factor map
satisfying ky o jy = j;. Let us argue that ky, is onto and therefore ky = id and
[id]lw = k1. Indeed. let 4 € M then thereis 4 € M; such that (é)jz*(G) = A. Since
J2 = jy2 there is h € V such that j>(h)(k.k1) = 4. Note that k = j5 (/%) (0),
hence define in V[G], h*(a) = (h(f+.a(0). @)). We have that

kew ([h™1w) = j3 (h*)(51) = (2(h) (k. 61)) j36) = (4) j36) = 4

2

To see (2). for every club C € Cub,. j;(C) isclosed and j;(C) is unbounded in &;.
Since crit(k*) = k1 and j5(C) = k*(j;(C)) it follows that j;(C) Nk = j;(C).
hence j;(C) Nk is unbounded in x; which implies that x; € j5(C).

For (3). since M5 = ¢ f (k1) = k1. it follows that {a | ¢/ () = a} € W. Finally,
forevery a < k™,

j;(Aa) ={f< k2| fﬂz‘.l'z(a)(ﬂ) =1}

Since j(a) = k(ji(a)). by the definition of gs,. £, ;,(a) (k1) = 1. thusk; € j5(4a).
and by definition of W, 4, € W.

For (3), let {A4,, | i < k} be any subfamily of length « and k < 5 < [id]w = k.
Denote

J3 (e 11 <)) = (A% [0 < o). i (Ao |1 < R) = (A [0 < ).

Since kK <5 < k1. then 7 ¢ j'k* and thus oz,gl) ¢ j'k*. Also. k(a,gl)) = af&) =
( ) Hence by definition, f (m) =0, hence »; ¢ A 4
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2.2. Adding x"-Cohen subsets to « by Prikry forcing. In this section we will
construct a model in which there is a k-complete ultrafilter W such that forcing
with Prikry(#) adds a generic for Cohen(k, k™). Let us first observe that such an
ultrafilter must fail to satisfy the Galvin property:

ProPOSITION 2.9. If Gal (U, k. k™) holds then Prikry(U) does not add a V-generic
filter for Cohen(k, k™).

PrOOF. Suppose that Gal (U, k, k*) holds and let G C Prikry(U) be V-generic.
By [18. Proposition 1.3] every set A € V[G] of size k™ contains a set B € V of
cardinality . Toward a contradiction suppose that H € V[G] is a V-generic filter
for Cohen(k, k™). Code H : k x kT — 2 as X C k™, just pick a bijection ¢ from
kT to kT x K, and let X = {a < k" | H(¢(a)) = 1}. The set X does not contain
an old subset of cardinality ; this is a contradiction. To see this, let Y € V' such
that | Y| = k, proceed with a density argument: any condition p € Cohen(x,x™")
has size < x and therefore can be extended to a condition p’ such that for some

y € Y.4(y) € dom(p’) and p'(¢(y)) = 0. 8

Hence the failure of the Galvin property is necessary.

THEOREM 2.10. Assume GCH and that k is a measurable cardinal in V. Then
there is a cofinality preserving forcing extension V* in which GCH still holds, and
there is a k-complete ultrafilter U* € V* over k such that forcing with Prikry forcing
Pikry(U*) introduces a V *-generic filter for Cohen”” (k. k™).

Proor. The model V* is obtained by iterating with Easton support the lottery
sum of Cohen forcings for adding a™-Cohen functions (f,, | y < a™) over «, and
Cohen? for adding two blocks of a™-Cohen functions

(far |7 <a®). (hay | 7 < ™).
More specifically, let
(Pa.Opla<k+1.p<k)

denotes the Easton support iteration, such that for each a < k, Q, is the trivial
forcing unless « is inaccessible in which case Q,, is a P,-name for the lottery sum

LOTT(Cohen(a. a*), Cohen(a, ™) x Cohen(a. a™)).
At k itself we let O, = Cohen(k, k™). Let G, * F,, be a V-generic subset of Py, * O,

~

and let V* = V[G, * F,;]. We denote by F, := (fq, | 7 < a™) the generic Cohen
function if Cohen(a, a™) was forced in G, and by

Fo:={(fay |y <a®). Hy:= (hay |y <a™)

if Cohen(a, a™) x Cohen(a, a™) was.

Let U € V be a normal ultrafilter, j, := jy : V — My the corresponding
elementary embedding, x; = ji(k). k := Jiywy: My = Mz, jo=koji. and
Ky = j2(k). Let us extend ji, k. j» in V[G, * Fy]:

We first extend ji : V' — My to j; : V[Gyx * F] = My[Gy, * Fy,]. Do this by
taking first G, N P, = G,. at k we force with the lottery sum so we can choose
to force only one block of Cohens and take F, as a generic. Then defining

https://doi.org/10.1017/js1.2023.59 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2023.59

872 TOM BENHAMOU AND MOTI GITIK

a master condition sequence, using the closure of the forcing above x in My
exploiting GCH to ensure that there are only x™-many dense sets to meet. This
defines Gy, . As for Fy;, . we first find an My[Gy, ]-generic F,; x H, € V[Gy * F]
again using GCH . closure of My[G,,] under k-sequences and the closure of the
forcing (Cohen(x;. 5,7)?)MUl%1]. Let us alter some values of F, ,and H; to define
Fo, =(fry |7 <n&{)and H,, = (h , |y < ;) such that for every a < "

(1) fryi@) [ 6= jj@) | &= fra-

(2) Sy jy(K) = .

Formally, we change every pair of partial functions p = (po. p1) € F,; x H, tothe
pair of partial functions p, = (pg. p}) such that dom(pg) = dom(py). dom(p}) =
dom(p;) and for every (., d) € dom(py):

[rao(0). 3o <kt.a=ji(ag) andd <k,
Pé((a,5>) = 1ap, Jog < kT.a = ji(ag) and § = &,
po({a.d)), else.

Srao@).  Fag < k.o = ji(a) and d < .

pi({e.0)) = (). else.

Note that for every po, p1 C Cohen(k;, nf)M vl we only change k-many values
as My[Gy,] = | dom(po)|.|dom(p)| < k. hence

ik N{a | 30.(a.0) € dom(py)}| < &

s

since ji(k%) = U/ {k™, the same holds for p;. It follows that
p* € (Cohen(r, k" )?)MvlGnl,

Changing less than x;-many values of a generic for Cohen(m,/-al*)2 does not
impact the genericity. Hence Fy x Hy, = {p* | p € F X H_ } € V[G x F] is
still My |Gy, ]-generic.

Since at x we only force Cohen(k, k™). in order to extend j; we only need a
generic for Cohen(m,nf) in the My-side. We constructed F,, so that j{'F, C
F,,. hence j'G. * F, C Gy, % F,, (H,, will be used later). Thus in V[G, * F,].
we have extended ji C j| : V[G, * Fi] = My[Gy, * Fi,]. Let us note that j; is
actually the elementary embedding derived from the normal measure U C U° :=
[X € PY1owBi(x) | & € j7(X)}:

Clearly the function ko: Myo — My[Gy, * F,,] defined by ko([f]y0) =
Ji(f)(k) is elementary. To see the ko = id let us prove that ko is onto. Fix
A= (é)gﬂl*pnl € My[Gy, * F,,] and let f € V be such that j;(f)(k) = 4 and
define in V[G,, * F,] the function f*(x) = (f (fxx(X)))G.xF,- Then

koipo (/) ) = 71 (f*) (k) = GG (L) (6D, o1, =

= (1)) oy = (A ery, = A.

Recall that we have constructed the function H,, € V[Gy * F] such that F, x
H,, is My[G,,]-generic for Cohen(k. x;")%. Now we wish to extend k : My —
My to k™ : My[Gy, * Fi, )] = Mp[Gy, * Fi,]in V[G,, * F,;]. We do this by taking
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G, N k1 = Gg,. at k1 we force Cohen(k;. ;") x Cohen(k. k|") putting the generic
F,, x H,, . thenexploiting the closure and GCH to complete to a generic Gy, * F,, , €
V[Gy * F]. Finally, we wish to modify some values of F;, to a generic Fy, = (f'x, ; |
7 < k) so that for every a < k"

(1) fnz.k(a) [ K1 = ffi]‘a-

(2) For a € jf/K,+, fnz,k(a)(ﬂl) =1.

(3) Fora € fc?‘ \Jji'&™". f,iz‘k(a)(m) =0.

(4) fraz«/@l (K;I) = K.
Again, this is possible since we do not change too many values of F’ ,;2. At this point,
let us emphasize that we do not use H,, in the generic we have in the My-side °.
The generic H,, is used in the construction of the generic on the M ;»-side where we
can choose (due to the lottery sum) to force at x; two copies of Cohen(k. ;). of
course, that at k, = j>(k) we are still obligated to force one copy of Cohen(k,k; )
which contains the point-wise image of F,,; under the factor map k.

Hence we extended in V[G, * Fi]. k C k* : My[G, * Fe,] = M2[Gy, * Fy,].

V MU MUZ

kNFlil g FKQ Th2

k
]]IanFnl TR1=---------- Fﬂl XHnl
71 G(’W‘l) GK] =G, *xF, % G(n,nl))
Ferk=--------mm--- F,
G, Gy

Letji = k*o ji, V" = V|G, * Fl. M{ = My|Gy, * Fy]Jand M = M 1[Gy, *
Fy,].
In V'*, define

U'={X Ckrl|rejU)}

W={XCk|r € j;X)}

3Since over V, at k we forced one copy of Cohen’s, i.e., Cohen(k, 1), over My we need to force only
one copy of Cohen(x;. ”1+) thus we only need the generic Fy;, .
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and for every a < s,

Ao ={v< k| fralv) =1}

Then as in Claim 2.8, we have that W is a k-complete ultrafilter over x such that:

(1) ji =Jjy-Jjs = jw and [id]w = &i.
(2) (Aq | @ < k™) is a strong witness for W being non-Galvin.
(3) Cub, C W.
(4) Ly = {a < s | Cohen(a, a™) x Cohen(a, a™) was forced in G} € W.
Also, recall that j,:V — M, is also the ultrapower by U x U under the
identification(isomorphism):

Jur (k. k1) = jo1(i(v = f(v.%)(K)) (k).

Clearly, the projections 71, 7> : k X kK — & on the first and second coordinates (resp.
Rudin—Keisler) project U? on U. Also, WNV =U*NV =U and U* <gx W
and the projection map is denoted by v > 7, (v).*

Let us prove that W witnesses the theorem:

THEOREM 2.11. Let H C Prikry(W) be a V *-generic filter. There is G* € V*[H]
which is V *-generic for Cohen(k, k)"

PrOOF OF THEOREM 2.11. Let (¢, | n < w) be the W-Prikry sequence correspond-
ing to H. Suppose without loss of generality that for every n < w, ¢, € Ly, this will
hold from a certain point and the proof can be adjusted in a straightforward way.
This guarantees that the generic H,, = (h.,, | y < o) for the second component
of the generic we have in G, for Cohen(c,, ¢,”) x Cohen(c,. ¢, is defined for every
n < . The functions /., , will be used below to define the Cohen generic functions.

Define, for every n < w, the set

Zy={a<k"|{cn|n<m<w}C A4, and n is least possible}.

For every a < k™. let n, be the unique n such that a € Z,,. Let a < ™, and define
fok — Kk as follows:

Fix a sequence (s, | @ < k1) € V* of canonical functions in [],_, v*:

V<K

f; r Cng = hcnasa(c'na>’

Sallema.cm) = hep, sotem) | [€mt.Cm).form ng <m < w.
Let usargue that F = (f* | & < x*) induces a Cohen(x. )" generic filter over
V.
Cramv 2.12. Let G* = {p € Cohen(k. k)" | p C F}. then G* is a V*-generic
filter.

Let A € V* be a maximal antichain in the forcing Cohen(x., xT)"" Note that
since Cohen(k, 1)V is k-closed then

*

Cohen(k, k7)1 = Cohen(k, ™).

4“Explicitly, one can define in ¥'[G] the function f () = fr.a(@). Then j5 (f)(k1) = fryum, (k1) = K.
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By kT-cc of the forcing Py, there is Y C k™, Y € V such that |Y| =« and
A C Cohen(k, Y)V*. Also, since |A| = k. A € V[G, * F,], there is Z C k™ such
that |Z| = « such that A € V[G, * F,; | Z]. Without loss of generality assume that
Z = Y € V (Otherwise just take the union). Let ¥ > ¢ : kK — Y be a bijection.

CramM 2.13. There is an €-increasing continuous chain (Ng | f < k) of elementary
submodels of H,, such that:
(1) |N/j| < K.
2) Gy, Fo. A. b, (54 | @ < KT) € Np.
3) Ny Nk = yppisacardinal < k. yg.y is regular.
4) Forevery p.d € ¢"yp.p <9 = Vyg < u < k. 5,(1) < s5(u).
5) If yg is regular, then N;yﬂ C Ng. In particular Cohen(yg. ¢"yp) =
Cohen(k. Y) N Ng.

Proor oF Cram 2.13. Let us construct such a sequence inductively. Note that
(4) follows from elementarity and (2). Requirements (1)—(5) are preserved at limit
stages due to continuity. At successor stages, suppose we have constructed Ny, find
an elementary submodel Nj | such that Ny C Nj), . (No | @ < f) € Ny, . then we
construct an auxiliary €-increasing and continuous chain of elementary submodels
(N | o < k) as follows: Ng .1 1s already defined. At limits we take the union and

(
(
(
(

+
at successor let us take care of requirements 3 and 5. Let y/, = sup(N [‘31 N k) < K.
Let Nﬁ"‘jll be an elementary submodel such that N /?,<Vr/1 .C N/‘jj_’l] and |N/‘;j1'| < K.

Note that the sets

C={a<k|Ng Nk=y, €K},

C, ={a € C | if y, is regular then N7« C N, }

are clubs and also C = Cy N Gy is. It follows that {y,, | & € C}isa club and since &

is measurable, there is a o* € C limit such that y/. is regular. Let Np, | = N/?il’ to

conclude 2 since yg,1 = .. is regular. -
Set
C={B<rly=45}

This is club in & since the sequence y; is continuous and since the set {f | y5 = f}
is a club.

CLAM 2.14. Let
E:={B<k|Vyed"BII< P fry | B=Sps}.
Then E ¢ W.

PrOOF OF CLAIM 2.14. By construction, for every a < k. Srrk(a) [ 61 = fria
and therefore for every a € j5(¢)"ki. thereis v < k| such thata = k*(j;(¢))(v) =
k*(ji(9)(v)) and ji(¢)(v) < k. Hence fu, o | ki = fy p for some f<k/.
Reflecting this we obtain the set £ € W. B

To see that G* N A # 0, we will need to catch a piece of A in the elementary
submodels constructed and pick the Prikry points in the club C prepared:
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Cramv 2.15. For every vo € CNE, there is d =d" € Ny, N A such that d is
extended by (h, ..y, | T € ¢" o).

ProOOF OF Cram 2.15. Fix any vy € C N E. Consider the transitive collapse of
m: Ny, — Ny Then the critical point of Tl Ny — Ny is vo and 7' (v) = k.

Denote by F,, = n(F,.). ¢ = n(¢). Denote F,, = <7w | y < n(x™)). Forevery y €

ENV(), there is some ¢ < vy such that
y = 2(6)(6) = 2(6(0)) and T, = 7l p05)-

Moreover, since vo € E, f, 4(5) [ Vo = fy,., for some p < vot and therefore 7&? =
fvyp- Recall that A = (4)g,+r,v. hence A= (é)Gvo .F.17- We conclude that for
some subset Z C vy ™",

A = (‘,é)GVO*FyO rZ e V[GVO * FVO r Z]'

Since vo € L. in V[G,, * F.] wealso have H,, = (h,, | @ < v;") which are mutually
Cohen-generic over V[G,, * F,, | Z].

By construction, Y7, < 73 € ¢”vo. 57, (vo) < 51,(vo). hence (h, ;. () | T € ¢"v0)
are Cohen functions over vy which are distinct mutually V[G,, * F,, | Z]-generic.
Also, A C n(Cohen(k, Y)) = Cohen(vy. 7(¢)"”vy) = Cohen(vy, n"'[¢"vo]) is a max-
imal antichain. Since |n” ¢ vo| = vo = |¢” vo|, we can change the enumeration of the
functions (/, .(,,) | T € ¢" o) to h;(f) = hyy 5. (v, SO that (1, | p € 7" ¢" vy) is generic
for Cohen(vy, " ¢). Thus pick dy € A such that dy is extended by (h, | p €n"¢"w).
It follows that

d:=n" (d()) e AN Nvo

is a condition with dom(d) = 7' (dom(d,)). Since the critical point of 7 is vy, for
every (o, f) € dom(dp). 7' ({e. B))) = (o, w1 (B)), hence

d((a.w ' (B))) = 7' (do(e. ) = do(ev. B).
In particular for every (y, a) € dom(d),
d(y.a) =do(p.n(@)) = hy ) (V) = hyg 00)(7)-

Thus d is extended by (A, ;. () | T € ¢"v0). =

It suffices to show that any condition in Prikry( W) has an extension which forces
that G* meets a member of A.

Let p = ({). B) be a condition (we assume for simplicity that its finite sequence
is empty) and shrink Bto BN C N E. For any vy € BN C N E, we split ¢ vy into

two sets:

X" i ={t€¢”v| v € A}and X|° = ¢"v\ X,°.

https://doi.org/10.1017/js1.2023.59 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2023.59

ON COHEN AND PRIKRY FORCING NOTIONS 877

The condition py = ((vo), BNCNENXN(N A.)) forces the following:

TE(b”VU
(1) The Prikry sequence is included in each 4.. 7 € X°. i.e.. n. = 0.
(2) n, = 1. forevery r € X,°.
In particular, this condition forces some information about the Cohen functions.
Namely that:
(1) Fort e X,°. fZ1vo=h
(2) Fort € XIVO, f* TVO =h

T

vo.sz(vg)*
s | Vo

We would like to find a condition in .4 which is below these decided parts
of the Cohen. By the previous proposition, there is d € N,, N Cohen(k. Y) =
Cohen(vy. ¢""vp), which is extended by (, () | T € ¢”'v). However, by (1) and
(2) we can only ensure that the generic /' to extend d | vy x XOV0 in XOVO. We are left
to extend d [ vo x X,". Let us show that for many vy, X is a relatively large subset
of ¢"'vy:

CLAM 2.16. Let
R={v<k|Vae d"n,(v).veAd,}.
Then R € W.

ProoF. Clearly, forevery a € j5(¢) k.o = j;(¢(y)).and f, o(rk1) = 1. reflect-
ing this, we can find a W-large set of v’s such that for every a € ¢"m,. (v),
fra(v) = 1. And by definition of 4,., v € A4,. 4

Denote By := BN C NENR. In order to extend d | vy X X7, we will need to
pick vy high enough in By, but also the next point v; € By \ vo + 1 in the Prikry
sequence such that it will belong to all 4, with 7 € X; and in addition the relevant
Cohen functions over v; extend d | vy X Xj.

Let us look at By more carefully. Let By be its name in V. We fix a condition
my € G, * F,, which forces that if vy € By then the properties of Claims 2.15 and
2.16 hold, namely there is d € Cohen(vy. ¢"vo) N A which is extended by (/1 . () |
vo € @), and Va € ¢ 7,0, (v0). Vo € Aq. Recall that by the construction of G, .
we have my € G, * F,. Letimg <t € Gy, * Fy, be a condition such that

(1) tlF kK € jz(%))

By the construction of G, * Fy,. t has the form:

I = <t<li> tﬁ’ t(lﬁ,lﬂ)’ <[21 ° tli] >’ t(lﬂ.lﬁz)’ t"€2>'
——

t”l
Since f, j,()(k1) = 1 for every a: < ™, this will hold for every a € ¢ as well.

Also, recall that Y € V', hence ¢ € V. Thus j2(¢) € M, and j>(4)"k € M;. Also,
for (l,ﬁz)Gm2 € M)[G,,].

JyeT N Supp((t,ﬁz)%) € M[G,]
and (lnz)an F K X {]2(a)} g fn.,a' We also fix 0 < H+ such that Supp((lNZ)G’Q) <

J2(0). there is such 6 since j)'x" is unbounded in j>(x"). Therefore, we can extend
if necessary ¢ such that
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(2a) <k, IF (kU {Hl}) X .f2(¢)llﬂ - dom(tnz) N (0.51) € dom(tnz) A Supp(tﬂz) C j»(0).
(2b) t<py IF 1y, (k1. ) = 1, forevery a € jo($)”k and 14,4, (0) = k.
(2¢) t<ws I+ 1y jy(a) | £ = [ forevery jo(a) € j3'x™ N Supplix,).

Next consider #,, = <tO ) it is a P,,-name for a condition in Fy x H,, . By
the construction of the generlc F,, x Hy, . for every a < k", we made sure that
h l'6 = fra. Also, ji(¢)"k € M. Let

m1 = (]1 [ Hli)il e M,.

Note that for every f < &, ji(sp) = 5;,(5) : K1 — &1 is the canonical function for
J1(p) defined in My . hence ja(sp)(k1) = k(s; () (k1) = ji1(B). Hence

dom(u1) = ji(¢)"k = {s,(k1) | y € jz(¢)”fi}, rg(ur) = ¢"k C k"

Extend if necessary ¢, , and assume that

K1.j1 (@)

(3) ten, IF K x ji(8) 'k C dom(z, )/\VJI( ) € j1(@)"k. t,.il j1(a) &= fra-

~

As for the lower part, due to the Easton support, we have
(4) tey € V.

Fix functions r,I'; which represents ¢, u resp. in the ultrapower M, namely
Jj2(r)(k, k1) = t. j2(T1)(k. k1) = u. Without loss of generality, suppose that for
every (v/,v). it takes the form

r(v/,v) = <r<v’rv’»r(v’,v) <}’1(,),}’]}> r(v,n)’rﬁ>'

Reflecting some of the properties of ¢ we obtain a set B’ € U? such that for every
(v'.v) € B

(1)(yryy r(v'.v) IF v € By.
(2a) (1 rex IF (0 U {V}) x ¢"v' Cdom(r,) A (0,v) € dom(r,) A Supp(r,) C

0.

(2D) (1 3y rew IF Vo € "V ro(v) = Land r,,(0) = V',

(3) (v F<v IF v x dom(Iy (v, v)) € dom(r!) and forevery 8 € dom(I'; (v/. v)).
g 1V = Lorme:-

(4)(,,/.1,) Py =ty € V.

"={v |30, v) e B'r(v,v) € G x F,}.

Since B’ € U? we have that (k. 1) € j>(B’) and since jo(r)(k. k1) =t € j53 (G *
F,.) = Gy, * F,,. we conclude that B” € W. Also, B” C B, by clause (1).

We proceed by a density argument, recalling that by the definition of G,, we have
that (t., 1) € G, * Fy.
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Cram 2.17. Let D be the set of all conditions q € P.y1, such that exists
(vg-vo). (vi.v1) € B'. v{ > vy and a P, -name d " such that:

(a) r(vj.vo). r(vi.v1) < gq.
(b) ¢ IF d" € 4N Cohen(vy. ¢"vy).

() glFvVTe X" h, oo | vo=d"

~V1:5t

Then D is dense (open) above (t.. t) and thus D N G, * F,; # ().

ProoF. Work in V, and let (1, 1) < p := (p<k. Px) € Pri1. We will define two
extensions p < ¢ < ¢* which corresponds to the choice of (v. o). (v{. vi) such that
g* € D. By definition of P, . p< IF p. € Cohen(k,x"). by K —cc of P, for some
ZCk", ZeV,|Z| <kandsomey <k, pey IFdom(p,) C y x Z. Applying j,,

we have that

j2(1’<n) = p<x b dom(jz(p,.;)) c jz()’ XZ)=1y X% Jé/Z and j2(Pn)j2(a) = pra 2 lka.
Combining with (2¢), we have both

D<x I-Z 2 Supp(tn) /\Vﬁ € Z~j2(pn)j2(ﬁ) > tn,/f,

ey 1V 2(6) € SUppliay) 0 12 (Z)-t0 1y 17 = L 17
To reflect this, denote u = (j> [ (ZU0))! € M,. then

dom(u) = j2(Z) U j30. mg(u) = Z U 0. wis 1-1,
and we can reformulate

P IF 1" j2(Z) 2 Supp(te) AV € jaZ).j2(Pr)p = L uip)-

t</€2 IVt e Supp(tnz) n jZ(Z)‘tnz.T f Y= zn,u(r) r V-

Also, since we can find § < & such that t, IF ¢”"(6. k) N Z = (). There exists such &
since | Z| < k. t<, IF | Supp(z,)| < & and by k-cc of P,. Recall that by the definition

of ui, ¢"0.k) = ui{s,(k1) |y € ja(¢)"(d.x)} and that u" Supp(j2(ps)) = Z.
Therefore in M, we will have that

P F [ {5, (k1) |y € ja()" (6. £) 11N [1” Supp(j2(pk))] = 0.

Let T be such that_jz(l")(n, k1) = p. and there is a set By C B’, By € U? such that
for every (v/,v) € By.

(1) pax IFTO )" Z 2 Supp(ry) AV € Z.pep > 1y 1o 2)(p)-
(ii) r<x IFVT € ZNSupp(ry).res |7 = Z/V,,F(VIJ,)(T) [y,

(iii) pax IET1(V".0)"{s,(v) [ 7 € ¢"(0.v)} N [T (V. v)" Supp(px)] = 0.

Let us move to the choice of (v).vp).(v{.v1). In V[G, % F,]. there exists
(vd.v0), (W9, v1) € By such that r(vd,v).r(v),v) € G, * F, (hence they are
compatible) such that vJ > d.7.sup(Supp(p<,)) and ¥ > vy, Supp(r<x(v.v0)).
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In particular, in ¥ we can find (v§. vo). (v{.v1) € ‘B, such that r(vg.vo). r(v].v1) are
compatible, vj > J. . sup(Supp(p<)). and v{ > vo. sup(Supp(r<, (v§. vo))). Denote

0

Y i=r(vhw) = <rgv(,),r86,r0 0y

Jre),
(gm)> Tl

rhi=r(v].v) = (rl‘,{,rvi,r(vm), <r81'1,rvll"l>,r(lvlﬁ),r;).

Let us define the first extension ¢, and it has the form:
q = P<;¢ACIV(’)A”(OV(/)A’N)A(]~'
First, Qv is a P,;-name for a condition with Supp(qv(/)) =T(vj.w)"Z. by
. 0 . .
(i) Supp(ql,(/)) 2 Supp(rv(,)). Set Gy rivyv0)(p) = Pr.p- As for g,. we set it to be a
P.-name for r’ U p,.

Once we w111 prove that p_..r%, < g<.. from (i) and (ii) it will follow that g,
forces ¢, to be a partial function. Indeed, for every g € Supp(r?) N Z, g, will force

ragly= Sy g 8) 17 2 4y 1o ) (8) = Prp-
Clearly p < g. To see that r” < ¢. up to v}, we have that by (4)<"’6»V0) that

_ _ .0
Q<v6 - P<n 2 [<n - V<V(/)~

At v, if oo =T(v).v)(B). then (i) insures that Qfo = Prp > rvo,u. Since in the
interval (v]. /-e), g and r° are the same, it follows that g, > rg,i and at « it is clear
that g, IF 10 < g,.
Next let us move to the choice of . Since " <gandmg < (tep.t) < qlF v €
B,. use the maximality principal to find a P,,-name, d ' such that g forces (b)>
Define the final condition ¢ < ¢g*,
4" = q<x q*/mr(lv ,i)ﬁ(]:-

The crucial point here is that by (Zb)

vvl

e IF 0 = [ (0) =1, (0)

and since ¥ I- vy € R we have that r° IF X} C ¢"(v(.v) C
haVe that q<x H_ [Fl (vls V]) {Sy(vl) | Y c Xv()}] ( ) Z
to code d", let

Supp(gyr) = [T1(v.v))"{s;(n) | 7 € X"} [C(vi.v1)" Z]

%0

¢" (v{.v]). By (iii) we
(). This will permit

and

«  Naep. IBETO)"Za =T v)(p).
Bla=1a®. Foexa =T n)(s(n)).

3Since the tail forcing Ply.x] 18 vo-closed, if there is such d* € V[Gy * Fy] then |d*| < vy, hence
d" € V[Gy,).
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and ¢* = ¢, U r1 Note thatif r € Supp(g,) N Supp(r}) then either € Supp(r?) N
Supp(rl). and 70,7} are forced to be compatible by ¢, and if 1 € Z N Supp( )
then the same argument as before works. We conclude that r0 < q <q*, rl < q*,
namely (a). Finally, for every r € X|°, 5.(v) € dom(I";(v{.v;)) and by (3)(%”1) we
have that ¢g* forces that

) * v
Q"l»ﬁ("l) [vo = L"{~F1("{=Vl)(é'r("l>) [vo = qv{.l"l(v;,vl)(sr(vl)) = fc\lﬂo'
Then p < ¢* and ¢* € D. -

By density, we can find such a condition p* € G, * F, N D and points
(v§. o). (v{.v1) € B witnessing p* € D. It follows that r(vj. vo). r(v{.v1) € G, * Fj.
and by (1)(\,61‘,0), (1)(‘,;1‘,1), Vo, V1 € B(). Extend <<>B> by p* = <VO,V1,BO n

(mre¢”v0AT> \ V1 + 1> By (2b)("{-"l)’ for every 1 € (ﬁ”\/() - (ﬁ”\/{, fn,r(vl) =

0, 7e€X,
%In other words,

re.(v1) =1, hence v| € N;cyr,, A, and p* Ik n, =
A(l) 1 €é'vy p {1’ reX,

since vy € By,

PrIEVT e Xo.f Tt [vo=h

vo.sz(vg)*
prIEVT € Xl.f*f Fvi =1y, )

Letd = (dVO)Gv € Cohen(vy. ¢"vy) N A, it follows that p* IF ¥Vt € Xj. ff extends
d.. and by (c) of the definition of D, p* IF V1 € le extends d,. Thus p* IF d €

G* N A. This concludes the genericity proof. -
_|

§3. The results where 2% = k™.

3.1. Strong non-Galvin witnesses of length 2 = ™. In this section we produce
a model with a non-Galvin ultrafilter with a strong witnessing sequence of length
2% = g**. This will of course require to violate GCH on a measurable cardinal
and in turn to start with a stronger large cardinal assumption (see [15, 32]). We will
follow a similar construction to the one given in the case of ™ addressed in previous
sections. Indeed, instead of iterating Cohen(a, ™) we will iterate Cohen(a, o)
aiming to force Cohen(k, k™), from which we will be able to define a non-Galvin
ultrafilter and a strong witness of length x* in a similar fashion to the one we have
on k7, distinguishing between «’s which are in the image of the second iteration
and those which are in the image of the factor map. The difficulty is, as always, to
extend a ground model embedding. By the large cardinal lower bound, we can no
longer work with an ultrapower by an ultrafilter. The usual embedding to lift in
the context of violation of GCH at measurables is a (k. x*+)-extender ultrapower
embedding, which we will use here. This makes the lifting argument more involved
and the existence of generic filters for the iteration requires variations of Woodin's
surgery method (see [12, Section 25]).

THEOREM 3.1. Assume GCH and that thereis a (k, K+ )-extender over k in V. Then
there is a cofinality preserving forcing extension V* such that V* =25 = k™, and in
V* there is a k-complete ultrafilter W over k which concentrates on regulars, extends
Cub,.. and has a strong witness of length k™t for the failure of Galvin's property.
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ProOF. Let E be a (k,x™1)-extender. Let j; = jg: V — Mg =: M; be its
ultrapower embedding with crit(jr) = k and "My C Mg. Denote by E, the
ultrafilter

E, ={XCkl|acje(X)}

Denote U := E, the normal ultrafilter and let k : My — Mg be the factor map
defined by setting k(jy(f)(k)) = je(f)(k) such that jr =k o jy. Define an
Easton support iteration (P,. Qg | o < k + 1. f < k) as follows:

Qy is trivial unless f is inaccessible, in which case Qp = Cohen(p. ).

Let Gyi1 = G, x g, be a V-generic subset of P,1 = P, * Q. Keeping similar
notations to those from previous sections, let (/.o | @ < £TT) be the Cohen generic
functions from « to 2 introduced by g.

Now we apply Woodin’s argument (see [12, Section 25], and [10] for constructing
generics without additional forcing) to see that there will be G (1 ¥ H* C
JE(Pei1) *Sp in Vi := V[Gei1][H]. where H C Sy is a V[Gyyi]-generic filter,
where Sy is some kT-distributive in V[G.,1] (in the case of Ben-Shalom, there
is no need for H* and we can work directly in V' [G.]) generic over Mg and an
elementary embedding

iV = MEe[Gj (o)+1 * S

which extends j;. Recall that the generic filter constructed for j;(Q,) is obtained
by a surgery argument, making small changes on an M,[G; (.)]-generic filter / to
be compatible with j{'g.. For our purposes. we need some additional changes to be
made; for every p € f we change p to p* such that dom(p*) = dom(p) and

f5(). y<kAa=ji(p).
p((y.a)) =1 p. y=kANa=ji(f).
p((y.a)), else.

To see that p was only changed at x-many places. find a € [x"+]<® such that
je(P)(a) = p. where P : kl“l — Q.. By elementarity. for every (a. ji(f)) € k x
Ji's*T ndom(p). there is x €[] such that (a, ) € dom(P(x)). It follows
that |x x j's™" Ndom(p)| < k. Moreover, |{x} x j/'k*" Ndom(p)| < k. since
otherwise there would be some o < k™ such that

cf(a) = k* and sup{jg(B) | (k. je(B)) € dom(p)} = je(a).

But | dom(p)|™ < ji(k)and cf™ (j(a)) = ji(k)* whichisa contradiction. Hence
p* € Mi[Gj, ()] since we have only changed p at k-many values and "M, [G}, ()] €
Mi[Gj ()]

The argument that such changes do not affect the genericity is the same as in [12].
So we additionally obtain that f ; s (k) = . forevery f < x*F.

We also claim that j; is actually the ultrapower embedding by the normal
ultrafilter

U*={X Cr|rejiX)}

extending U. To see this, consider k*: My~ — Mi[G} ()1 * H*] defined by
k*([f1u=) = ji(f)(k). which is clearly elementary. To see that k* = id. let us
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prove that k* is onto. Fix 4 = (A)Gjl(ﬁm*ﬂ* € Mi[Gj (1] and let f eV,
a={o. ..o} € [k7T]<? be such that ji(f)(a) = 4. Define in V[G.41] the
function £*(x) = (f ({fay (x). . far (x)}))G, 1<~ Then

k(o (F)) = ji (f 7)) = WG (o) (8). oo T (Fa) () D)G, et

= G @)a, ., = (A)a, ot = A

We would like now to construct a k-complete ultrafilter W € V[G41] over &
which includes Cub,, and the family (4, | & < ™) which is a strong witness that
W fails to satisfy the Galvin Property. Set

Ay :={v< k| falv)isodd},

foreverya < k™.

Consider the second ultrapower (of V) by E, i.e., Ult(Mg, jg(E)). In order to
simplify the notation let us denote My by M; and Ult(M;. j;(E)) by M, and
Ja1 = jjl(E) My — M. Also, let k) = j](h',),El = j](E), and Kk = jzj](lﬁ',]). Let
j2 : V' — M, be the composition of j; with j, ;.

Work in M[Gy, 1 * H*]. and apply there the Woodin argument to E;. There
will be Gy,q1 * H** C jo(Pg * Qp o) (in M[Gy, 41 * H*]) generic over M, and
an elementary embedding

Joit Mi[Gep1 x HY] = MGy x H™]

which extends j £, . Additionally. for every a < (k] +T)M1 Jet us arrange the following:
(1) f“2121 a)(’fl) isodd, if o € ]Hlﬁ:++
( ) fﬂz J21(a ( )ISdneven iface ( ++)M1 \],, ot
( ) fng.ml(lﬁ) =K.

The point being that this requires only small changes of conditions in
(Cohen(ka. k5 7))M2, and so preserves the genericity.
Namely, given p € (Cohen(ky, (k2)™"))M2, define p* such that dom(p*) =

dom(p) and
Fep). v <k A<k Ta=j(p).
ﬁ2+1, y:m/\ﬂﬁej{’/ﬁ+.a:j2_1(/)’),
p((ra)) =182 y=r1A3B TN\ IR j21(B) = e

K, ) =a =K,
p({y.a)). otherwise.

In V[Gy1 x H]. |Supp( )N Jj3"k*t| < k and M[G, 41 * H*] is closed under -
sequences, hence p* € M,. The argument we have seen before applied in M1[Gy, 41 *
H*] shows that

Ml[Gn1+1 1FE |d0m(p) N (k1 +1) x ]2 1(KT+)M1[G“'+1]| < Ki.

This implies that p* € M>[Gy,1 * H**] since M>[Gy, 1 * H**] is closed under &-
sequences from M;[Gy, 1 * H*]. Then the embedding j, : ¥ — M, extends to

i3 V[Geir % H*] = Mo[Gey 1 % H™].
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Define now
W={XCk|r €j(X)}
Cram 3.2. (1) ]W:];[Zd]u/:lil,U* <rik W.
(2) Cub, CW. {a<k|cf(a)=a)} e W.
(3) The sequence (A, | a < k™) is a strong witness for ~Gal(W, k, k™), where
Ao :={v< K| fra(v)isodd}.

Proor. Indeed Cub, C W and {a < k | cf(a) =a} € W, is the same as in
Claim 2.8 from the last section. To see (1), we let ky : My — M>[j;(G)] be the
usual factormap kw ([f1w) = j;5(f) (k1) and we prove that k- = id by proving that
kyw is onto. Let A € M[G, 41 * H**], then 4 = (A)GK L+H++ Where 4 € M is a

Pryi1 * J2(So)-name. Since j,; is a (k. ”1 )-extender ultrapower thereis f € M,
and a € [k 7]<” such that 4 = j,,(f)(a). Suppose that a = {ai.....a,} is an
increasing enumeration. Then by construction, f, ;. (a,) (1) € {@; -2, -2+ 1}.
In particular we derive «; from f,.i2 e ( 1) °. Define gq, : k1 — K1 € M[Gg, 11 *

a fli j o; ('i ) .
H*] by gq,(a) = Lf'” o )J then j5,(gq,)(k1) = L%J = ;. Finally, let

gla) = f(gq (a)... ,gan( )). Then,
J21(&) (k1) = ja1(f) (31 (8ay)(K1). o 51 (8an) (K1) = Ja1(f)(a) = 4.

We already know that M,[G,, 11 * H*]is the ultrapower by U*, hence g = j; (h)(x)
forsome 1 € V[Gryi * Hland in turn 4 = j3 (h)(k. k). Finally, we made sure that
K 1s expressible by x;, so we define in V[G. 1 x H] f* : k = k by

() = (h(frala). a))e.

It follows that
w (L 1w) = J2(f ") (K1) = (G5 (B)(f rymy (fil),fil))GNZH*H**

= (/5 (h)(&. K1) Gy s = (é)GQH*H** =4
this concludes (1). (2) and (3) are completely analogous to Claim 2.8. -
_{

3.2. Adding ' -Cohens using Prikry forcing. The construction of the previous
section can be modified to obtain a model in which there is a k-complete ultrafilter
U* over k such that Prikry(U*) adds a generic filter for Cohen(x, x**). This will
require the violation of SCH and in turn larger cardinals [16, 33].

THEOREM 3.3. Assume GCH and that E is a (k, k™1 )-extender in V. Then there
is a cofinality preserving forcing extension V* in which 2% = k*" and a non-Galvin
ultrafilter W € V* such that forcing with Prikry(W) introduces a V *-generic filter
for Cohen"” (k. k*1)-generic filter.

6 An easy transfinite induction proves that if an ordinal y = -2 ory = -2 + 1. then f is unique,
and we denote f# = | £].
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Proor. Let ji:V — Mg =: M, be the ultrapower embedding of E with
crit(j1) =k and "M, C M, and k; = ji(k). Denote by E, the ultrafilter {X C
k| a € jg(X)}. As before, denote E, by U and let k : My — Mg be defined by
settingk (ju(f)(k)) = je(f)(k). Define an Easton support iteration (P,. Qp | a <
K+ 1, B < k) as follows: ~

Qp is trivial unless f is inaccessible. If f < & is inaccessible, then

Qp = LOTT(Cohen(f. 7). Cohen(f, f7*) x Cohen(p. f77)).

Over k, we let O, = Cohen(k, k*71).
Let Gy = Gy, * F,; be a V-generic filter of P,.;1. We denote by Fy, := (fa, | 7 <
a™) the generic Cohen function if Cohen(a, a**) was forced in G, and by

Fo:={fay|y<a'™), Hy:=(ha, |y <a™™)

if Cohen(a, ™) x Cohen(a, at*) was. The elementary embedding j; extends
to ji : V[Gky1] = M1[Gg, 11] such that at « we forced one block of Cohen’s,
Cohen(k, k™), and for every a < ™+,

f/'il.jl(a)(K/) = Q.

Indeed. in the Woodin and Ben-Shalom argument we first build the generic Gy, up to
k1 not including x in the same standard fashion as in [12]. The original construction
of Woodin or Ben-Shalom of the Cohen generic F,;, which is M;[G,, ]-generic for
Cohen(nl,nfr*)Ml[G“l] applies in our case, as it only uses the fact that M;[G,, ] is
closed under k-sequences and properties of Cohen(x. s, ). Since

Cohen(k;. ;") =~ Cohen(k.k{") x Cohen(s. s, ™).

we can split the generic Fy;, and assume itis of the form F,;, x H,, . whichis M,[G,, ]-
generic for Cohen(k,. k") x Cohen(x1. s, *). Work inside V' [G,. * F;]. and modify
the values of F,,, and H,,. as in the previous section so that for every o < x**,

fﬁlﬁjl(a) f K= hnl.jl(oc)-ZJrl f K= fn,oz

and for every o < K7, fo i (a)(K) = .
Lift j; to the embedding j; C j| : V[Gxy1] = MEg[Gy, * Fy,]. Note that H,, will
be used only later. Set

U*={X Ck|kej(X)}

then U C U* and j; is actually the ultrapower embedding by U*. Continuing
as before, consider the second ultrapower (of V) by E. Denote Mg by M,
and Ult(Mg. jg(E)) by M. ja1 = jj,(g) : M1 — M, the ultrapower embedding.
Also, let E| = ji(E) and k3 = jo1(k). Let j,: V — M, be the composition
of ji with j,;. The extension of j,; will be such that at x; we force with
Cohen(k;. ;") x Cohen(k;. k") part of the Lottery sum. To realize this, we define
in M\[Gy, = (F,, x Hy )] we take the generic G, up to ;. At k; we take Fy, x
H,,. then in M\[G,, * (F,, x H,, )] we construct as in Woodin and Ben-shalom
argument in V[G, * F,] an My[Gy, * (F,, x Hy,)]-generic G(,, . * F, such that
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731G, % Fy, € Gy, * Fy,. Denote by (fx,q | @ < (k3 7)M2) the Cohen function
induced by F, We also secure that for every a < (k{)1:

(1) fo ) = @21 1. € jt

(2) frpk(a) (k1) = -2 ifa € (k)M \ jErT.

(3) fryr, (K1) = K.

Formally, given p € (Cohen(k,, (ky)71))M2[%%] define p* such that dom(p*) =
dom(p) and
Fria®), v<miAB=k(a)
a-2+1, y=rAf=k(a) Nac jlctt,
P((.B) =2 y=riAf=kla) Nac(x H)Ml\J”f’€++
K, @ =) = Ki,
p({y,a)), otherwise.
In V[Gei1]. (p)NJjjw*"| <k and Mi[Gy, 1] is closed under -sequences.

hence p* € M|[G,,11]. The argument we have seen before applied in M;[G,, ;1]
thus

Mi[Gy 1] = [dom(p) N (k1 + 1) x i (s H) M) < .

This implies that p* € M>[Gy, 1] since M>[Gy, 1] is closed under x1-sequences from
Mi[Gy 1]

Extend in V[G, * F;l. ja1 C j5 : Mi[Gg, * Fy; — M[G, * F,] and let j3:
V(G * Fc] = Ms[Gy, * F,] be the composition /5, o j;'. Note that j3, is definable
only in V[G, * (F,]. Denote by V[G, * F,] = V*, define

W={XCk|r €j(X)}eV*and 4, = {B< k| fo(B)is odd}.

Cram 3.4, Wis a k-complete ultrafilter over k such that:

) Jw = J3. lidlw = k1. U* <p g W.
2) Cub, CW. {a<k|cfla)=a)}e W.
3) Ly :={p < x| Cohen(B, p7) x Cohen(B, ) was forced in G} € W.
4) Foreverya < k", Lig :={v<k | fralv)<vi T} e W.
5) The sequence (A, | o < k™) is a strong witness for ~Gal(W, k, ™). More-
over, the sequence (Ao, N Lo | @ < &™) is a witness for ~Gal(W, k, k+7).

(1
(
(
(
(

Proor. (1).(2), and the first part of (5) are the same argument as in Claim 3.2.
As for (3), note that we have constructed the generic Gy +1 = J5(Gyey1) so that on k;
we have forced Cohen(x. ;") x Cohen(k;. &, "). To see (4). for every a < k',

j;(fﬁ.a)("""l) = f/-az‘jll(jl(a))(ﬂl) = jl(a) 2+1< EfrJr-

Hence by elementarity, x; € j; (L ). Finally, the moreover part of (5), toward a
contradiction if there would be a set I € [T"]* such that N;e; 4, N L1, € W then
clearly N;c; Ao € W, contradicting the first part of (5) that 4,’s form a witness for
-Gal(W,k, k*7F). -

Denoted by v — 7, (v) the Rudin—Keisler projection from W to U*, and let us
prove that W witnesses the theorem:
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ProPOSITION 3.5. Let H C Prikry(W) be a V *-generic filter. There is G* €
V*[H] which is V *-generic for Cohen(k.k*+)"".

PROOF OF PROPOSITION 3.5. Let (¢, | n < w) be the W-Prikry sequence corre-
sponding to H. Suppose without loss of generality that for every n < w, ¢, € Ly.
Define, for every n < w, the set

Zy={a<k™ | {cn|n<m<w} C A,N L, and nis least possible}.

For every a < k™7, let n, be the unique n such that a € Z,,. Let @ < k%, and define
f¥:k — kK as follows:
Denote by

(fenala< C;T+>= (hepa | @< Cr—:_+>

the generic ¢,-Cohen functions forced by G and define the function f} : K — & by

fl;k = hL’na~fn.a(fna> U ( U hcmfn.a(l‘n) r [cn’l" Cn)> :

No <n<w

Note that the Cohen functions on x play the role of the canonical functions
from the previous section. Let us prove that F = (% | « < k') are Cohen generic
functions over V'*.

Cramm 3.6. Let G* = {p € Cohen(x, K)++)V* | p C F}, then G* is a V*-generic
filter.

Let A € V* be a maximal antichain in the forcing Cohen(k, x™+)"". Note that
since Cohen(k, kt)"" is k-closed then

Cohen(k, k)11 = Cohen(k, k)"

By xT-cc of the forcing, there is Y’ C x**, Y/ € V such that |Y’'| =k and A C
Cohen(k, Y’)V*. Also, since |A| = &, A € V[G,, * F,]. there is Z C k™ such that
|Z| = K such that A € V[G, * F,, | Z]. Without loss of generality assume that Z =
YeV.LetV 3¢ :k— Y bea bijection.

As in Claim 2.13, we can construct an €-increasing continuous chain (Ny | f <
k) € V* of elementary submodels of H, such that:

(1) |Ng| < 5.
(2) Guy1. A 6. Y € No.

(3) NyNk = yppisacardinal < . and g, is regular.

(4) If pp is regular, then Cohen(ys. ¢"yz) = Cohen(k, Y) N Ny.

Set
C={p<rly=p}
This is club in & since the sequence y; is continuous and since the set {f | y5 = f}
is a club.

Recall that by construction j; ((fxa | @ < 7)) = (fr,0 | @ < k3 T). Also, for
every v € j>(4)" k1 thereis y < k) such thatv = j>(¢)(y), and since crit(jr1) = k1,
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v = j21(j1(¢)(p)). Since ji(¢) : k1 — k" we conclude that v = j»(c) for some
a < (k)M which implies that

fnz.v(’fl) € {a 2,02+ 1}

Since ¢ is a bijection, for every distinct vi. v, € jo(@)" k1. [y (K1) # [y, (K1).
Reflecting this, we obtain that the set

E:={v<k|Wivmedvoi#v—= fu, ) # frn,(V)} € W

Also, by construction, for every a < 5", f, j, (a) | K1 = i .o and therefore
for every o € j2(¢)" k1. thereis v < k" such that

a = j21(j1(9)(v) = j21(j1(o)(v))

and j1(¢)(v) < & ". Hence fr, o | K1 = f, s forsome f < ;" Reflecting this we
obtain that the set

F={B<r|Vyed'BIO<P fr; | B=[ps} €W

Now the argument of Claim 2.15 applies since for every v € CNENF,
Vi <12 € ¢"vo. frz (o) # frr, (o). hence (Pyy.fre(vg) | T € @"v0) are distinct
mutually V[G,, * F,,]-generic Cohen functions over vy. Thus, we can find d €
AN Cohen(vg. vy ™) such that d is extended by (h ) | @ € ¢"v). Finally we
note that

vo-f k.o (VO

R:={v<k|Va € ¢d"mu(V).fralv)isodd} € W.

Let p = ({). B) be a condition, shrink Bto By:=BNCNENFNR e W,and
pick now any vy € By. Split ¢’'v into two sets:

X' :={r€¢"vo| v € A }and X|° = ¢" v\ X,°.

Since vy € R we have that X7 C ¢ (., (v0), v0). The condition py = ({(v), By N
(Meegrry, A2)) forces the following:

(1) The Prikry sequence is included in each 4., 7 € X,°. i.e.. n, = 0.

(2) n, = 1. forevery v € X,°.

In particular, this condition forces some information about the Cohen functions.
Namely that:

(1) Forte X,°. fZ1vo=h

(2) Fort € X]vo, f: [vo = h,&‘,l’fn.,f(,&‘,l) [

We would like to find a condition in A which is below these decided parts
of the Cohen. By the previous paragraph, there is d € N,, N Cohen(k,Y) =
Cohen(vy. ¢"v), which is extended by (/, ;. () | T € #”v0). As before we will
need to pick vy, v; so that d' € G*.

Let By be a name in V for By. We fix a condition my € G, * F,, which forces that
if vy € By then there is d € Cohen(vy. ¢"vy) N A which is extended by (4, 1, () |
vy € qﬁ”%}, and Vo € ¢" Tuor (Vo). Vo € Aq. Recall that by the construction of G, .
we have mg € Gy, * Fy,. Leting <t € Gy, * Fy, be a condition such that

(1) tlF kK € ]2(%))

vo.frz(vo)*
V0.
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By the construction of G, * Fy,. t has the form:

= <t<n= I, Z(’Wil)’ <t21 s trl:l)’ t(nl,/@)‘ Zn2>-
—_———

lK)

Distinguishing from the case of x*, we now have that f, ; ) (k1) = ji(a) -2+ 1
for every a < x™; this will hold for every a € ¢”x as well. Also, recall that Y € V,
hence ¢ € V. Thus j»(¢) € M, and j»(¢)"k € M>. Also, for (thy)Gry € Ma[Gy,].

JYETT N Supp((s,)6,,y) € Ma[Gr,]

and(t,.;z)c;ﬂ2 'k x {j2(a)} C fra-WealsofixX € V., X C k'",|Ny| < & such that

Supp((ts,)G.,) € j2(No).
Therefore, we can extend if necessary ¢ such that:

(2a) tar, I (8 U {r1}) x ja(¢)"k C dom(tx,) A (0. 1) € dom(ts,) A Supp(tx,) C jo(No).
(2b) t<py IF tey (k1. jo(a)) = ji(a) - 24+ 1, forevery jr(a) € j2(¢)k and tryr; (0) = K,

(2¢) tary IF 1y, ja) [ B = /:"'a for every jo(a) € j3xt N Supp(ts, ).

Next consider #,, = (79 .1} ): it is a P, -name for a condition in Fy, x H,, . By

the construction of the generic F,,, x H,, . for every oo < k™", we made sure that,
By i@zl | 6 = fra-Also. (ji(¢)"k) -2+ 1 € M. Let
w={i(a)- 2+ 1l,a)|acd"k} e M.
The fact that for every f < k™. f,, .5 (k1) = j1(f) - 2 + 1 implies
dom(u1) = (j1(9)"k) -2+ 1 ={fuy, (K1) | 7 € j2(9) "k}, tng(u1) = ¢"k C K™

Extend if necessary 7., , and assume that

K1.J1

(3) tary IF 1 x (j1(9)"k) - 2+ 1 C dom(tg,) AVji(@) € j1(@) k. 1y ()21 | &= [ra-
As for the lower part, due to the Easton support, we have
(4) 1<y € V.

Fix functions r, I'y which represent ¢, u resp. in the ultrapower M 2. namely for some
& e k172, ja(r)(&) = 1. jo(T1)(&) = u. Without loss of generality, suppose that
both x and & appear in &, k = min(¢) = £(0) and x| = &(ip). Then the functions
v €[]l — (3(0),¥(iy)) represent (k. k). Without loss of generality, suppose that
for every 7, it takes the form

g 0 1
r(¥) = (r<50): 5000 T60).700) T5(ig)+ T3(ig))» T (i)) T

Reflecting some of the properties of ¢t we obtain a set B’ € E(&) such that for
every v € B”:

"For aset of ordinals 4,let A -2+ 1={a-2+1|a € 4}.
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(1); V(V) I+ g(io) € By.

(2a); 1o IF (O U {(ip)}) x ¢"¥(0) C dom(r.)A(0.V(ig)) € dom(r,) A
Supp(r.) C Np.

(2b); r<x IF Yo € ¢"7(0).14.0(V(i0)) is odd and r, 5(;)(0) = ¥/(0).

(3)5 r<i(iy) IF ¥(0) x dom(T'y (V) € dom(rﬁ(A ) and for every f € dom(I';(¥)).

s 70 = Lrorme-
(4)17 F<j(0) = l<x € Va(o)-
Let
"= {v(ip) | I € B'.r(V) € Gy * Fy}.

Since B’ € E(&) we have that & € j>(B’) and since j>(r)(&) =t € J3(Ge* Fy) =
Gy, * F,,. we conclude that B” € W. Also, B” C By by clause (1).

We proceed by a density argument, and recall that by the definition of G,, we have
that (t_,1,) € Gy x Fy.

Cram 3.7. Let D be the set of all conditions q € Pxy1, such that there exist
vo.v1 € B, v1(0) > V(o). and a P;,(;, -name gJVO(fU) such that:

‘0 lo
(a) r(¥).r() < q.
(b) q - QVO(IO) S é n COhen(\j()(l'()), ¢//170(i0)).

(©) gl-vre XIVO(iO)',Ql"lsf'n.r(91(fo)) [ Vo(io) = QIJ‘T}OUO)'
Then D is dense (open) above (t. t.) and thus D N Gy, * F,, # ().

Proor. Work in V, and let (t.;,t.) < p = (p<s, Px) € Pri1. We will define two
extensions p < g < ¢* as before such that ¢* € D. By definition of Py, p<x IF
pr € Cohen(k, k™), by k —cc of P, forsome Z C k*F, Z € V,|Z| < k and some
¥ < K, p<x IF dom(p,) C y x Z. The same argument as before indicates that

P<xlFZ 2 SUPP(Z»:) /\Vﬁ € Z~j2(pn)j2(/)’) > Le.ps

tany IEVja(t) € Suppliny) N j2(Z) -ty jyo) 17 = [ 17

Denote u = (j» [ (ZU Ny))™' € M. then

dom(u) = j2(Z) U ji' Ny, tg(u) = Z U0, wis 1-1,
and we can reformulate

p<w b 1" j2(Z) 2 Supp(te) A € jo(Z).jo(pr)p > Lo pip)-

l<ry IF VT € Supp(tn,) N jo(Z) liye 17 = [ o) [ 7-

Also, find 6§ < & such that t, IF ¢”(5, k) N Z = (). We have that
9" (0. k) = pi{{f sy (k1) | 7 € jo(¢)"(0.5)}. and u” Supp(ja2(p)) = Z.

Therefore in M, we will have that

P<k I+ [ﬂlll{zznz,y(’il) | V S j2<¢)”(5s K‘)}] N [:u” SuPP(]z(Pn))] = @
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Let I be such that j;(I')( q) = u. and there is a set By C B’, By € E(&) such that
for every v € By:

(i) p<x IFT()"Z 2 Supp(ri) AVB € Z.prp > T50).06)(p)-
(ii) reg = VT € ZNSupp(re)-ree 17 = [30) 1o [ 7-

(iii) pew b T1(V)"{ [, (7(i0)) | v € ¢"(6.5(0))} N [T (¥)" Supp(px)] = 0.

Find vy. v; € By such that r(¥)), (¥,) are compatible, vo(0) > 8. 7. sup(Supp(p<x)).
and 1 (0) > Vo (ip). sup(Supp(r<«(¥)). Denote
(r

r0 = r(i) =

1. =\ 1
ri=r() = (V@l(o)»Vvl(owr(vl(o»m:'o» (r

0
r (0): "o 0)) TR )-

0,1 1.1 1 1
i) 51 Gig) > TG Gig) ) T

70(0), ~qx- We have g5 () is a Py

As before, ¢ has the form: ¢ = p. g5, 0)" ?
' (% ”Z and q,s 1t vo)(p) = Pr.p- As for

name for a condition with Supp(qv0 o) =T(

¢x. We set it to be a P,-name for r,i U pg.
The argument that r* < ¢ is the same as in the case of k*.
The choice offcé%("0> is possible since 1’ < gand mg < (t<x. 1) < ¢ Ik ¥o(ip) € Bo.
Define the final condition ¢ < ¢g*,
~1

4" = 4<x"45,0) T, 00m) dr-
Again we have that r0 I- X0/ C ¢ (5(0). o (ip)) € ¢”(7(0). 7 (0)) and by (iii)
g<x IF [Fl(ﬁl)//{zn.y(vl) |7 € X,"IN[TG)"Z] =0
Now for the code of d "), let
Supp(g;, o)) = L1 (71)"{ £ x5 (i) | 7 € X"} [T(71)" 2]
and

D(B).
(1 (V1 (i0))).

and ¢ = g, Ur!. We conclude that r° < g < ¢*, r! < ¢*, namely (a). Finally, for
every t € X‘0 io) fm(vl(zo)) € dom(T';(¥)) and by (3)(7,) we have that ¢* forces

qf qxs.p HﬁEFQGI)”Zaf (\7
vl(O).a ,C?JVO(lO)'/ Jr e X1VO( ) o= rl(vl)

that
D51 6i0). £ Grtio)) | F0(i0) = £ 5100, G £ oy | Volio) >
* _ g¥plip)
Z 95,001y ) (L e (o)) = e -
Then p < ¢* and ¢* € D. -
The rest of the argument remains unchanged. -
4|
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§4. On the Extender-based Prikry forcings and adding subsets to x. H. Woodin
asked in the early 90s whether, assuming that there is no inner model with a strong
cardinal, it is possible to have a model M in which 2% > 8,3, GCH holds below
R, there is an inner model N such that x = (R, )™ is a measurable and 2~ >
(R,43)™. His question was natural given the results known back then: Magidor
[26] proved that it is consistent relative to a supercompact cardinal and a huge
cardinal above it to have 2% > R, ., and GCH .y, using the supercompact Prikry
forcing with collapses. Woodin, in an unpublished work which can be found in [11]
reduced Magidor’s large cardinal assumption to get 28 =R, ,» + GCH_.X,, to a
strong cardinal (actually to a p,x-hypermeasurable). Later, Gitik and Magidor [21]
proved using the Extender-based Prikry forcing with collapses that starting from
the optimal large cardinal assumption, it is possible to obtain X, = 2% and
GCH_y,, . However, Woodin’s question remained unanswered.

A natural approach to answer Woodin’s question is to force with the Extender-
based Prikry forcing over s and then argue that in some intermediate where « is
measurable we added 2 > «* many subsets to .

Our purpose will be to show that this direction is doomed. More precisely, we will
prove that in any intermediate model of the Extender-based Prikry forcing where
x**T-many subsets of x were introduced, x is singularized (and in particular not
measurable). We will analyze the situation in both the original version of Gitik and
Magidor from [21] and Merimovich version of the Extender-based Prikry forcing
from [29-31]. We will rely on the following theorem from [6, Theorem 6.7]:

THEOREM 4.1. Suppose that U = (U, | a € [K]<®) is a tree of P-point ultrafil-
ters. Let G C P(U) be V-generic, then for every set of ordinals A € V[G]\ V.
cfVH(k) = w.

Note that if U is any x-complete ultrafilter, then the forcing Prikry(U) which we
use in this paper is forcing equivalent to P(U) where U = (U, | a € [k]<®) is such
that U, = U for every a.

Assume 2® = k™. Let E be an extender over k. We consider two sorts of Extender-
based Prikry forcings—the original one (see [21] or [17]) and a more elegant version
of Merimovich [29-31].

Let us start with the Merimovich version, but in which the measures of E are
P-points as in [21].

4.1. The Merimovich version with P-points. Suppose that thereis # : kK — k such
that all the generators of E are below jg(h)(k).

For example, if E is a (k, k™ T)-extender, this holds with #(v) = v, v < k. This
is sufficient to ensure that for every a < A. U, is a P-point ultrafilter.

Denote by Pz the Merimovich Extender-based Prikry forcing with E, as defined
in [31] (or see Definition 1.5).

THEOREM 4.2. Let G C Pg be a generic. Suppose that A € V[G]\ V is a subset
of k. Then k changes its cofinality to w in V[A].

Proor. Work in V. Suppose that 4 is a name of a subset of x and some p € Pg
forces that it is a new subset.

https://doi.org/10.1017/js1.2023.59 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2023.59

ON COHEN AND PRIKRY FORCING NOTIONS 893

Let us use x-properness of the forcing Pz (see [31. Claim 2.7] or [29, Claim
3.29]). Pick now N < H,. for some y large enough such that:

(1) IN| = k.

(2) ND*N,

(3) E,PE,p,é €N.

The properness implies that there is p* >* p which is (N, Pg)-generic, i.e.,

p* Ik (VD € N(if D is a dense open. then D NN N G # 0)).
In particular, for every v < &, the dense open set
D, :={q | Jo.q |- otp(4) > v — the v-th element of 4 is o}

is definable from 4 and v. hence in N and it is dense open by elementarity.
Consider X = Upep,nn Supp(p). since Supp(p). N are of size x. and we have that
|X| < k. Thereexists a* < Asuch thatforsome £ € V., jg(f)(a*) = (j | X) ' (see.
for example, [17, Lemma 3.3]).
Denote Y = X U {a*} and fixaset R € Ey such thatif x € R, then f (u(a*)) =
u | X.Such a set exists since jz(f)(j'(j(a*))) = (j | X)'. hence

1Y) eje{uecob(Y)| f(ul@)=pl X}).

Find a condition p, € G such that Y C Supp(p) and 47+ | Y C R. Define G |
Y={p!Y]|pe G/p.}. Then by genericity of p* and definition of Y, for every
a < k thereis p, € G N D, NN, hence Supp(p,) C Y and we can find p, < pf €
G | YND,. It follows that 4 € V[G | Y]. Let Go« = {p | {&*} | p € G/p.}, in
particular, pg := p. | {a*} € G,». Note that G,+ is essentially a Prikry generic
filter for Prikry(U,«+).

Cram4.3. V[G | Y] = V[Gex]

ProOF. Inclusion from right to left is clear as a* € Y. For the other direction,
let po = (tg, Bo) < q = {t. B) € G,~. For every |ty| < i < |t| (i) € B C By, by the
property of R, we have that u; := f(¢(i)) ~ 1(i) € A?" such that u;(a*) = 1(i).
Now define ¢’ = (f, B’ as follows: dom(f) = Y and

S =TT Tl -

In particular f(a*) =1 > f?*(a*). Also, let B’ = {u | u(a*) € B', f(u(a*)) =
& X}. Weclaim that G | Y ={q’ | ¢ € Go+/po}. Indeed if p € G/p. then ¢ =
p | {a*} € G,» and it is straightforward to check that ¢’ = p | Y. It follows that
G | Y is definable in V[Gyx]. n

By our assumption U~ is a P-point ultrafilter. Now, Theorem 4.1 applies, so
V[A] E cof(k) = w.

4.2. The original version. The difference here from the forcing of the previous
section is that the order <* is not k" -closed. However, we will show that the forcing
is still k™ -proper.

Assume for simplicity that E is a (k, x™)-extender and the function v — v+
represents 1 in the ultrapower.

Let Pg be the forcing of [21] with E.
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LeEMMA 4.4. Assume p € Pg. Let N = H,, for some y large enough such that:
(1) [N| = k.
(2) N D" N,
(3) E;Pe.pEN.
Then there is p* > p which is (N, Pg)-generic.

ProoF. Let (D, | v < k) be an enumeration of all dense open subsets of P which
are in N. Proceed by induction and define a <*-increasing sequence (p, | v < k) of
extensions of p such that, for every v < k:

(a) py € N.

(b) min(A4Y) > v, where 4% = {p° | p € 4,} is the projection of 4, to the normal

measure.

(c) Thereis k < w such that for every (p1..... pr) € [4, 1%, p, " {p1..... pi) € D,.

It is natural now to move now to a coordinate # which is above everything in N
and to take the diagonal intersection A* of the pre-images of 4,’s according to the
normal measure. However, in order to have the property (c) above, something more
is needed. Namely, we would like to have the following:

(d) forevery (&1, ....&n) € [min(A4%)]<.if p, (&1, .... &) € P then thereis k <

o such that:

fOr eVel‘y <p17"'7 pk> € [Av]k’ pt’f\<éla'-': ém>f\<p1 pk> € DV'

Given (d), as we will see. the idea above works fine. Let us construct a sequence
which satisfies the conditions (a)—(d).

Pick po € N such that pg >* p and (d) is satisfied. To define p;. use the strong
Prikry property to pick a condition pj{ € N, p| >* po and

there is k < w such that for every (py. ... pi) € [4}15. pi " (p1. ... p) € D.

Let o = min((4] )%). by definition of 7, . it follows that 57 is an inaccessible cardinal.
Let (f_; | i < 7o) be an enumeration of [79]<*.
Define <*-increasing sequence (g; | i < 7o).
Consider p| Afo. If it does not extend py. then set gy = p;. Otherwise, pick (inside
N)rg>* p{“fo such that

there is k < w such that for every (py. ... pr) € [A(ro)]*.r0™ (p1..... pi) € Dy.

Let o = (%, A%) be obtained from ry by removing 50 from all coordinates which
appear in p| (and leaving at new ones), and then, adding a larger maximal coordinate.
Namely, dom( /%) = dom(f") U {ap} where oy is < strictly above all the ordinals
in dom( /7). Let ¢ be such that [, . = £71(k) and for every y € dom( %),

(). v € Supp(p}).
FP)=1/70). yeSupp(ro)\ Supp(p}).
t, Y = Q.

Let A% = n;t;m(,(ro)[A"O]. Then g € N and also ¢y € Pg. By shrinking A% a bit

more (as in [17. Lemma 3.10]) we secure condition (6), and p] <* ¢o.

https://doi.org/10.1017/js1.2023.59 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2023.59

ON COHEN AND PRIKRY FORCING NOTIONS 895

Define ¢; in the exact same fashion only replacing p/ by ¢o and 50 by 51.

Continue similarly for every i < 7o, and finally. let ¢,,, be a <*-extension of all g;’s.

If 7o = min((A4(gy,))°). then set p; = g,,. Otherwise. let 7, = min((4(gy,))°).
Repeat the process above with #; replacing 7o and ¢,, replacing pj. Continuing
in a similar fashion, we hope to reach some »# which is a fixed point, i.e., # =
min((4(g,))°). However. we need to do this a bit more carefully at limit stages. Let
us pick an elementary substructure N’ < V, for sufficiently large « of cardinality
kT, closed under k-sequences, including p{. po. Pe. E. .... Wecan find some o < k™
such that for every p € N’ NP and every y € Supp(p). y <g a. Define a sequence
of condition (g,, | i < ) of conditions of N’.

We start with ¢,, which is already defined. Let Yo € U, such that the
commutativity requirement from Definition 1.6(6) holds with respect to Supp(gy, )-
If 7o = min(Y) we are done. Otherwise, let 7; = min(Y;)) and construct ¢,, in a
similar fashion going over all possible 5 € [1]<?, and construct Y| € U, to satisfy
(6) with respect to Supp(gy, ). At a general successor step, we are given 7;. ¢,,. and
Y;. Check if #; = min( Yio), if yes, stop the construction, set p; = ¢g,,. and we are
done. Otherwise, let 7,41 = min(Y}), construct qy;., above g, as we did with g,
going over all possible e [7;+1]7. then find Y;,| € U, satisfying (6) with respect
to Supp(gy, ). At limit stages & take 75 = sup,_s ;. check if 75 = min((N<s ¥7)°).
if’ yes, stop the construction and consider the condition p; = ¢,; with maximal
coordinate «, putting M;<s ¥; as his measure one set. Then g, will be as desired.
Otherwise, we find any ¢,; € N’ above all the previous ¢,,, and construct Y5 € U,
with respect to Supp(g,, ). We can further require that z” Y; C A(qgy,) and that

me(qy; )
min(4(gy,)°) > i.

Assume toward a contradiction that no suitable g, was found and that the
process goes all the way up to x. Consider Y* = AY__Y; € U, and let u be any limit
point of Y*. Consider step u° of the construction, and we have 1,0 = SUP;_,07];.
For every i < u°, we have that u € ¥;, hence u € N,_,0Y; and p° € (N0 ¥:)°,
and it follows that 77,0 > #° > min((N;,0 ¥:)°) > #,0. This means that 5,0 = u° =
min((N;_ 0 Y;)?) which indicates that the construction should have terminated at
step o, contradiction.

We conclude that p; is defined. The further construction of p,’s is similar,
exploiting the k-closure of <*.

Pick now some a > f, for every f € N Ndom(E) which exists since |N| = .
Set

A=N_A(p)={p<r|Ww<ppecdpi)

where A(p, ) is the pre-image of 4( p, ) under the projection from e to mc(p, ). Define
a condition p* = (f*, 4*) from the sequence (p, | v < k) as follows: Supp(p*) =
Uy<x Supp(py) U {a}. from the way we defined p, there is no problem defining
f* = U< f? U {{a. )} where  is any sequence such that z// .t = f*(x). Then we
take 4* = A. It follows that p* € Pg, and it has the property that for every v < &
and any sequence

&l <& <min(4)) < &y < <6,

https://doi.org/10.1017/js1.2023.59 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2023.59

896 TOM BENHAMOU AND MOTI GITIK

of ordinals from A4, p; (&1, ..., &) < p* (&1, ..., &,).F Let us argue that it is (N, Pg)-
generic. Let G be generic with p* € G. We need to prove that GNN N D, # 0
for every v < k. By density, pick any p~(&y.....¢,) <* g € D,N G, and let m
be such that &.....&, < min(A4(p,)) < &pp1 < -+ < &,. By condition (d). there
is k, such that any (v, ....v,) € [4,]% extension p; (&1, ... Em) ™ (V1. oo Vi) € Dy
If necessary, extend ¢ to

4"k 15 - Sk hy) € G N Dy,

and suppose without loss of generality that k; > m + k,. Since v < min(4(p,)?) <
&mt1. by definition of 7, ., it follows that v < 521 1- and by diagonal intersection,
Emits - &k € A, It follows that

p;\<€1="'= ém>/\<fm+1-,---» éi71+k> S DV'
Also, py (€1, oo &) (Emits oo Emak) < ¢ hence in G. Hence
p;\<é]a eees ém>r\<ém+], ey ém+k> S G ﬂ Dv ﬁ N

as wanted. .
Now, as in the previous section, the following holds.

THEOREM 4.5. Let G C Pg be a generic. Suppose that A € V[G]\ V is a subset
of k. Then k changes its cofinality to w in V[A].

4.3. The Merimovich version. The previous subsection implies in particular that
Pr and Pg with P-points cannot add x*-many mutually generic Cohen functions.
In this subsection, we will provide the general argument that the Extender-based
Prikry forcing Pg cannot add x**-many distinct subsets of x which preserves even
the regularity of .

THEOREM 4.6. Assume GCH’ and let E be an extender over k. Let G be a generic
subset of P and let (A, | o < k™) be different subsets of & in V[G]. Then there is
I C k™, 1 € V,|I| = & such that k is a singular cardinal of cofinality @ in V[{Aq, |
a € I)). In particular, there is no intermediate model of V|G where k is measurable
and 2 > k.

PrOOF. Let (4o | @ < k%) be Pr-names of subsets of x. We will confuse them
sometimes with their characteristic functions. Work in ¥, and for every a < k1™,
let N, be an elementary submodel of Hy of cardinality x such that >N, C N,,
E.Pp.a.(ds | <k™F) € N,.

Let /o € P} be Ny-completely generic, i.e., /3 (V1. ....V,) € P} is Ny-generic.

Using A-system-like arguments, we can assume that (f, |a < x"t) form a
A-system such that for every o, f < ™7,

(1) otp(dom(f,)) = otp(dom(f)). and the order isomorphism between
dom(f,) and dom(f). o,p is constant on the intersection dom(f,) N
dom(f).

(2) for every p € dom(fa). fa(p) = f4(ap(p)).

8 Although &1, ..., &, ¢ A,, the condition p; (). .... &) is a legitimate condition which is simply not
above p,.
92F = KT is enough, since k is a measurable, and so 2" = v* on relevant sets.
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Attach to each o < k™ an E(dom( f,))-large tree T,,. Define T, level by level as
follows. Set Lev; (T,) = S% U S}, where:
(1) forevery v € S°, dom(¥) contains elements in dom( f,) \ dom( o). if o > 0.
(2) ifa =0, then S = S!,
(3) S! = {¥ |V is an increasing partial function from dom( 1) Ndom(f,) to &},
ifa>0,
(4) forevery v € S, the following holds:
(fa V. By) decides 4, N V() for some E(dom(f,))-tree B; and such that
the decision depends only on ¥ (k).
In order to find such a tree, we will use the fact that f, € P}, is N,-generic, and the
set

E ={f | 3B.(f. B) decides 4, NV(k)}

being dense open in . This implies the existence of an E (dom(f,))-tree By such
that

(fa V. By) decides A, NV (k).

Next, in order to make the decision to depend only on V(k), we use ineffability:
Suppose that (f, "V, By) forces that 4, NV (k) = A,(V). Let g be the function
g(¥) = A, (¥). It follows that

Xo(() = j(@)((j I dom(fa))™) C .
Also, since crit(j) = k. it follows that j(X,({))) Nk = X,({)). Combine this
together with the fact that
j" dom( f,) contains elements not in j(dom(f9))
to find an E(dom( f,))-large set S, such that (1) holds and for all v € S?,
Aa(V) = Xa(()) NV (k).

Finally, we let Lev|(T,) = S° U S!. Note that if « > 0, then S2 and S! are disjoint
and therefore S! ¢ E(dom(f,)). In general, we define by induction on n, then n"
level of T,. So let {pi, ..., p,) € Lev,(T,) and let us define Succr, ((p1..... pn)) =

0 1 )
Sa_@l ,,,,, ) U Sa,</71..‘..,/7n>’ where:

(1) Forevery v € Sg,<ﬁ1

,,,,, n) 1.
(2) S2</71 ,,,,, Pn) < SucB(ﬁl ----- /7n>(</31’“"’ﬁn>)'
(3) If o> 0, then for every v € S3,</31 “““ PRe dom(V) contains elements in
dom(f,.)\ dom(f).

= 0
(4) If o« = 0, then Sa‘<ﬁl R

_ 1
veodn) = S Fin)

(5) If p, € Si(ﬁl---wﬁn panda>0.thenS, ; . =0.
(6) If p, € S;~(171 ’’’’’ 5 ) and a> 0. then
SC]L(ﬁL---;ﬁn> = {V | V is an increasing partial function from

dom(fo) Ndom(f4a) to K.V (k) > sup(rng(pn))}.
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(7) Foreveryv € S° o the following holds:
(fa " (Prses pu)” (17> B</;1 ,,,,, 5n.5) decides 4, NV(k) and the decision
depends only on (p., .... pn) " V(k).
for some E(dom(fa)) tree B(;, . ;,).5- Which is a subtree of Bz, s,
Denote by T the tree T,, with S!. = _removed from Succr, ((V1. ... V,))"". Clearly,
T is still E(dom(f,))-tree.
The tree T has the property that for every (v,....v,) € T, (!). and every v €
SuccT2(<171, ... V). item (2) above ensures that (T) s, 5,7 C B, .57 and by
item (7) we obtain

() {2 G ) (T 5y y) I X1 W) NV () = o N (K).

By shrinking if necessary, we can assume that the trees are isomorphic under the
obvious isomorphism induced by the A-system. Moreover, by GCH , there are only
" -many possible decisions on a fixed isomorphism-type of trees, and therefore we
can stabilize the decisions, so they do not depend on a particular choice of «. Let us
now take x elements and combine them into a single condition. Namely, we consider
({fa>Ta) | 0 < @ < k) and define a condition ( f*, T*) as follows:

Let /* = Ujcqer fa- Define an E(dom(f*))-tree T*. It will be a sort of a
diagonal intersection of 7,0 < a < k. Set

X = {V | v is an increasing partial function from dom(f*) to &,

dom(¥ U dom(f¢), (V¢ < ¥(k))|dom(v) Ndom(f¢)| = v(k)}.

<ii(k)
To see that X € E(dom(f*)). note that
dom((j [ dom(f*))™") = j"” dom(f*) C Uze, dom(j (/).

Also, for every & < k. |j (f*)Nndom(j(fe))| =|j" dom(fs)| = |dom(f¢)]
and since f is completely generic we conclude that this cardinality must be «.

Hence (j | dom(f*))! € j(X). Define the first level of the tree'’

Levy(T*) = Sucer«(()) := X N A2<K7zdom(f ) dom(f SuccTé)(Q)

Then Lev, (T*) € E(dom(f*)). To see this, it suffices to prove that the E (dom( f*))
is closed under the diagonal intersection A*, so if (X, | a < k) C E(dom(f*)),
we claim that (j [ dom(f*))! (A:K,,E «). Indeed, for every a <k =(j |
dom(f*))'(j(k)). j(a) = a and the a'M element in the sequence j((X, | a < &))
is j(Xy,). Since X, is assumed to be in E(dom(f*)) we conclude that (j |
dom(f*)) ! e j(X, ) By the definition of A*, and elementarity of j, we conclude

that (j [ dom(f*))" € j(AL_, Xa).

OBven if (¥}, .... ¥u) € T \ T the set Succyo ({V], ..., vx)) is still defined.
I'We define the diagonal intersection for the ultrafilter E(d) as follows: for (X, | a < k) C E(d),
AiooXo ={V € 0b(d) | V¢ <V(k).V € X:}.
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We continue to define inductively the level of T*. Let now (1. ..., p,) € Lev,(T*),
and define Succr+({p1, ..., p)). As above, we consider first the set

X(5,....5n) = 1V | V is an increasing partial function from dom(f™) to k. (k) > sup(rng(ps)).
dom(¥ U dom(f¢). (V¢ < ¥(k))| dom(V) Ndom(f¢)| = V(x)}.
§<l(ﬁ)
Clearly, X5, . y € E(dom(f™*)). Let Succr«((p1. ... pu)) be the set

>ﬂAE«”&im(f*)dom(fi)Succrg«ﬁl [ dom(fe)..... pn | dom(f%))).

Once we ensure that for every ¢ < &, Succ,o((p1 | dom(f¢). .... o, [ dom(f¢))) is

well defined, then 7* will form an E (dom( f*))-fat tree. Namely, we need to prove
that:

Cramm 4.7. For every &<k, {(pi|dom(fe),....p, | dom(f¢)) € Lev,(T:).
Moreover, & < (k) iff (p1 | dom(f¢). ... pn | dom(f¢)) € Lev,(TY).

Proor oF CramM 4.7. For every & < pi(k). we have
~ 1 0
P1 € Tgom( ) domi( ) (Lev1(T7))

and therefore jy | dom(f¢) € Levi(T?). If & > pi(k), then since py € X, the
A-system ensures that dom(p;) Ndom(f;) = dom(p;) Ndom(fp) C dom(fo) N
dom(f¢). It follows from the definition that p; [ dom(f:) = p | dom(fy) €
Sl C Levy(T,). Suppose that (p; | dom(f¢). ..., pn [dom(f ) € Lev,,(Tgv)., and
let Pui1 € Sucer«((p1. ... pn)). Then for every & < pui1(k). pns1 | dom(fe) €
Succ,o((p1 | dom(f¢). ... p, | dom(f¢))) by the definition of the diagonal inter-

<
section. If & > p,1(k), then, as before, g, | dom(f;) € Sg i) .

Lev(T*) has the property that for all j € Lev(T*) and o < p(n),

<f’k/\_> ( ) > <fa,-\_’ rdom(fa) ( ) dom(/a)>

Hence. by (x). (f*~p.(T*);) also forces X,(()) N p(k) = Ao N p(k). In addi-
tion, if we have a.f < (k). then A, N p(k). As N p(k) depends only on (p |
dom(f4))(k) = p(k) = (p | dom(fp))(x). and since the isomorphism o, fixes
& (as k € dom(f,) Ndom(fp)) it follows that Ag N j(k). Ao N j(k) are decided to
be the same set.

Next consider (py. ..., pn) € T*, by Claim 4.7, and we have that for all « < p, (k).

Cex) (P B (T7) (G ia)) 2

2 <f(;</31 Fdom(fa),..., dom(fa)> ( )(pl fdom(fa).....pn [dom(f o )>>-

However, since the decision about 4, N j, (k) depends now on (pi. ... pu-1)" pn(k).
then if o or f are below p,_1(x). then p,_; | dom(f,) (or p; | dom(f,) fori < n)
might include in its domain ordinals which are moved under the isomorphism o, g
and therefore we are not guaranteed that the decision about 4, NV (k). Apnv (k)
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is the same (up to p;(x) it is still the same decision). However, if both . f ¢
[Pn_1 (). pu(x)), we have the following claim:

CramM 4.8. If o. f € [pu1(K). pu(K)) then (f*(p1. ... pn). (T*)(5,.. i) decides
the values of Ao N pp(k) and Ag N p, (k) to be the same.

. f > ppi(k) > pi(k).
pi [ dom(f,) = p; [ dom(f)and dom(p; | dom(f,)) € dom(f) N dom(fo).

Since the isomorphism a,, g fixes the kernel of the A-system, we have that the decision
of

decides the values the same way.

Using density arguments we can assume that such defined condition (f*, T*) is
in the generic subset G of Pg. Denote by (k, | n < w) the Prikry sequence for the
normal measure E,.

It follows that the sets (4, | @ < &) have the following property in V[G]:

(k%) Vn < N, f € [Kn1.6n).Aa N Ky = Ag N Ky

Now, let us turn to the model M* = V[(A4, | & < k)] and prove that cfM (k) =
o. Let us define in M™* an w-sequence ({, | n < w) as follows:

First, let { be the least such that for some for some a., f < k. Ao N # Ap N ;.
There exists such { since the sets in the sequence (4, | a < &) are distinct. Let {f
be the least such that for some o < (., 4o N # AC(,’ N ;. Define {o = max (). (/)

CLAM 4.9. éo > K.

ProOOF OF CLamm 4.9. If {§ > K then we are done. Otherwise, suppose () < k.
then by (x ) for every a < fi < k. we have A, N[ = A N{[. Hence by the
definition of {{/, we have (|’ > o and also {y > . -

Suppose that {,, < k was defined. Then the sequence (4, | {, < @ < k) consists
of k-many distinct subsets of x. Since & is strong limit in V[G]. 2 < k. hence
there must be {, < a < f <k such that 4, \ {, +1# 4g\ {, + 1. Let (), be the

minimal such that for some {, <a < f <k, 44N = AgN{,, . Finally, let

{n <., be the minimal such that for some a < () |, 4o N{, .| # Ai[/“ Ne

and {,41 = max({),.{/. ). To conclude that ¢fM (k) = w is suffices to prove the
following lemma:

Cram 4.10. Foreveryn < w, {, > Ky.

Proor ofF Cram 4.10. By induction, for n = 0 this is just the previous claim.
Suppose that {,, > k,, and toward a contradiction suppose that {,,;; < k,,11. Then
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by definition, thereis a, such thatk, < {, < a < (/.| < kyy1suchthat4, N | #

Aen N (.- However,since () | < k41 we reached a contradiction to ( * *), since
n+

we found two indices . f§ € [Ky. ky41) such that A, N K, # Ag N Kyyt. -

The sequence ({, | n < w) will be a cofinal sequence in x which belongs to V'[(A4,, |
a < k). !

It turns out that Pz can add " -many mutually generic over ¥ Cohen functions,
for specially chosen extender E.

THEOREM 4.11. Assume GCH and suppose that E is a (k, k*T)-extender. Then
after the preparation of Theorem 2.10, there exists an extender E' such that Py, adds
kT mutually generic over V Cohen functions.

ProoF. Let j = jp:V — M be the natural ultrapower by the (k,xt") -
extender E, then j(k) > k™, crit(j) = k,and*M C M. Recall that the preparation
forcing in Theorem 2.10 is an Easton support iteration

(Pa-Qpla<k+1,p<k)

such that Qp is trivial unless f is inaccessible in which case if f < « then Qg
is a Py-name for LOTT(Cohen(B. f*). Cohen(B, f7)%). At k. Q, is a name for
Cohen(k, k7). Let G, * g, be V-generic for P, * Q. In V[G, * g.] we can construct
an M-generic filter for j(P, * Q) by taking G * g, to be the generic up to .
including x and choosing that tHe lottery sum forces Cohen(k, k) (this forcing is
the same in V[G,] and M[G,] since (k+)MI0] = k* and M[G,] is closed under
k-sequences of V[G,]). Above k we have sufficient closure, from the point of view
of V[G, * gx]. and by GCH there are not too many dense open subsets of the tail
forcing P, ;(.); to meet, hence the embedding j lifts to

JC T VIGk x gl = M[j(Gy) * j(gx)].

Since the cardinals in all the models are preserved, it follows that [12, Proposition
8.4]

(k) MUGR)T )] — ¥+ < j(k) and *M [ (Gy) * j(gx)] € M[j(G,) * j(gs)]-

So in V[G, * g] the extender E extends to an extender E' = (E! | a € []<?)
defined by E! = {X C kl*l | a € j*(X)}.

Let W be the non-Galvin, k-complete ultrafilter over x with preparation for
adding x"-many Cohens (See Theorem 2.11).

Combine E’, W together as follows. First take an ultrapower with E’. Let jz :
V — Mg/ be the corresponding embedding. Denote jz/(x) by k; and let W’/ =
je(W). Then take an ultrapower of My with W’. Let jy+ : Mg — M be the
corresponding embedding.

Consider j, = jyr 0 jg : V — M.Let E* be the derived (k, A)-extender for some
k1 < A< jo(k).

Note that E*(k;) = W, since for any X C &,

X € E*(ki) © ki € ju(X) & r € jw(jp (X)) e je(X)e W
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The Prikry forcing with W adds s -many Cohens over V. This forcing is a part of
Pg+, since W appears as one of the measures of £*, which implies the theorem. -

4.4. Cohen subsets of <™. Let us argue here that both versions add x**-many (or
J-many if the extender has A generators for a regular A > k) Cohen subsets of ™
mutually generic over V.

Start with Pg of [21].

THEOREM 4.12. Let G C Pg be a generic. Then in V[G] there is a sequence (Z: |
¢ < &) of mutually generic over V Cohen subsets of k™.

ProoF. Let (7, | @ < ™) be the Prikry sequences added by G.

Split, in ¥, k™" into disjoint intervals (I; | £ < k™) order type of each ™.
Denote by g; the order isomorphism between I and x™.

Now, in V[G]. set

Z: ={os(a) € I: | 1,(0) is even }.

Let us argue that such a sequence is as desired.
Work in V. Let p € P and let D be a dense open subset of Cohen(x™, k).
Let us find ¢ > p such that

q - (Z: | & < k") extends an element of D.

Extend first p to some r such that for every y € Supp(r).r” is not equal to the
empty sequence. Now, using I:, a¢’s turn (r7(0) | y € Supp(r)) into a condition in
Cohen(x™, x*"). Extend it to one in D and move back to P using /¢, o;"’s. Finally,
turn the result into a condition ¢ in P stronger than r. It will be as desired. .

The situation in the case of the Merimovich version is very similar:

THEOREM 4.13. Let G C Pg be a generic. Then in V[G] there is a sequence (Z: |
¢ < &) of mutually generic over V Cohen subsets of k™.

PrROOF. Proceed as in Theorem 4.12 and define (Z; | & < k™).
Work in V. Let p € P and let D be a dense open subset of Cohen(k™, k).
Let us find ¢ > p such that

qF(Z: | & < k") extends an element of D.

A slight difference here is that the support of p = (f, T), i.e., dom( /') may have
k many places y with /() = ().

As a result, for such y. ¢,(0) will be determined only after an element of the
corresponding set of measure one is picked, and there are k-many such y’s.

However, we do not need the exact value of #,(0), but rather to know whether it
is even or odd. This is determined (on a set of measure one) by y itself. Namely, in
this situation, z,(0) will be even iff y is even.

The rest of the argument is as in Theorem 4.12. .
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