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Entrainment and dilution in a fountain top
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Experiments are carried out on a turbulent fountain to investigate the entrainment of
ambient fluid and the dilution of scalar concentration in the fountain top (also referred
to as the ‘cap’). The source Froude number (Fro), defined based on the density difference
between the source and the ambient fluids, is varied between 10 and 30, while the Reynolds
number (Reo) is set to a minimum of 3000 to ensure a fully turbulent flow at the source.
High-fidelity velocity and concentration measurements are obtained using particle image
velocimetry and planar laser induced fluorescence techniques, respectively. The mean
concentration field indicates that the cap is approximately hemispherical and its base is
characterised by the local Froude number Frz ≈ 1.5. It is observed that the ratio of the
entrained (Qtop) volume flux in the fountain top and the volume flux supplied (Qin) at
the base of the cap varies between 1.5 and 3.5 at different Fro, exceeding the values of
Qtop/Qin(= 0.5–0.8) for a fountain developing across a density interface (Lin & Linden,
J. Fluid Mech., vol. 542, 2005, pp. 25–52). The present experimental results for Qtop/Qin
are in excellent agreement with published numerical simulations of turbulent fountains at
similar Fro. Lastly, a robust metric to estimate the dilution of scalar in the fountain top has
been proposed. The results clearly indicate that dilution is not equal to the entrainment
ratio; however, the self-similarity of non-dimensional dilution profiles at different Fro
suggests that the phenomenological model for entrainment in the fountain top put forth
by Debugne & Hunt (J. Fluid Mech., vol. 796, 2016, pp. 195–210), can also be effectively
used to model the dilution of scalar concentration in the cap. Further, it is found that the
variation of the dilution ratio is closely linked to the local Reynolds number (Rez) at the
base of the cap. This is verified using an analytical model that describes the dependency
of Rez on the local and source parameters – Frz, Reo and Fro.
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1. Introduction

Turbulent fountains occur widely in engineering and geophysical applications, for
example, heating, ventilation and air conditioning systems in large buildings (Lin &
Linden 2005), brine discharge from desalination plants (Pincince & List 1973) and the
dynamics of cumulus cloud tops (Turner 1966). A comprehensive review of fountains in
nature can be found in Hunt & Burridge (2015). Typically, a fountain is formed when dense
fluid is ejected vertically upwards from a localised source into a lighter ambient fluid or
when less dense fluid is injected downwards into heavier ambient fluid. The opposing
buoyancy (as a result of a density difference between the source and the ambient fluids)
causes the flow to slow down until the mean momentum is reduced to zero at some terminal
height. The flow then reverses and collapses around the inner flow. While returning, the
ambient fluid is entrained into the fountain, which causes the flow to dilute. The focus of
this paper is to experimentally investigate the entrainment of ambient fluid and the dilution
of scalar concentration in the fountain top, and their dependence on the source Froude
number, Fro = Wo/

√
(gρ∗ro) at a sufficiently large Reynolds number, Reo = 2Woro/νo.

Here, Wo is the source velocity, ro is the pipe radius, g is the gravitational acceleration, νo
is the kinematic viscosity of the source fluid and ρ∗ = (ρa − ρo)/ρa. The subscripts ‘o’
and ‘a’ refer to the source and the ambient fluids, respectively.

Following the seminal study by Turner (1966), several theoretical models have been
proposed describing the time-averaged behaviour of a forced fountain as consisting of
an inner upflow and an outer counterflow (McDougall 1981; Bloomfield & Kerr 2000;
Carazzo, Kaminski & Tait 2010; Mehaddi et al. 2015). Surprisingly, barring McDougall
(1981), none of the models have accounted for the entrainment of ambient fluid into the
fountain top (also referred to as the ‘cap’). There is strong evidence from experimental (Lin
& Linden 2005), numerical (Devenish, Rooney & Thomson 2010; Williamson, Armfield
& Lin 2011) and theoretical studies (Debugne & Hunt 2016) that the entrainment into the
cap is not negligible when estimating the bulk entrainment of volume flux in a turbulent
fountain.

A number of experimental studies have investigated the entrainment in a fountain-like
flow developing above a density interface. Such a flow is typically generated when a
localised source of lower density is ejected vertically upwards within a stratified (often
two-layer) environment of higher density. The entrained volume flux is inferred by
measuring the time derivative of the interface height (see Baines (1975), Kumagai (1984)
and Cardoso & Woods (1993) for full details). Although such flows have a fountain-like
behaviour, their entrainment is clearly affected by the stratification, which tends to flatten
the turbulent structures responsible for the entrainment. Shrinivas & Hunt (2014) carried
out an analytical study to model the complex problem of turbulent entrainment across an
interface due to the localised impingement of a shear flow (e.g. jet, plume or fountain). On
the other hand, Baines (1975) studied entrainment in turbulent fountains that developed
in a homogeneous environment. They performed experiments by ejecting a dense saline
solution upwards to form a fountain in an initially uniform aqueous medium. More
recently, Burridge & Hunt (2016) modified the technique of Baines (1983) to measure
the entrainment by a saline turbulent fountain developing in a uniform fresh water
environment. Burridge & Hunt (2016) deduced the net volume flux entrained by the
fountain, QE, as the difference between the measured outflow volume flux and the source
volume flux Qo in the plane of the source, where the return flow ceases to interact with the
rising core of the fountain.

There are other studies in the literature that used point-based measurements of velocity
and temperature/density in a turbulent fountain to understand velocity–temperature/density
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Figure 1. (a) Time-averaged morphology of a fountain top. (b) Instantaneous snapshot of a turbulent fountain
(fresh water injected vertically downwards into a tank of saline water) and (c) the corresponding velocity and
scalar fields obtained via particle image velocimetry and PLIF measurement techniques.

correlations, Reynolds stresses and the balance of mean momentum and turbulent kinetic
energy equations (Cresswell & Szczepura 1993; Addona, Chiapponi & Archetti 2021). For
instance, Cresswell & Szczepura (1993) reported that the effect of negative buoyancy is
mainly seen in the mean flow gradients, thereby altering the turbulence field indirectly.
They also presented a statistical description of a turbulent fountain as consisting of a
potential core surrounded by a growing shear region; a cap region of large-scale pulsating
flow where generation of turbulence due to buoyancy is significant; and finally an annular
counterflow region that is akin to a buoyant plume. A similar finding has been reported
by Addona et al. (2021), who analysed the turbulent kinetic energy, the velocity skewness
and the Reynolds stresses of the fluctuating velocity in a turbulent forced fountain. They
found that the turbulent kinetic energy is maximum at z/zss ∼ 1 (where zss is the steady
height of the fountain), suggesting that the maximum production of turbulence takes place
near the base of the fountain top, where the inner flow meets the pulsating fountain top.

Few studies have investigated the entrainment in the cap region of fountain-like flows
(Lin & Linden 2005; Devenish et al. 2010). Typically, the amount of ambient fluid
entrained through the fountain top (Qtop) is calculated as the difference between the
volume flux supplied to the cap by the inner flow (Qin) and that leaving the fountain top
in the outer counterflow (Qout), i.e. Qtop = Qout − Qin. This is graphically represented
in figure 1(a), where Qin and Qout are the volume fluxes of the inner and outer flows
estimated at the base of the cap. Using this approach, Devenish et al. (2010) found that
Qtop/Qin = 1–3 over the investigated range of Richardson number (Ri = −1/Fr2

o) in a
large eddy simulation study of a plume that evolved in a stratified medium, which at a
later stage behaves as a fountain. These values differed from those reported by Lin &
Linden (2005) (i.e. Qtop/Qin = 0.5–0.8) for a turbulent fountain in a steady two-layer
stratification. Devenish et al. (2010) reported that the discrepancy is primarily due to
volume fluxes being measured at different z-locations in the fountain. A possible reason
for the above discrepancy could be the ambiguity about the base location of the fountain
top.

Irrespective of the above differences in different studies, it is clear that Qtop ∼ Qin as
observed in the above experimental studies. This re-emphasises the point that neglecting
fountain-top entrainment in the mathematical models will lead to an imbalance of
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momentum and buoyancy fluxes, and the counterflow remains relatively undiluted. Such
models will predict a higher concentration of contaminant in the downstream section of
a fountain flow. To further demonstrate this point, we present a heuristic calculation to
illustrate how neglecting the local entrainment in the cap region (Qtop) leads to a large
error in the global entrainment. Using the results of Burridge & Hunt (2016) for Fro > 2.0,
QE/Qo = 0.77Fro over the range of Fro investigated in this study. Here, Qo is the source
volume flux at the nozzle exit. In the numerical simulations of a flush-mounted turbulent
fountain in the range Fro ∈ [4, 24], Awin (2021) reported that Qtop/Qo ∝ Fro. Combining
the results of Burridge & Hunt (2016) and Awin (2021), we find the ratio Qtop/QE ∼ O(1),
and is independent of Fro. This calculation clearly shows that Qtop is a major contributor
to QE, and should not be ignored when modelling the global entrainment in a turbulent
fountain.

In a recent study, Debugne & Hunt (2016) proposed a phenomenological model
for fountain-top entrainment taking into account the role of rise-height fluctuations in
engulfing ambient fluid into the cap. They adopted a framework wherein the rise-height
fluctuations are incorporated into the entrainment model through periodical ‘filling’ and
‘draining’ half-cycles, during which the fountain top grows and collapses, respectively.
The associated time period of the cycle is taken to be the time scale of large eddies forming
on the scale of the inner-flow radius at the base of the cap (Burridge & Hunt 2013). Further,
Debugne & Hunt (2016) assumed a hemispherical morphology of the cap in their model,
as shown in figure 1(a). Finally, in an attempt to scale entrainment in the fountain top at
different Fro, Debugne & Hunt (2016) defined a local Froude number Frz as the ratio of
inertial and buoyant forces at a given location; Frz is defined as

Frz = Wm√
rmbm

, (1.1)

where Wm, rm and bm represent the characteristic velocity, width and buoyancy defined in
terms of the volume flux Q, momentum flux M and the integral buoyancy B of the inner
flow as

Q =
∫ rin

0
2πrW dr; M =

∫ rin

0
2πrW2 dr; B =

∫ rin

0
2πrb dr;

Wm = M/Q; rm = Q/M1/2; bm = BM/Q2,

⎫⎪⎬⎪⎭ (1.2)

where b = g((ρa − ρ)/ρa) = g(C/Co). Here, ρ and C are functions of r, with Co being
the source concentration. Further, it should be noted that, throughout this paper, we are
using the integral buoyancy (B) instead of the buoyancy flux as commonly used in the
literature.

In order to select a suitable value of Frz at the base of the fountain top, Debugne & Hunt
(2016) used the argument that a large eddy with size similar to the width of the inner flow
(2rm) at the base of the fountain top will reverse when the gravitational force on the eddy
exceeds its momentum. Based on this argument, the height at which the flow tips over
is given by Wm = √

2rmbm, which results in Frz = √
2 as per (1.1). A similar idea was

developed by McDougall (1981), who considered the base of the fountain top to be the
height at which the local conditions in the inner flow correspond to Frz = √

2. A similar
result was reported by Mingotti & Woods (2016), who found that Frz ∼ 1 at the mean
height of a particle-laden turbulent fountain in its single-phase limit. It should be noted
here that the model put forth by Debugne & Hunt (2016) is a simplified picture of the
energetics in the cap region but nevertheless provides a scaling that seems to work well but
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that Frz ≈ √
2 is an approximate value. Further, their model does not consider the effect

of entrained ambient fluid on the maximum height of the fountain. It is easy to see that the
entrainment in the cap decreases the momentum of the inner flow and, therefore, the height
at which the large eddy tips over may not truly correspond to Frz = √

2. Nevertheless,
using a value of Frz = √

2 for the base of the fountain top and the model of vortical
engulfment, Debugne & Hunt (2016) found that Qtop ∝ Qin is in good agreement with
the experimental results of Lin & Linden (2005) for a turbulent fountain in a two-layer
stratification.

In almost all the previous studies, a clear distinction has not been made between the
entrainment of volume flux and the dilution of scalar concentration in the fountain top.
This is possibly due to the lack of well-resolved experimental data of velocity and scalar
concentration for the fountain top. The distinction between entrainment and dilution may
be very significant in this flow. Our flow visualisations and flow measurements suggest
that the return flow from the oscillating fountain top is comprised of ejected fountain fluid
of high scalar concentration and also induced flow (or entrained flow) of largely unmixed
ambient fluid. The dynamic behaviour of the fountain top, which leads to spatially and
temporally varying scalar concentration, is the key to all the observations made in this
paper. In some instances, the entrained flow consisted of undiluted fluid with high scalar
concentration, and in some other instances, the induced flow primarily consisted of the
entrained ambient fluid at very low scalar concentration. Further, this phenomenon of
high and low concentration induced flow is observed to be highly intermittent, and hence,
the time-averaged scalar flux does not truly represent the transport of scalar flux across
the base of the cap region. This implies that the entrainment of volume flux is not the
same as scalar dilution. In an attempt to quantify the differences between the above two
quantities, we conducted, for the first time, high-fidelity spatial measurements of velocity
and concentration at a fountain top at different source Froude numbers, 10 ≤ Fro ≤ 30.
The data also enabled us to develop and test a new metric using the instantaneous velocity
and scalar fields to quantify dilution of scalar concentration at the fountain top.

2. Experimental details

Experiments were carried out in a cubical water tank with a side length of 1 m. The desired
source Froude number (Fro) was obtained by varying the source flow rate (Qo = πWor2

o),
pipe radius (ro) and density ratio (ρa − ρo/ρa) between the ambient (ρa) and the source
(ρo) fluids. The flow rate was set using an ISMATEC MCP-Z series gear pump with an
accuracy of 1 %. The ratio of pipe length and pipe diameter is greater than 80 and the
Reynolds number (based on pipe diameter and exit velocity) was set to be greater than 3000
to ensure a fully developed turbulent flow at the pipe outlet. The experimental parameters
are summarised in table 1. At each Fro, six to eight runs have been conducted in order to
ensure the repeatability of the measurements. A total of 40 experiments were conducted
over the range, 10 ≤ Fro ≤ 35, for estimating the uncertainty in the results presented in
this paper.

A combination of particle image velocimetry (PIV) and planar laser induced
fluorescence (PLIF) measurement techniques was used to obtain simultaneous velocity
and concentration measurements in the symmetric plane of the fountain top. Full details
of the experimental procedures are given in Milton-McGurk et al. (2020) and the results
have been validated in Talluru et al. (2021) and Milton-McGurk et al. (2021). Hence, the
details are briefly discussed here. A dual-pulsed Nd-YAG laser (200 mJ pulse−1 at 532 nm)
was used to provide illumination for the PIV experiments. For the PLIF measurements, a
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Fro ro Reo = 2Woro

νo

ρa − ρo

ρa
Field of view Frz = Wm√

rmbm
f

(mm) % (z/d) (Hz)

10.1 5 3000 3.54 7.1–12.5 3.9–0 7
15.0 5 4469 3.66 14.1–19.5 1.9–0.3 7
18.0 5 5400 3.62 14.8–20.2 1.9–0.4 7
20.1 5 4400 2.24 16.1–21.5 2.0–0.5 7
25.0 3 3600 5.32 19.6–28.6 2.2–0.3 7
30.2 3 4300 5.34 24.2–33.2 1.8–0.4 7
35.0 3 4700 5.30 28.1–37.1 1.7–0.3 7

Table 1. Experimental parameters used in this study.

fluorescent dye Rhodamine 6G was chosen as the scalar tracer, which has a peak emission
at 560 nm. At each Fro, a total of 2400 images were captured using four pco.2000 cameras
(two each for PIV and PLIF measurements) with a pixel resolution of 2048 × 2048 at a rate
of 7 Hz. Burridge & Hunt (2013) reported a modified Strouhal number scaling for fountain
height oscillations in a forced fountain (i.e. Fro > 4) as StrH = 0.5 = fH(roFro/

√
gρ∗ro),

where fH is the highest frequency of height fluctuations in the fountain top. Using this
relationship, we found the highest frequency of fountain height oscillations in the present
experiments varies between 0.18 and 0.4 Hz for 10 ≤ Fro ≤ 30. While our analysis does
not require time resolved measurements, the sampling rate of 7 Hz is high enough to
resolve these oscillations.

The PIV cameras were fitted with a 532 ± 2 nm bandpass optical filter to cutoff ambient
light and the Rhodamine 6G dye fluorescence. A B + W Orange MRC 040M filter was
used on the PLIF cameras to filter light below approximately 550 nm, allowing only the
fluorescence from the dye, but not the scattered light from the particles, through to the
CCD sensor. A snapshot of PIV and PLIF images taken in one of the experiments at
Fr0 = 25 is shown in figure 1(b). The inset plot shows the arrangement of two cameras
for PIV (Cam 1 and Cam 2) and two cameras for PLIF (Cam 3 and Cam 4) with a small
overlap between the images. Using the calibration image that is common to all the cameras,
the images are stitched during the post-processing stage to yield a larger field of view. The
final processed velocity and concentration fields are shown in figure 1(c). After confirming
the symmetry of flow about the axis of the fountain, experiments were performed only on
one side of the axis (as shown in figure 1b) to allow for a larger range of scales to be
captured while maintaining high spatial resolution.

The uncertainty in the velocity fields was estimated using the ‘image matching’ method
developed by Sciacchitano, Wieneke & Scarano (2013). This method involves generating
a synthetic image using the displacement vectors from a single pair of images and then
comparing the original and simulated images. A perfect PIV algorithm would result in an
exact match, however, in practice, there is a disparity between the particle locations in the
original and synthetic images, which is used to estimate the error. Applying this method
to a large number of image pairs from the present experiments, we found that the mean
error in the instantaneous velocity fields was less than 0.005 pixels per time step (which
equates to 0.6 mm s−1). In the case of PLIF measurements, no post-processing algorithm
is required as the image intensity is directly related to the scalar concentration. The error is
mainly due to shot-to-shot variation of laser intensity, which has been quantified to be less
than 2 %, as reported in Milton-McGurk et al. (2020). In order to quantify the repeatability
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of experiments, six to eight runs were conducted at each Fro, and the variability in the
mean and variance of velocity and scalar fluctuations is found to be less than 3 %. Thus,
the net uncertainty in the derived quantities presented in this paper is less than 5 %.

Throughout this paper, z and r will be used to represent the axial and radial
directions respectively, while W̃ and Ũ represent the corresponding instantaneous
velocity components. Further, W̃ = W + w and C̃ = C + c, where the uppercase and
the lowercase letters represent the time-averaged mean and fluctuating quantities,
respectively.

3. Results

At first, we briefly discuss the structure of velocity and scalar concentration at the fountain
top. Figure 2(a–c) respectively shows the contour maps of time-averaged velocity (axial
and radial) and concentration fields in a turbulent fountain at Fro = 15. Note that the
results are shown only on one side of the axis. Further, both the abscissa and ordinate
axes are normalised using the source Froude number to facilitate a direct comparison with
the relations for steady state height and the radial width of a turbulent fountain as reported
in the literature.

Looking at the contour map of axial velocity in figure 2(a), there is a region of upflow
near the axis and adjacent to it is a region of counterflow. A horizontal line is drawn at
(z/ro)Fr−1

o = 2.46, which represents the empirical model for the steady-state height (zss)
of a forced fountain (Turner 1966; Burridge & Hunt 2012) and the current data agree well
with that model. As expected, the mean radial velocity is zero at the axis as evident in
figure 2(b), which increases to a maximum at (r/ro)Fr−1

o ≈ 0.21 before dropping to zero
in the ambient. Further, the maximum of ∂W/∂r (not shown here for brevity) estimated
from the experimental data occurs at approximately the same location.

The mean scalar field shown in figure 2(c) indicates an approximately two-dimensional
Gaussian distribution of concentration decreasing along the axial and radial directions. To
illustrate this better, the radial distribution of C at the base of fountain top, C(r, ẑ = 0)

and axial distribution along the axis, C(r = 0, ẑ) are plotted in figure 3(a,b) along with
numerically fitted Gaussian curves. Note that ẑ = 0 represents the base of the fountain top.
It is clear that both the radial and axial distributions of C are well represented by Gaussian
curves. Further, the coefficients of the Gaussian fits for the radial and axial distributions
are very similar, suggesting that the fountain top is approximately hemispherical. A closer
observation of the radial and axial Gaussian fits reveals that the variance is higher in
the axial direction, consistent with the elongated contours (larger spread) of C along z in
figure 2(c). The higher axial variance is consistent with the oscillating behaviour of the
fountain top as observed in previous studies (Burridge & Hunt 2012, 2013).

Further, the cap is slightly more elongated along z. This is clearly evident in figure 2(c),
where the contours of C are compared against two circular arcs drawn at (r/ro)Fr−1

o =
0.21 and 0.5. Note that, if the scalar field was perfectly hemispherical, the contours of C
would be circular in shape. Lastly, there is a finite value of concentration at the steady-state
height (zss), which is expected as the fountain top oscillates above and below zss, resulting
in a small residual concentration in the mean scalar field above zss. This is in contrast to
the mean axial velocity field, where the positive and negative axial velocities result in a
net zero velocity at zss when averaged over time. We note that the profiles of mean axial
velocity and the mean concentration are different along the radial direction, which suggest
that there is a clear distinction between the entrainment of volume flux and the dilution of
scalar concentration as will be elaborated in the later sections.
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Figure 2. A contour plot of time-averaged (a) axial and (b) radial velocity components; (c) scalar concentration
in the cap region at Fro = 15. The horizontal line in (a) represents the empirically predicted steady state
height of the fountain. The vertical line in (b) represents the locus of maximum radial velocity at different
z-locations. Two circular arcs are drawn at (r/ro)Fr−1

o = 0.21 and 0.5 to indicate that the mean scalar field is
only approximately hemispherical.

3.1. Entrainment
As defined earlier, the entrainment of ambient fluid into the fountain top (Qtop) can be
estimated using the inner and the outer volumetric flow rates, Qin and Qout, respectively.
To explain this, the radially weighted axial velocity (rW) at the base of the fountain top is
plotted as a function of r in figure 4. In this representation, the area represents the volume
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100 0 20

0.2

0.4

0.6

0.8

1.0

40 60
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Figure 3. (a) The radial (C(r, ẑ = 0)) and (b) the axial (C(r = 0, ẑ)) distributions of normalised scalar
concentration at the fountain top. Symbols represent the experimental data and the solid lines denote the
corresponding Gaussian fits. Note that ẑ = 0 indicates the base of the fountain top.

0
–1.0

–0.8

–0.6

–0.4

–0.2

0.2

0.4

0.6

0.8

1.0

rin r∞

Qin

rW
 ×

 1
0

3
 (

m
2
 s

–
1
)

Qout

0

0.02 0.04 0.06

r (m)
0.08 0.10

Figure 4. The radial distributions of rW at the base of the fountain top (Frz = 1.5) at Fro = 25. Red and blue
regions represent Qin and Qout, respectively. The vertical dashed lines at rin and r∞ represent the locations of
zero crossing in W and zero mean volume flow rate, respectively.

fluxes in the inner and the outer flow. Hence, Qin and Qout are respectively obtained as

Qin =
∫ rin

0
2πrW dr and Qout =

∫ r∞

rin

2πrW dr. (3.1a,b)

Note that Qin and Qout are both functions of z; both Qin and Qout decrease with z as W
decays along the axis. Finally, Qtop is estimated as |Qout| − |Qin| at the base of the fountain
top, where | | represents the modulus function.

Figure 5(a) shows the results of |Qout|/Qin at different Fro plotted as a function of Frz.
Note that Frz is zero at zss in the fountain. It is clearly evident that the ratio |Qout|/Qin
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Figure 5. (a) Comparison of |Qout|/Qin obtained via experiments (open symbols) at different Fro plotted as a
function of Frz. The two horizontal lines represent the observed limits of |Qout|/Qin at Frz = 1.5 in the present
experiments. (b) Variation of Qtop/Qin at the base of the cap for different Fro. Open symbols, experiments; filled
symbols, numerical simulations (Awin et al. 2018). The error bars in (b) correspond to 5 % of the measured
experimental values.

does not exhibit any similarity when plotted against Frz. We believe that the variation of
|Qout|/Qin with Fro is due to the entrainment of the ambient fluid into the cap and the
oscillating fountain top, whose frequency is a function of Fro as reported by Burridge
& Hunt (2016). Further, the distributions of |Qout|/Qin exhibit minima at different values
of Frz in the range 1.2 ≤ Frz ≤ 1.8. In the numerical simulations of Awin et al. (2018),
the ratio |Qout|/Qin was estimated at the location where the radial width of the inner
flow is maximum. The corresponding local Froude number (Frz) is found to be between
1.4 and 1.7. In order to maintain consistency, we chose the mean value Frz = 1.5 as
the representative value to identify the base of the fountain top for the measurement of
entrainment and dilution at different Fro. The chosen value of Frz = 1.5 is very similar
to the analytical value, Frz = √

2 ≈ 1.414, obtained by Debugne & Hunt (2016). To
understand the effect of Frz on the results presented in the later sections, we conducted
a sensitivity analysis of Qtop/Qin on Frz over the range 1.2 ≤ Frz ≤ 1.8, and found the
variation in Qtop/Qin to be less than 3 %.

The corresponding results of Qtop/Qin for the fountain base located at Frz = 1.5 at
different Fro are shown in figure 5(b). For comparison, we also included numerical
simulation data of Qtop/Qin taken from Awin et al. (2018), and the results agree well with
the present experiments. Most importantly, unlike the previously reported results (Lin &
Linden 2005; Debugne & Hunt 2016), we observe that Qtop/Qin can be greater than 1. In
the previous studies such as Lin & Linden (2005) and Devenish et al. (2010), the fountain
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Entrainment and dilution in a fountain top

evolves in a sharply stratified and a linearly stratified environment, respectively. Therefore,
it is not surprising that the results of Qtop/Qin found here are different from the previous
literature as the fountain evolves in a homogeneous fluid in the present study. As suggested
by Burridge & Hunt (2016), the differences in the fountain entrainment in homogeneous
and stratified environments could be due to the energy dissipation caused by interfacial
waves excited when the rising turbulent jet/plume penetrates the density interface, an effect
absent in our experiments.

As an interim summary about the entrainment of volume flux in the cap, we found that
Qtop/Qin varies between 1.5 and 3.5, suggesting that the phenomenological model put
forth by Debugne & Hunt (2016) requires some tuning to account for the dependence of
Qtop/Qin on Fro. Note that the entrainment model put forth by Debugne & Hunt (2016) was
only tested against experimental data of entrainment in fountains evolving across a density
interface. Further, this discrepancy also demonstrates the limitation of using dilution to
measure entrainment as assumed by Lin & Linden (2005). This is due to non-uniform
spatio-temporal dilution of scalar concentration in the cap caused by the entrained ambient
fluid. In a turbulent fountain, there is fountain fluid entering the cap region where some
entrainment of the ambient fluid occurs. Next, there is induced flow or basically unmixed
ambient fluid that leaves the cap region with the ejected cap region fluid. The combination
of these two conceptual flow streams is what we measure and analyse in this paper.

3.2. Dilution
In our flow visualisation experiments of a turbulent fountain, we observed a non-uniform
distribution of scalar concentration at the fountain top, both spatially and temporally. At
some instances, there is a high undiluted scalar concentration in the induced flow and at
other instances, the induced flow mainly consisted of entrained ambient fluid at relatively
low concentration. Further, the temporal variation of scalar concentration is found to be
highly intermittent, suggesting that one cannot deduce scalar dilution in the cap based
on the entrainment ratio, Qtop/Qin evaluated at the base of the fountain top. This suggests
that a time-averaged statistical quantity such as Qtop does not provide physical insights into
how the dilution of a scalar occurs at the fountain top. Our aims in computing dilution are
twofold: first, to examine the relation of the entrainment of volume flux to scalar dilution.
Secondly, to test how dilution ratio varies with Fro, and to determine if it scales with the
integral quantities derived based on the inner flow. In this section, we develop and test a
new procedure to estimate the scalar dilution at the fountain top via conditional analysis of
instantaneous scalar fluxes crossing the base of the cap. To the authors’ knowledge, this is
the first time that such a direct estimate is reported. First, we briefly describe the procedure
of obtaining the conditional scalar fluxes using the instantaneous velocity and scalar
concentration fields. Figure 6 illustrates all the intermediate steps involved in obtaining
the conditional scalar fluxes based on which a dilution ratio is later defined. Akin to the
entrainment calculation, an estimate of concentration dilution is obtained by comparing
the scalar fluxes crossing into and out of the control surface at the base of the fountain
top, i.e. Frz = 1.5, taken as uniform in experiments at different Fro. An instantaneous
concentration field with overlaid velocity vectors is shown in figure 6(a). At the base of
the fountain top, the time-varying W̃, C̃ and scalar flux (W̃C) are obtained at an arbitrary
radial location from a total of 2500 images. The respective time series signals of W̃, C̃ and
W̃C are shown in figure 6(b). The scalar fluxes are first categorised into positive (W̃C > 0)
and negative (W̃C < 0) scalar fluxes based on the conditions W̃ > 0 (up flow) and W̃ < 0
(return flow), respectively. The positive and negative scalar fluxes are conditionally binned
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Figure 6. (a) Instantaneous concentration and velocity vector fields at a fountain top at Fro = 15.
(b) Time-varying W̃, C̃ and W̃C as a function of image number. (c) The conditional binning procedure of
positive and negative scalar fluxes into bins, Ci ≤ C̃ < Ci+1, i = 1, 2, . . . , N − 1. (d) Scalar fluxes entering
(red) and leaving (blue) the base of the fountain top at different concentrations.

into N − 1 concentration bins between C1 and CN . The conditional scalar flux is then
obtained as follows:

〈W̃C〉i|up = 〈W̃C | W̃ > 0 and (Ci ≤ C̃ < Ci+1)〉
〈W̃C〉i|down = 〈W̃C | W̃ < 0 and (Ci ≤ C̃ < Ci+1)〉, ∀ i = 1, 2, . . . , N − 1.

}
(3.2)

This is also illustrated graphically in figure 6(c). The conditional binning of positive
and negative scalar fluxes is repeated at all radial locations (0 ≤ r ≤ r∞) at the base of the
fountain top. The net scalar fluxes entering (positive) and leaving (negative) the fountain
top for Ci ≤ C̃ ≤ Ci+1 are then obtained by integrating 〈W̃C〉i over the entire width of
the fountain as,

∫ r∞
0 r〈W̃C〉i dr. Repeating this for all values of C̃ in N − 1 concentration

bins, we can then obtain the distribution of positive and negative buoyancy fluxes as a
function of concentration. It should be noted that when the fountain top is in a steady
state, there is no accumulation of scalar concentration at the fountain top, and therefore,
the net scalar flux across the base of the fountain top should be zero. In other words, the
following condition must be satisfied:

N−1∑
i=1

(∫ r∞

0
r〈W̃C〉i dr

∣∣∣∣
up

)
+

N−1∑
i=1

(∫ r∞

0
r〈W̃C〉i dr

∣∣∣∣
down

)
= 0. (3.3)

Using the distribution of conditional scalar fluxes shown in figure 6(d), the cumulative
total of conditional positive and negative scalar fluxes is obtained. It is observed that
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the cumulative scalar fluxes into and out of the fountain top have similar magnitudes
to within 2 %, which justifies the procedure employed in the study for estimating the
conditional scalar fluxes. The results of conditional scalar fluxes at different Fro are
presented in figure 7(a). As one would expect, the distributions of positive scalar fluxes
are predominantly at higher concentrations while the majority of return scalar fluxes are at
lower values. As a logical step, we also computed the mean scalar upflux and return flux
using WC as r.r∞.WC, and the results are plotted as a function of C in figure 7(b). The
mean scalar fluxes have similar shapes as the conditional scalar fluxes, with a peak and a
trough that correspond to predominant concentrations in the upflow and the return flow.
Finally, we can now define the dilution ratio (RD) as

RD = Cup

Cdown
. (3.4)

In physical terms, Cup is the most common concentration in the conditional scalar upflux,
and upon dilution at the fountain top, the most common concentration in the return
scalar flux (Cdown) is relatively smaller, as evident in figure 6(d). In the definition of
RD, we consider Cup and Cdown as the representative scales of scalar concentration in
the positive (up) and negative (return) scalar fluxes, respectively and their ratio, RD, is
taken as an indicator of dilution. We demonstrate below that the profiles of Cup and Cdown
are approximately self-similar and scale with source conditions at the base of the fountain
top. Since RD is a function of these profiles, it can be considered as a reasonable measure
of dilution. We conjecture that this approach is more likely to eliminate the differences
between different flow configurations. For instance, the induced flow at a fountain top
(present study) may be different to a buoyant plume penetrating a density interface (Lin &
Linden 2005).

In a similar manner, we can also obtain a different set of values for RD using the
distributions of mean scalar fluxes, as shown in figure 7(b). The values of RD based on
conditional and mean scalar fluxes over the range of Fro (= 10, 15, 20, 25 and 30) are
plotted in figure 7(c). It is observed that RD varies non-systematically with Fro, and it has
higher magnitude than the mean scalar fluxes (filled symbols). Interestingly, there seems
to be a consistent anti-trend between the values of RD obtained from the conditional and
mean scalar fluxes. Although not directly comparable, we noticed that the two ratios, RD
and Qtop/Qin (see figure 5b) have different mean values and variation with Fro. While RD
has a mean value of 1.9 (based on conditional scalar fluxes) with a variation of ±10 %
about the mean, Qtop/Qin ∈ [1.5 3.5] and has a relatively larger variation of ±40 % with
Fro.

Finally, we tested if the conditional and mean scalar fluxes scale with integral quantities:
rm, Wm and Cm = (bm/bo)Co as defined in (1.2). Here, bo and Co are the source buoyancy
and source concentration, respectively. The normalised results of conditional and mean
scalar fluxes are presented in figure 8(a,b), respectively. Considering the variability in
experiments, there is a reasonably good collapse of mean and conditional scalar flux
profiles at different Fro. This suggests that the scalar fluxes and their dilution measured
through RD scale with the properties of the inner flow at the base of the fountain top. This
result is entirely consistent with the phenomenological model of Debugne & Hunt (2016),
which accounts for rise-height fluctuations and an engulfment time scale associated with
the inner flow at the base of the fountain top.
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estimated as the ratio of the most predominant concentrations of the conditional (open symbols) and mean
(filled symbols) scalar upflux and the return flux. The error bars in (c) correspond to 3 % of the measured
experimental values.
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4. Discussion

4.1. Link between RD and Rez

In this section, we will attempt to explain the variation of RD with Fro as observed in
figure 7(c). In the flow visualisation experiments, we observed that the flow turbulence at
the base of the cap varied with Fro and Reo. This observation suggests that the dilution
at the fountain top may be dictated by the local Reynolds number (characterising the
turbulence in the inner flow) at the base of the cap. As seen in the previous section, the
profiles of RD scaled very well when normalised by the local integral scales. For this
reason, we defined the local Reynolds number (Rez) in terms of the local integral scales as

Rez = 2Wmrm

νo
, (4.1)

where Wm and rm are the local integral velocity and length scales defined based on the
inner flow of the fountain. Note that Wm and rm are functions of z, and νo is the fluid
viscosity at the source. The results of Rez are plotted against Fro in figure 9, where we
observe a non-monotonic variation of Rez. Most importantly, the variation of Rez has a
great similarity to the trend of RD when plotted against Fro. This provides support to our
earlier hypothesis that the turbulence in the inner flow at the base of the cap affects the
dilution in the cap, and is an important parameter to consider when estimating the dilution
in the cap.

To further elaborate on this, we computed the turbulence intensity defined as the
ratio of the integral root-mean-square velocity (σw) and the integral mean axial velocity
(Wm). The results of turbulence intensity (σw/Wm) are shown in figure 10(a,b) plotted
against Fro and Rez, respectively. It is observed that the turbulence intensity continuously
increases with Fro and approaches a constant value at large Fro. This may be explained as
follows. As Fro increases, the momentum forces dominate over the buoyancy force and the
turbulent fountain behaves similarly to a neutral jet. Further, as the turbulence statistics in a
neutral jet become self-similar in the far-field region, the turbulence intensity approaches
a constant value, as noticed here in σw/Wm at larger values of Fro. On the other hand,
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Figure 10. Turbulence intensity (σw/Wm) as a function of (a) source Froude number, Fro and (b) the local
Reynolds number, Rez. The grey line in (a) represents the nominal variation of σw/Wm.

there is no systematic variation of the turbulence intensity with Rez, which suggests the
dependence of σw/Wm on Reo. We believe that the magnitude of σw/Wm is a result of
the combined influence of Reo and Fro on the turbulence at the base of the cap. In a
neutral jet, as Reo increases, the magnitude of σw/Wm increases proportionally before it
attains a self-similar value independent of Reo. However, in a turbulent fountain, where
the buoyancy opposes the momentum, there is the dampening of turbulence in the flow as
observed in our previous study (Talluru et al. 2021). For instance, in the seven experimental
cases presented in this study, Reo is highest for Fro = 18; however, the turbulence intensity
is maximum for Fro = 35, where the dampening effect of buoyancy is relatively reduced
compared with Fro = 18. This will be further discussed using an analytical model that
links Rez with the source parameters, Fro and Reo in the following section.

4.2. Analytical model
To develop an analytical model, we start with the definition of the local Reynolds number
(Rez) as given in (4.1). We then express Wm in terms of Frz using (1.1). By introducing the
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source conditions such as the mean axial velocity (Wo), the radius (ro) and the buoyancy
(bo), we can thus express Rez in terms of Frz, Fro, Reo and the ratio of integral length and
buoyancy scales

Rez = 2rmWm

νo

= 2
(

rm

νo

)
Frz
√

rmbm

= Frz

√
rm

ro

bm

bo

(
2Worm

νs

)(√
robo

Wo

)

= Frz

Fro

√
rm

ro

bm

bo

(
2Woro

νs

)(
rm

ro

)

= Frz

Fro
Reo

√
rm

ro

bm

bo

(
rm

ro

)

= Frz

Fro
Reo

(
bm

bo

)1/2 (rm

ro

)3/2

. (4.2)

Now, we use the empirical relations for rm/ro and bm/bo as reported in Milton-McGurk
et al. (2022). It was found that bm/bo decreases linearly with z/ro and rm/ro increases
linearly with z/ro. These relations were obtained by assuming a constant entrainment
coefficient in the fountain up to the base of the cap and using a linear relation for the
integral velocity in the outer flow. Thus, Rez can be expressed as

Rez = Frz

Fro
Reo

(
1 − a

z
ro

)1/2(
1 + b

z
ro

)3/2

, (4.3)

where a and b are positive constants. Further, Milton-McGurk et al. (2022) reported that
z/ro ∝ Fro, which is consistent with the previous findings for the steady-state height of
a turbulent fountain, zss/ro = 2.46Fro (Burridge & Hunt 2012; Hunt & Burridge 2015).
Now, for large z/ro, we can approximate rm/ro ∝ Fro. Replacing z/ro ∼ Fro and replacing
a with another constant K leads to

Rez 
 Frz

Fro
Reo(1 − aFro)

1/2(Fro)
3/2


 FrzReo(1 − KFro)
1/2(Fro)

1/2. (4.4)

Since the exponents of the product terms are the same, we can combine them to get the
ratio of the local Reynolds number and the source Reynolds number (Rez/Reo) as

Rez

Reo

 Frz(1 − KFro)

1/2(Fro)
1/2. (4.5)

The model captures quite well all the relevant non-dimensional parameters involved in
the study of a turbulent fountain. Using the empirical value of K = 0.02 obtained in our
experiments, we found that the maximum of Rez/Reo (at the base of the cap) occurs at
Fro = 1/(2K) = 25. Note that the local Froude number at the base of the cap, Frz ≈ 1.5,
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Figure 11. Comparison of experimental data of Rez/Reo (at the base of the cap) against the numerical model.
The symbols represent data at different Fro. The solid grey line is the analytical model given by (4.5).

and is treated as a constant here. Further, it should be noted that (4.5) is only valid at large
values of z/ro and under the assumptions stated earlier. Figure 11 shows a comparison of
the experimental data against the results from the analytical model (4.5), which indicates
a good agreement between them. The analytical model is able to correctly predict the
maximum value of Rez/Reo at Fro = 25. Note that the analytical results have been scaled
by a constant factor to form a proper comparison with the experimental data as (4.5) is
only an approximate relationship. As mentioned earlier, the idea behind developing this
analytical model is mainly to explain the non-systematic variation of RD with Fro as
observed in the previous section. As such, one should exercise caution in applying the
proposed model. It requires a much more comprehensive dataset by varying Reo and Fro
to test if this model is applicable over a broader range of Reo and Fro, which is beyond
the scope of this study. Nevertheless, the model seems quite useful as it includes all the
governing source parameters and presents physical insights about the role of the local
Reynolds number and the local Froude number. One may treat Frz 
 1.5 as a constant in
the above model, as it is primarily used for identifying the base of the cap.

5. Conclusions

Detailed measurements of velocity and concentration have been obtained in the cap region
of a turbulent fountain by varying the source Froude number (Fro) between 10 and 35. The
mean structure of the fountain agrees well with the current understanding, i.e. the shape
of the cap is approximately hemispherical. Further, the base of the fountain top is found to
scale well with local Froude number, Frz ≈ 1.5 over the range of Fro tested in this study.
Our results agree well with the empirical model for the steady-state height of the fountain
as reported in the literature (Turner 1966; Burridge & Hunt 2012). The entrainment (mean
volume flux) of the ambient fluid into the cap is estimated as the difference of volume
fluxes in the return flow and the upflow at the base of the fountain top. It is observed
that the ratio of entrained volume flux and the supplied volume flux to the fountain top
lies between 1.5 and 3.5, and exhibits a non-monotonic variation with Fro. The measured
values of entrained volume flux are observed to be greater than those previously reported
via a theoretical model (Debugne & Hunt 2016) and experiments in a stratified flow (Lin
& Linden 2005).
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Entrainment and dilution in a fountain top

A new and robust metric has been proposed to directly estimate dilution of a scalar at the
fountain top. A comparison of the new metric against entrained volumetric ratio revealed
that the two quantities have different mean values and varied non-systematically with Fro.
It is conjectured that the proposed metric can better characterise dilution of a scalar at
a fountain top taking into account the induced downward flow that depends on the flow
configuration. As a final concluding statement, we emphasise that the dilution of scalar
concentration is not equal to the entrainment of ambient volume flux at the fountain top.
Nonetheless, the self-similarity of the profiles of dilution ratio when scaled with integral
quantities of the inner flow seems to suggest that the phenomenological model put forth
by Debugne & Hunt (2016) may be extended to model the dilution of scalar concentration
at the fountain top.

In an attempt to explain the variation of the dilution ratio with Fro, we found that the
local Reynolds number (Rez) at the base of the cap has a direct correlation with the dilution
ratio. This supports the idea that the turbulence in the inner flow fed to the cap at its base
controls the dilution of the scalar concentration in the cap. An analytical model has been
developed to connect Rez to the local (Frz) and source parameters (Reo and Fro), which
is found to agree well with the experimental data. As a final concluding statement, the
entrainment of volume flux and the dilution of scalar concentration at the fountain top are
governed by both the source (Reo and Fro) and the local (Rez and Frz) parameters, and as
such, these parameters must be considered when developing the prediction models.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2022.292.
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