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Abstract

This paper attempts to classify the least ordinal o0 for which E(a0) (the E closure of a0 U {a0}) is
inadmissible. Among the results proved are (i) Lao = ZFC"; (ii) a0 is very large in comparison with
the least ordinal satisfying (i); (iii) (a 0 , a] marks precisely an u-Gap, where a = E(a0) n ON; (iv) the
^-sequence of a0 has length oi.

1980 Mathematics subject classification (Amer. Math. Soc): 03 D 25

^-recursion, which is a generalisation of recursion on objects of higher type to
arbitrary sets, is obtained by adding to the rudimentary operations of Jensen [8]
((i)-(v) below) a reflection scheme ((vi) below). See Normann [3] or Fenstad [2].

(i) f(xv . . . ,*„) = xt, e(l, n, />.
(ii) f(xv ...,xn) = x t - Xj, e = (2, m, i, j).

(iii) f(xv ...,xn)= {x,, Xj}, e = (3 , m, i, j).

(iv) / (*! , ...,xn) = \JyeXl h(y, *!, . . . , xn\ e = <4, n, e'), where e' is the in-
dex for h,

(v) / ( x l 5 . . . , xn) = A(gi(*i , • • • , xn), . . . , gm(xu . . . , xn)), e =
(5,n,me',e1,...,em), where e' is the index for h and e1,...,em indices for

(vi) f(e1,x1,...,xn,y1,...,ym)= {e1}
R(x1,...,xn), e = (l,n,m).

Condition (v) is the substitution scheme. On the right of each scheme, we give the
indices which are carried along in the induction. For any set x, E(x) is defined to
be the closure of x U { x} under the above operations. If x is transitive, then so is
E(x), and the strength of E(x) is in general weaker than admissibility. Lemma 1
below proves the existence of ordinals a for which E(a) is inadmissible. The
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144 M. R. R. Hoole [2]

problem naturally arises to characterise the first ordinal a0 for which E(a0) is
inadmissible. This is what this paper attempts to do. Note that E(u) is admissible
by Gandy selection.

MW below will abbreviate 'Moschovakis Witness' to the divergence of a
computation in ^-recursion. The notation (e, /?) I means the function with index
e e w converges for /?, and (e,fi)1 will abbreviate divergence. When (e,fi)l
there is a well-founded computation tree which lists the inductive stages involved.
The height of the tree will denote the length of the computation |(e,/J)|. The
ordering of the computation tree is by the relation of subcomputation. When
(e,/})T, the computation tree is not well-founded and there is an infinitely
descending sequence of computations witnessing the divergence of {e}(/?)• Such
a sequence is called a Moschovakis Witness (MW). (See Fenstad [2], and Slaman
[7].)

Many of the results flow out of the paper on w-gaps by Marek and Srebrny [5].
The notation a < Eb means a is ^-recursive (or E computable) in b.
Let a0 be at least such that E(a0) •= —,KP. The first two lemmata are intended

to prove the existence of a0 and to fix upper bounds on its value.

LEMMA 1. Let a^ be the least ordinal for which there exists ft > ax such that Lp is
2,2-admissible (equivalently ^-admissible) and L ^ N " ^ is the least uncountable
cardinal." Then E(ax) is inadmissible.

PROOF. The set {<<? ,^I jSe^A {e}(ji,ax)|} = S is 2X and a subset of av

By A 2-separation, S e Lp. Hence E(a1) e Lp. Let E{ax) = La. Thus a £ ) 3 .
Over La we could define MW's for those divergent computations (e, /?) f. These
will be elements of "ax and will belong to La+1 c Lp. If m is such a witness, then
m c. y < ax for some y, since Lp N cf{al) > to. It follows by a standard collaps-
ing argument that m e La. Since all computation trees for (e,fi)l belong to
£(ax), in the usual manner we could express S c ax as a Ax predicate over
E(ax). Since S £ E^), Aj-separation fails and £(ax) is inadmissible. (We could
^-recursively compute E(a1) from S. Whence if S e £(«!), then £(ax)

LEMMA 2. a0 < So, So being the least stable ordinal.

PROOF. Let ^>()3, y) say that Lp 1= 22-admissibility KLp 1= y is the least un-
countable cardinal. <f>(/?, y) is Ax and L 1= 3(/?, Y)<J>()8, Y) (i-e. P =
N2> Y = xiL)- Whence LSo 1= 3(^8, y><>(̂ , y). The result follows.

LEMMA 3 (T. Slaman [7]). Let a be the least ordinal such that E(a) t="a is an
uncountable cardinal." Then E(a) is admissible.
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[3] The least a for which E(a) is inadmissible 145

In what follows we shall further describe a0. We shall first run through some
results in co-gaps in the constructive universe. See Marek and Srebrny [5] a is
said to be a gap ordinal if and only if (La+1 — La) n P(u) = 0 .

LEMMA 4 (Boolos). / / a is not a gap ordinal, then there is an arithmetical copy of
Ea o/La such that Ea e La+1 - La.

(For our purposes it is sufficient that Ea is a (well-founded) co-diagram of La that
could be unravelled by ^-recursion.)

LEMMA 5. a starts a gap if and only if La 1= ZFC~+ V = HC. (V = HC means
that all sets are hereditarily countable, i.e. TC(x) is countable for all x.)

THEOREM 6 (D. Guaspari). / / a starts a gap, ft > a and La n P(co) = Lp n
P(u) (i.e. if {I is still in the gap), then a is ^-stable, i.e. La < xLp.

PROOF. Let <f>(x, b) be a 2 0 formula with parameter b e La. Suppose Lp 1=
3x<t>(x, b). Let b e Ly e La. Let Xy be the 2M-Hull of Ly U {b} in Lp, for
)8 < /? such that there exists x e Lp+l<f>(x, b), with x first order definable in Lp
from d. Let Xy = Ls be the Mostowski collapses of Xy. Letting x = {̂ IL ĝ 1=
ty{y, d)}, since <t> is 2 0 we may obtain a first order formula ¥ from <J>(.x, Z») by
replacing >> G X wherever it occurs by \p(y, d).

Thus Lp+l \= </>(x, b) if and only if L^ t= ^(Z>, cf). Let d be the collapse of d
an ^ = { j> | Ls \= 4>(y, d)}. Thus LB = ^(b, d) and by reversing the process of
obtaining ^ , we have Ls+l t= $(x,b) since b & LyQ Ls. We also have i s + 1 1=
3x<t>(x,b).

We must show that S < a. Since Ly is countable in La, Xy is countable in Lp,
whence Lp contains an co-code 6 of Xy = Ls. Then 0 e La as La n ^(co) = L^
n ^(to). Since La N ZFC", 0 can be unravelled inside La, i.e. L s e La. Let

THEOREM 7.

(i) a0 /5 a gap ordinal,
(ii) a0 « the first uncountable cardinal in E(a0) = Ls,
(iii) [a0, a) lies in an u-gap and the gap commences at aQ and extends precisely to

all ordinals less than a.

PROOF.

(i) If not there is an co-code of a0 in La<j+l e E(a0), which makes a0 countable
in £ ( a 0 ) , i.e. E(aQ) is admissible by Gandy selection.
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(ii) a0 is obviously uncountable in Ls. Suppose there exists j 8 e « 0 such that
Ls t= \ao\ = /}. Since Ls is E closed inadmissible it contains MW's for computa-
tions in E(0). If m is such an MW, m euj8. Since cf(0) > u in Lg, m e L^.
Arguing as in Lemma 1 we conclude that £(/?) is inadmissible, a contradiction
by the minimality of a0.

If X is an uncountable cardinal < a0 in E(a0), we could argue likewise for
E(y) and conclude that it is inadmissible, again not possible.

(iii) Suppose the gap commences at /? < a0. Then La t= "/} is countable by a
function / " (since a0 is the least uncountable in L5). By a collapsing argument
we see that the < L least such / belongs to Lao. Hence there is an u-code m of /?
in Lag and hence in L^ since i>(<o) n Lao = P(w) n L^. This is a contradiction
since °Lp 1= ZFC".

Suppose the gap stops at y < a. Then y and hence a0 are countable in Ls by
Lemma 4, a contradiction. Suppose the gap proceeds to y beyond a, so Ly t=
Jx[3y e X(x = £(y) A X \= ~ KP)]. Since 1^ contains MW's for divergent
computations from a U {a}, we replace "x = £(>>)" by a 2X formula with the
same effect. The formula in square brackets is also 2X; call it <f>. Since Lao < Si Ly

by Theorem 6, LaQ t= <J>, a contradiction.

COROLLARY 8. Lao N ZFC+ V = HC.

But a0 is far from being the least a such that La N ZFC~+ F = HC. This
could be seen from the following two lemmas from Marek and Srebrny [5].

LEMMA 9. / / a starts a gap of length greater than 1, then a is the limit of the
sequence of beginnings of gaps of length 1.

LEMMA 10. / / a starts a gap of length p and p e a, then for each a e p,
sup{ /? < a 10 starts a gap of length a) = a.

We shall now say something about a^, the least admissible ordinal greater
than a0.

THEOREM 11.

(i) There are no gaps between a and a^ .
(ii) L*o is locally countable.

PROOF.

(i) If y (where a < y < <XQ ) begins a gap, then Ly t= ZFC~, so by definition of
a£, ctQ = y. But a^ is a successor admissible, and hence is not even 22-admissi-
ble, and this is a contradiction a^ does not begin a gap.
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(ii) This follows from (i) and Lemma 4.

Let n0 be the ordinal considered in Lemma 3 by Slaman. The arguments above

could be used to show

T H E O R E M 12.

(i) fi0 begins a gap which lasts precisely up to / i j .
(ii) L^ 1= ZFC+ HC.
(iii) n0 is countable in LM+ +1.

Let E(a) be inadmissible and a the greatest cardinal in E(a). Slaman [7]
defines the Kr sequence for E(a) as follows:

*,(<>) = 0, ao = 0;

Kr(fi + 1) = K?'*, a^ = min(8)(tf*-» > Kr(fi + 1)).

For lim(A), Kr{\) = supp<xKr(n ax = min«(*£•" > Kr{\)) if supfi<xKr(P)
< E(a) n ON.

Let 6a be the order type of the Kr sequence for a.

LEMMA 13 (Slaman [7]). Let lim(5) A 8 < 6a. And let a be a successor cardinal
/5+ in E(a). Then there exists a' < a such that E(a') is inadmissible, 0a, = 8 and
E(a') has the same cardinal structure as E(a).

PROOF. Let x = {ji < a\K?-tt < Kr(8)} U {a}. Let M be the £-Hull of x.

M is closed under pairing, MW's for divergent computations and computation
trees for convergent computations. Let M be the collapse of M and let a collapse
to a'. Then ft Q a' since fi c M and M is closed under MW's and hence
inadmissible. Thus E(a') has the same cardinal structure as E(a), i.e. E(a') 1=
)8+= a'and 0a, = 8.

THEOREM 14. 6ao = w.

PROOF. For if 0a > w we could as in Lemma 13 obtain a' < a0 with 0^ — «.
This would contradict the minimality of a0. Let |a-recursive| be the supremum of
order types of all a-recursive well-orderings of a. Gostanian [4] calls an admissi-
ble a 'bad' when a + > |a-recursive| and proves that the least bad ordinal b0 is the
least 2j-reflecting ordinal. Since a-recursive well-orderings of a belong to E(a),
we may be tempted to conjecture that a0 = b0. We shall show that this is false. It
is obvious that a is good (i.e. a + = | a-recursive|) implies that E(a) = La+ and is
admissible.

We need the following result from Barwise, Gandy and Moschovakis [1].
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LEMMA 15. / / 4>(V) is a 2 j formula in LZF, there is a wx formula </>* such that
given a nonempty countable transitive set A, an admissible set B with A e B and an
element a e A, then A 1= </>(a) if B \= 4>*(A, a).

PROOF. The lemma could be extracted from the following. Suppose <j> is ir\, say
</> is \/R\p(R,x). If A 1= <j>(a), let Dia(^) be the diagram of A. Dia(,4) is
A0-recursive in A for any admissible B containing A. The following is a valid
statement in the language of B (we may take B countable):

Dia(A) AVyi \/ b=y) ->»//(/?, a).

Hence it has a proof in B by the Barwise completeness theorem. The predicate "p
is a proof of a " is Ax in p, a.

LEMMA 16. b0 is ^-projectible into to in Lb .

PROOF. We show that working Sj-recursively inside Lbo, we could assign a
unique integer code to each a < b0. Note that b0 is recursively inaccessible by
23-reflection. Hence / (a ) = a + is Sj-recursive.

Assume each ordinal < a has been assigned a unique integer.
Case 1. Succ(a). Say a = B + 1 and Code(yS) = n. Then Code(a) = (1, «>.
Case 2. Lim(a), a is not admissible. Then there exist Yi>Y2 K a> a n d </>(A0)

such that La t= Vx e y^iy, y2) A ~ La\= 3zVx e y ^ e z<t>(y, y2). Let
Code(a )= <2,r<>"1,Code(Y1),Code(72)> for the least such triple O ^ Y i ^ ) i n

terms of some canonical ordering of triples of ordinals.

Case 3. a is admissible and is the least admissible ordinal greater than y for
some y < a. Let Code(a) = (3, Code(Y)> for the least such y.

Case 4. a is admissible and recursively inaccessible. Then La does not reflect
some 2 j formula <t>(B). Let <£* be as in Lemma 15. Then La+\= <j>*(Lfi,B) and
V0 < a [Admissible^) -» - L r l = <t>*(LfiJ3)]. Let Code(a) = <4,r<f>"',Code(/0)
for the least such (""</>"•, B) and we are done.

COROLLARY 17. £(fc0) is admissible.

PROOF. NOW b0 has a counting 2X in Lb which is hence ^-recursive in b0.
Hence the result follows by Gandy selection.
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Indeed, we could see that every incaccessible a ^ b0 has a counting 2X in a
and hence in La+l. Thus b0 is less than the first gap ordinal and b0 « /i0 < a0.

Let a be a limit ordinal and a+ the least admissible ordinal greater than a. It
follows essentially from the results of Grilliot that

a + = 12 2-hyperelementary | a,

E(a) Pi ON = 177-j-hyperelementaryl,,,

where |<&-hyperelementary|a is the supremum of order of types of well-founded
hyperelementary subsets of a obtained from formulae <t>{xy, S) e 2. Also a0 is
the first ordinal 'bad' in the following sense:

a + >\ Wj-hyperelementary |a.

To see how a0 compares with the first gap ordinal for 3E in L (call this YO
L), let

X, (i, y be ordinals such that ju, y e X < N£, ^Y
 = ^(M

lim(X) A Lx \= 3 j ( f l = Kf* A y =

We could define over Ly MW's to divergent computations in ft U {ja}. These
will be members of Ly+1 ( e Lx). These MW's being countable subsets of
ju = Sf* will (by a collapsing argument) be members of L^ ( e LY). Whence (by
the existence of MW's) E(n) is inadmissible.

The same collapsing argument which shows LNt < S^K^ gives us LM < s^x.
Thus

(*) L^ N 3fl3p(^ = Sf« AL, = £ ( ^ ) A ~ Le N ^ P ) .

Now consider ^-recursive computations with /i. For S such that 5 = u8 (i.e.
/ s = Ls), the computation of Ls from 8 has length w (close under the rudimen-
tary schemata). The evaluation of a first order predicate over L^ is a computation
of finite length with L^ (and the parameters). The evaluation of the least p
satisfying (*) (where it is plain that the least such p = 6Q) is first order definable
over Lp and hence of computational length less than w + u in fi. The < L least
counting of a0 is first order definable over L^. Hence this counting is < E /x with
length less than <o + <•>. It easily follows that a0 < y$, the first gap ordinal for
computations with ju.

We must thus state

THEOREM 18. Let /x be as in the above discussion. Then a0 < yft < y0
L, the first

gap ordinal for 3 £ in L.

For more about y0 the reader may consult the article by Normann in Moldes-
tad [6].
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We shall now endeavour to say more about ju0 in terms of entities related to

«o-
For an ordinal 8 such that E(8) inadmissible ASf( S ) = 8, let the 1-section of

8 be defined as Ss = {x \x e Ls t= x < E 8}. When we take 8 = Nf, Ss would be
the classical 1-section for 3E in L.

Let

Hull(S) = {x\x G Lk,o A 3 ^ e 2 ^ t= 3\y${y,8) A

Huir(8) = Hull(S) r\Ls,

= Huir(5)nON.

It is not difficult to see that Ss = Hull~(8) = L, ( 8 ) . See Fenstad [2] for
Normann's results on Spectra. Furthermore Hull(8) is 'Admissible with gaps'
(Sacks [9]).

LEMMA 19. /t0 < YO° < v(ao) < ao-

PROOF. This is seen by a repetition of the argument for Theorem 18.

MORAL. Let /i be such that E(n) 1= /i = (X1)£(Al). Then any ordinal phenome-
non which occurs before n and is first order describable in L^ without parame-
ters, occurs before y#; for example (Moldestad [6]), V = L t= 3x (x is transitive
Ax t= ZFC) -> 3a < y^(La 1= ZFC).

We now compare ax of Lemma 1 with a0. Call an ordinal a wonderful if E(a)
is inadmissible.

LEMMA 20. a0 < aj and indeed ax is a limit of wonderfuls, a limit of limits of
wonderfuls, etcetera.

PROOF. Let /} be as in Lemma 1. Choose y < /? such that E(ax) e Ly. We can
prove as in Theorem 7 that ax begins a gap. But unlike in the case of a0 this gap
extends through £ (a x ) and Ly upto /?. For if the gap stops short of /?, ax will be
countable in Lp and if it goes beyond /?, the reflection of Theorem 6 will
contradict the minimality of av Hence a0 < av

Let 8 be any ordinal less than av Let ^( i j ) be the following 2X sentence:
3 ^ ( £ ( T J ) = } > A 8 < I | A J ) I = -i KP). Then ^x(ij) says 17 > 8 and -q is wonderful.

Now L t= 371^,(1)). By reflection L N 3n^(?j). It follows that a, is a limit of
wonderfuls. That 'TJ is a limit of wonderfuls' can be expressed as a Ao sentence
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with parameter Lr By reflecting again we prove that ax is a limit of limits of

wonderfuls. The lemma follows by simple induction.
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