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GAMMA DISTRIBUTIONS FOR STATIONARY
POISSON FLAT PROCESSES

VOLKER BAUMSTARK ∗ and

GÜNTER LAST,∗ ∗∗ Universität Karlsruhe

Abstract

We consider a stationary Poisson process X of k-flats in Rd with intensity measure �
and a measurable set S of k-flats depending on F1, . . . , Fn ∈ X, x ∈ Rd , and X in a
specific equivariant way. If (F1, . . . , Fn, x) is properly sampled (in a ‘typical way’) then
�(S) has a gamma distribution. This result generalizes and unifies earlier work by Miles
(1971), Møller and Zuyev (1996), and Zuyev (1999). As a new example, we will show
that the volume of the fundamental region of a typical j -face of a stationary Poisson–
Voronoi tessellation is conditionally gamma distributed. This is true in the area-biased
and the area-debiased cases. In the first case the shape parameter is not integer valued.
As another new example, we will show that the generalized integral-geometric contents
of the (area-biased and area-debiased) typical j -face of a Poisson hyperplane tessellation
are conditionally gamma distributed. In the isotropic case the contents boil down to the
mean breadth of the face.

Keywords: Stochastic geometry; gamma distribution; k-flat; Poisson process; Palm
distribution; stopping set; Voronoi tessellation; Poisson hyperplane tessellation; typical
face
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1. Introduction

Since the seminal work in [8] and [12], it is known that the (generalized) integral-geometric
contents of several closed sets constructed on stationary Poisson processes of flats are (condi-
tionally) gamma distributed. It is also known (see [17]) that the measure of certain stopping
sets defined on Poisson processes is conditionally gamma distributed. These are some of the
rare cases in stochastic geometry where the distribution of nontrivial geometric functionals of
Poisson processes is explicitly known. Further results of this type can, e.g. be found in [1],
[2], [3], [6], and [13], with some corrections to the work in [8] and [12] given in [2]. The aim
of this paper is to generalize these results using a unified framework combining stopping sets
with Palm distributions. Several examples will illustrate the theory.

We consider here a stationary Poisson processX of k-flats (k-dimensional affine subspaces)
in Rd , where d ≥ 1 and k ∈ {0, . . . , d−1}. This is a Poisson process on the space of all k-flats,
whose distribution is invariant under translation of the flats. Its distribution is determined by the
intensity γ (see (2.2), below), and the directional distribution Q, a probability measure Q on
the space of all k-dimensional linear subspaces of Rd . In fact, the intensity measure ofX equals
γ�, where� is the intensity measure of a stationary Poisson process of k-flats with intensity 1
(see (2.3), below). Note thatX is isotropic, if and only if Q is the uniform distribution. If k = 0
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thenX is just a stationary Poisson process on Rd . We refer the reader to [14] and [15] for these
and other fundamental facts from stochastic geometry.

To describe and motivate the main results of this paper, we first discuss a special case. Let
Ek denote the space of all k-flats in Rd equipped with the usual topology; see [14]. Fix n ∈ N.
Let S(F1, . . . , Fn, x) be a Borel subset of Ek depending on F1, . . . , Fn ∈ Ek , and let x ∈ Rd in
a measurable way. Assume that S is equivariant in the sense that a joint scaling or translation
of all arguments leads to the same scaling or translation of the elements of S. Furthermore, let
R(F1, . . . , Fn, x,X) be a nonnegative measurable mapping, invariant under joint scaling or
translation of all arguments. In many examples R is just an indicator function. Fixm ∈ N0, let
η ⊂ Ek be locally finite, and define Rm(F1, . . . , Fn, x, η) := R(F1, . . . , Fn, x, η) if card(η ∩
S(F1, . . . , Fn, x)) = m and Rm(F1, . . . , Fn, x, η) := 0 otherwise. Let µ(F1, . . . , Fn, ·) be a
measure on Rd with the equivariance property (3.2), below. We assume that µ is a kernel from
(Ek)n to Rd , that is, µ(F1, . . . , Fn, ·) is measurable in the first n arguments and σ -finite in the
last argument. Let B ⊂ Rd and C ⊂ [0,∞) be Borel sets, and define M(B ×C) by summing

∫
1{x ∈ B,�(S(F1, . . . , Fn, x)) ∈ C}Rm(F1, . . . , Fn, x,X \ {F1, . . . , Fn})
× µ(F1, . . . , Fn, dx)

over all pairwise different F1, . . . , Fn ∈ X. This gives a stationary random marked measure
M on Rd with mark space [0,∞). It is easy to see (and derived in Section 3) that the intensity
γM := EM([0, 1]d × [0,∞)) of M is given by

γM = γ n
∫∫

1{x ∈ [0, 1]d} E[Rm(F1, . . . , Fn, x,X)]µ(F1, . . . , Fn, dx)

×�n(d(F1, . . . , Fn)). (1.1)

If this intensity is positive and finite then EM(B × C) = γMHd(B)V(C) for any Borel sets
B ⊂ Rd andC ⊂ [0,∞), where Hd is the Lebesgue measure and V is a distribution on [0,∞),
the mark distribution of M .

The following theorem generalizes both Miles’ complementary theorem in [8] (see also
[12]), and the results on subprocesses in [12]. We will discuss these cases in Section 4. Later
in the paper we will extend the theorem to situations where the set S may also depend on the
flat process X; see Theorem 3.1, below. The gamma distribution with shape parameter α > 0
and scale parameter γ is denoted by �(α, γ ).

Theorem 1.1. Let M be the stationary random marked measure defined above, and assume
that its intensity is positive and finite. Let j ∈ {0, . . . , d} satisfym+ n− (d − j)/(d − k) > 0,
and assume that the kernel µ satisfies the scaling relation

µ(F1, . . . , Fn, c
−1B) = c−jµ(cF1, . . . , cFn, B), F1, . . . , Fn ∈ Ek, c > 0, (1.2)

for any Borel set B ⊂ Rd . Then the mark distribution ofM is �(m+ n− (d − j)/(d − k), γ ).
To give the reader some feeling for the random measureM and the assertion of Theorem 1.1,

we continue with some examples.

Example 1.1. Let k = 0, and consider the Voronoi tessellation based on the Poisson process
X; see also Section 5. Let j ∈ {0, . . . , d}. Pick a point x on one of the j -faces ‘at random’ and
consider the ball centered at x, having d− j +1 points ofX (the neighbors of the j -face) on its
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boundary but no point ofX in its interior. Then the volume of this ball has a �(d−j+j/d, γ )-
distribution. For j = 0, this result is due to Miles [9], while the j = d case is trivial. The other
cases can be found in [1] and [13].

To derive this result from Theorem 1.1, we consider points x1, . . . , xd−j+1 ∈ X in general
position. Let Zj (x1, . . . , xd−j+1) be the set of all points x ∈ Rd having the same distance
from all the points x1, . . . , xd−j+1 ∈ X. For such x, we let S(x1, . . . , xd−j+1, x) be the
closed ball B(x, |x1 − x|) centered at x and having the points x1, . . . , xd−j+1 on its boundary.
A point x ∈ Zj (x1, . . . , xd−j+1) is in a j -face of the tessellation if S(x1, . . . , xd−j+1, x) does
not contain any further points of X. Define M(B × C) by summing

∫
B

1{Hd(S(x1, . . . , xd−j+1, x)) ∈ C}
× 1{(X \ {x1, . . . , xd−j+1}) ∩ S(x1, . . . , xd−j+1, x) = ∅}µ(x1, . . . , xd−j+1, dx)

over all x1, . . . , xd−j+1 ∈ X in general position, where

µ(x1, . . . , xd−j+1, dx) := 1{x ∈ Zj (x1, . . . , xd−j+1)}H j (dx)

and H j is a j -dimensional Hausdorff measure on Rd . Then Theorem 1.1 applies with n :=
d − j + 1 and m := 0. Hence, V indeed equals �(d − j + j/d, γ ).

Example 1.2. As in Example 1.1, we let k = 0 and consider the Voronoi tessellation based
on X. We let j ∈ {0, . . . , d} and pick one of the j -faces ‘at random’. This face then has
d − j + 1 neighbors x1, . . . , xd−j+1 ∈ X. Let z(x1, . . . , xd−j+1) be the center of the (d −
j)-dimensional ball having the above neighbors on its boundary. Then the volume of the
(d-dimensional) ball S(x1, . . . , xd−j+1) centered at z(x1, . . . , xd−j+1) and having x1 on its
boundary is conditionally �(d − j + m, γ )-distributed given that X \ {x1, . . . , xd−j+1} has
m ∈ N0 points in S(x1, . . . , xd−j+1). This fact seems to be new. Note that z(x1, . . . , xd−j+1)

need not lie on the picked j -face. This result can be formally obtained as follows. Consider
points x1, . . . , xd−j+1 ∈ X in general position and define z(x1, . . . , xd−j+1) as above. Let
η ⊂ Ek be locally finite, set R(x1, . . . , xd−j+1, η) := 1 if

Lj (x1, . . . , xd−j+1, η) := {x ∈ Zj (x1, . . . , xd−j+1) : η ∩ B0(x, |x − x1|) = ∅}
has nonempty relative interior, and set R(x1, . . . , xd−j+1, η) := 0 otherwise. (In the first case
Lj (x1, . . . , xd−j+1, X \ {x1, . . . , xd−j+1}) is a j -face.) Here Zj (x1, . . . , xd−j+1) is (again)
the set of all points x ∈ Rd having the same distance from all the points x1, . . . , xd−j+1 ∈ X
and B0(x, |x− x1|) is the interior of the ball B(x, |x− x1|). Let S(x1, . . . , xd−j+1) be the ball
B(z(x1, . . . , xd−j+1), |x1 − z(x1, . . . , xd−j+1)|). Define M(B × C) by summing

1{Hd(S(x1, . . . , xd−j+1)) ∈ C}Rm(x1, . . . , xd−j+1, x,X \ {x1, . . . , xd−j+1})
over all x1, . . . , xd−j+1 ∈ X in general position and having z(x1, . . . , xd−j+1) ∈ B. Let
µ(x1, . . . , xd−j+1, ·) be the Dirac measure at z(x1, . . . , xd−j+1). Since z(·) is equivariant
under scaling, (1.2) holds with j = 0. Theorem 1.1 with n := d − j + 1 shows that V is a
gamma distribution with shape parameter d − j + 1 +m− 1 = d − j +m.

Example 1.3. Let k = d − 1, and assume that X is nondegenerate, i.e. not all hyperplanes
in X are parallel to a fixed line. Then X induces a tessellation of Rd (a Poisson hyperplane
tessellation); see Theorem 10.3.2 of [14]. Pick one of the cells at random and consider the
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(maximal) inradius of this cell. This radius is exponentially distributed. This is Theorem 10.4.11
of [14], where the result is attributed to Miles. The result is also treated as Example (vi) in [12]
in the setting of Miles’complementary theorem. (As pointed out in [14], this requires additional
properties of the directional distribution Q.)

We now develop a version of this result, where only cells with unique inball are being
selected. For F1, . . . , Fd+1 ∈ Ed−1, let Sd(F1, . . . , Fd+1) denote the system of the closures of
the connected components of the complement of F1 ∪ · · · ∪Fd . Define R(F1, . . . , Fd+1) := 1
if there is exactly one cell in Sd(F1, . . . , Fd+1) that has a unique inball S̃(F1, . . . , Fd+1). In
this case we let z(F1, . . . , Fd+1) denote the center of this inball and r(F1, . . . , Fd+1) denote
its radius. In all other cases we set R(F1, . . . , Fd+1) := 0. The random measureM is obtained
by summing

1{z(F1, . . . , Fd+1) ∈ B, 2r(F1, . . . , Fd+1) ∈ C}R0(F1, . . . , Fd+1, x,X \ {F1, . . . , Fd+1})
over all pairwise different F1, . . . , Fd+1 ∈ X. It follows from Theorem 10.3.3 of [14] that the
intensity γM is finite. Let S(F1, . . . , Fd+1) := {F ∈ Ed−1 : F ∩ S̃(F1, . . . , Fd+1) �= ∅}. Then
�(S(F1, . . . , Fd+1)) = 2r(F1, . . . , Fd+1). Theorem 1.1 with n := d + 1, m := 0, and j := 0
shows that V is a gamma distribution with shape parameter d + 1 − d = 1.

Example 1.4. As in Example 1.3, we consider a nondegenerate Poisson hyperplane tessellation.
Pick a point x on the (one-dimensional) edges ‘at random’. Then x is in the relative interior
of an edge L1. Define �∗(L1) as the �-measure of all F ∈ Ed−1 having F ∩ L1 �= ∅; see
also (2.4), below. Then �∗(L1) has a �(2, γ )-distribution. In the isotropic case, �∗(L1) is
proportional to the length of L1. By a Slivnyak-type argument and area-biased sampling of
Poisson intervals, the result is then easy to guess. In the general case the assertion is less
obvious.

To derive the result, we letF1, . . . , Fd+1 ∈ Ed−1. IfF1 ∩· · ·∩Fd−1 is of dimension 1, we let
µ(F1, . . . , Fd+1, ·) be the one-dimensional Hausdorff measure supported by this intersection.
Take x ∈ F1 ∩ · · · ∩ Fd−1, and define

L1(F1, . . . , Fd+1, x) := F1 ∩ · · · ∩ Fd−1 ∩ Fd(x) ∩ Fd+1(x), (1.3)

where Fi(x) (i = d, d + 1) is the half-space bounded by Fi and containing x. (For x ∈ Fi , we
let Fi(x) := Rd .) Let R(F1, . . . , Fd+1, x) := 1 if the set (1.3) is a bounded segment, and set
R(F1, . . . , Fd+1, x) := 0 otherwise. Define M(B × C) by summing

∫
1{x ∈ B,�∗(L1(F1, . . . , Fd+1, x)) ∈ C}R(F1, . . . , Fd+1, x)

× 1{(X \ {F1, . . . , Fd+1}) ∩ L1(F1, . . . , Fd+1, x) = ∅}µ(F1, . . . , Fd+1, dx)

over all pairwise different F1, . . . , Fd+1 ∈ X. Theorem 10.3.3 of [14] implies that M has a
finite intensity. Then Theorem 1.1 applies with n := d + 1, m := 0, j := 1, and

S(F1, . . . , Fd+1, x) := {F ∈ Ed−1 : F ∩ L1(F1, . . . , Fd+1, x) �= ∅}.
Hence, V is a gamma distribution with shape parameter 2.

Example 1.5. As in Examples 1.3 and 1.4, we consider a nondegenerate Poisson hyperplane
tessellation. Pick an edge C1 ‘at random’. Then �∗(C1) has an exponential distribution. This
can be proved as in Example 1.4.
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For the reader’s convenience, we sketch a proof of Theorem 1.1 in case the function R does
not depend on X. By definition, V(C) = γ−1

M EM([0, 1]d × C). Using an iterated version of
Mecke’s Satz 3.1 in [7], we obtain

V(C) = γ n

γMm!
∫

1{x ∈ [0, 1]d , t ∈ C} exp[−γ t]νm(d(x, t)), (1.4)

where, for any b ∈ R, the measure νb on Rd × (0,∞) is defined by

νb(B × C) :=
∫∫

1{x ∈ B,�(S(F1, . . . , Fn, x)) ∈ C}�(S(F1, . . . , Fn, x))
b

× R(F1, . . . , Fn, x)µ(F1, . . . , Fn, dx)�n(d(F1, . . . , Fn)).

This usage of Mecke’s formula (also called the Mecke–Slivnyak formula) is by now very
standard in stochastic geometry. Fix b ∈ R for a moment. From equivariance of S andR under
translations we find that νb is translation invariant in the first component. Hence,

νb(B × C) = νb([0, 1]d × C)Hd(B). (1.5)

(If C is bounded away from 0 and ∞, we can use the fact that the integral in (1.1) is assumed
finite.) Now fix a Borel set C ⊂ (0,∞) and let a > 0. By a straightforward calculation,

νb([0, 1]d × aC) = anabaj/(d−k)νb(a−1/(d−k)[0, 1]d × C),

where the first two factors come from the form of the measure �, (2.3), below, while the third
comes from the scaling relation (1.2). Choosing b := 1 − n + (d − j)/(d − k) we find from
(1.5) that νb([0, 1]d × aC) = aνb([0, 1]d × C). Hence, νb([0, 1]d × C) = cH1(C) for some
c > 0. Inserting this, (1.5), and the obvious equation

νm(B × C) =
∫

1{x ∈ B, t ∈ C}tm−bνb(d(x, t))

into (1.4) we find that V is proportional to∫
1{x ∈ [0, 1]d , t ∈ ·}tm−b exp[−γ t]νb(d(x, t)) =

∫
1{t ∈ ·}tm−b exp[−γ t] dt,

as claimed.
As already mentioned above, we will show that Theorem 1.1 remains valid in the more

general case where the set S may also depend on the flat process X. Our crucial assumption is
that S(F1, . . . , Fn, x, ·) is a stopping set for all k-flats F1, . . . , Fn and all x ∈ Rd . Moreover,
the function R(F1, . . . , Fn, x, ·) is assumed to be measurable with respect to the associated
stopping σ -field. It is then reasonable to include the n = 0 case by defining

M(B × C) :=
∫

1{x ∈ B,�(S(x,X)) ∈ C, card(X ∩ S(x,X)) = m}R(x,X) dx.

This way we can also cover the results of [17], noting, however, that the latter paper studies
stopping sets defined on more general Poisson processes. We believe that our approach can be
used to explain all gamma-type results for Poisson flat processes.

A finite intensity of the underlying random measure is a crucial assumption in Theorem 1.1
and the more general Theorem 3.1, below. Cowan [2] showed what can go wrong with Miles’
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complementary theorem without this assumption. As a resort, he proposed an approach via a
limit procedure that could easily be adapted to our more general setting. We are not pursuing
this here, mainly because the results seem to be rather preliminary. But there is certainly room
for further research on the topic of this paper.

The structure of this paper is as follows. Section 2 contains some technical prerequisites that
are required for a sound mathematical treatment of our topic. In Section 3 we present our main
results (Theorem 3.1 and Theorem 3.2) and their proofs. Even in the situation where the set S
does not depend on X, Theorem 3.1 will be more general than Theorem 1.1. In Section 4 we
will discuss (and slightly generalize) the classical special cases mentioned above. In Section 5
we will present new specific examples in the k = 0 case, i.e. in the case whereX is a stationary
Poisson process. We will consider area-biased and area-debiased versions of the typical j -face
of the Voronoi tessellation based onX. The volume of the fundamental region of this face has a
conditional gamma distribution given the number ofX points in this region. The area-debiased
version for j = d can be found in [10] and [12], while the area-debiased version for j = 1 can
be found in [3] (for d = 2) and in [1]. The classical case, j = 0, has been treated in [9]. All other
cases seem to be new. In Section 6 we consider area-biased and area-debiased typical j -faces of
a general Poisson hyperplane tessellation. The generalized integral-geometric contents of such
a j -face are conditionally gamma distributed given its number of (j − 1)-dimensional faces.
In the isotropic case the contents are the mean breadth of the face. This section generalizes
classical results on the typical cell of a Poisson hyperplane tessellation; see [6, Section 6.3]
and [12]. Appendix A contains some (apparently new) material on stopping sets that is needed
for proving our results.

2. Preliminaries

2.1. Geometrical preliminaries

We work in Euclidean d-space Rd , d ≥ 1, equipped with the Euclidean norm | · | and the
Borel σ -field Bd . The closed ball with radius r ≥ 0 centered at x ∈ Rd is denoted by B(x, r),
whileB0(x, r) denotes the corresponding open ball. The unit ballB(0, 1) centered at the origin
0 ∈ Rd is denoted by Bd . We write Hk for the k-dimensional Hausdorff measure in Rd , and
let κd := Hd(Bd).

The system of all closed subsets of Rd is denoted by F . For any K ⊂ Rd , we write

FK := {F ∈ F : F ∩K �= ∅}.
We make F a measurable space by introducing the smallest σ -field containing FK for all
compactK . This is actually the Borelσ -field associated with the topology of closed convergence
on F ; see [14, Chapter 12] for more detail. If K ⊂ Rd is compact then FK is compact with
respect to this topology. Conversely, any compact subset of F \ {∅} is contained in FK for
some compact K . Let k ∈ {0, . . . , d − 1}. A k-flat is a k-dimensional affine subspace F of
Rd . The space of all such flats is denoted by Ek . Any F ∈ Ek can be uniquely written as
F = L+ x, where L is an element of the space Lk of all k-dimensional linear subspaces of Rd

and x is in the orthogonal complement L⊥ of L. The sets Ek and Lk are respectively locally
compact and compact second countable Hausdorff spaces; see Theorems 13.2.4 and 13.2.5, and
the subsequent remarks of [14]. The space of all closed subsets of Ek is denoted by F (Ek).
Again, this space can be equipped with the topology of closed convergence. In particular,
F (Ek) becomes a measurable space in its own right. Sometimes we need the special notation

EkK := FK ∩ Ek = {F ∈ Ek : F ∩K �= ∅}, K ∈ F . (2.1)
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2.2. Stationary Poisson processes of flats

We let Nk denote the space of all locally finite subsets of Ek . Any η ∈ Nk is identified with
the counting measureA 
→ η(A) := card(η∩A) on Ek . The σ -field N k is the smallest σ -field
on Nk making the mappings η 
→ η(A)measurable for all Borel sets A ⊂ Ek . A point process
of k-flats is a point process on Ek , i.e. a measurable mappingX from some abstract probability
space (	,A,P) into Nk . It is called stationary if X + x has the same distribution as X for all
x ∈ Rd . Here η + x := {F + x : F ∈ η} for η ∈ Nk . Consider a stationary point process of
k-flats and assume that its intensity

γ := 1

κd−k
E card(F ∈ X : F ∩ Bd �= ∅) (2.2)

is finite and positive. Then the intensity measure of X can be written as

EX(A) = γ�(A),

where

�(·) :=
∫

Lk

∫
F⊥

1{F + x ∈ ·}Hd−k(dx)Q(dF) (2.3)

for some uniquely determined probability measure Q on Lk; see again [14, Chapter 12]. In
the case in which k = 0 we may identify Ek with Rd , and � becomes the Lebesgue measure.
A Poisson process X on Ek (see, e.g. [4] for a definition of general Poisson processes) is
stationary if and only if its intensity measure is a multiple of (2.3) for some Q. Such stationary
Poisson processes of k-flats are the subject of this paper. If k = 0 then X is just a stationary
Poisson process on Rd .

For any closed set K ⊂ Rd , we define

�∗(K) := �({F ∈ Ek : F ∩K �= ∅}). (2.4)

In the case in which k = 0 this is just the volume of K . If Q is the uniform distribution and K
has some further properties, then this is the integral-geometric contents of K . If, for instance,
K is a compact and convex set then �∗(K) is proportional to the surface area of K in the
case in which k = 1 and proportional to the mean breadth in the case in which k = d − 1;
see [14] and [15] for more details. For general Q, we may interpret (2.4) as the generalized
integral-geometric contents of K .

2.3. Stopping sets

LetA ⊂ Ek be measurable, and let N k
A be the σ -field generated by the mapping η 
→ η∩A.

A stopping set (defined on Nk) is a mapping T : Nk → F (Ek) such that

{η ∈ Nk : T (η) ⊂ K} ∈ N k
K, K ∈ F (Ek).

This is essentially the definition from [17]. Note, however, that we are not restricting T to
be compact. Moreover, owing to the special properties of the domain Nk , we can derive (see
Appendix A) some more specific properties of a stopping set. The stopping σ -field associated
with a stopping set T is defined by

N k
T := {A ∈ N k : A ∩ {T ⊂ K} ∈ N k

K for all K ∈ F (Ek)}.
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For the main purpose of this paper, it would be sufficient to concentrate on a generic type
of stopping set constructed as follows. For any closed set K ⊂ Rd , we define a measurable
mapping π ′

K : Nk → Nk by

π ′
K(η) := {F ∈ η : F ∩K �= ∅}. (2.5)

If T ′ : Nk → F is measurable then Ek
T ′ : Nk → F (Ek) defined by

EkT ′(η) := EkT ′(η) = {F ∈ Ek : F ∩ T ′(η) �= ∅} (2.6)

is also measurable. We note that Ek
T ′(η) is closed if T ′(η) is compact. It turns out that Ek

T ′ is a
stopping set if T ′ has the following natural stopping set property.

Proposition 2.1. Let T ′ : Nk → F be a measurable mapping satisfying

{T ′ ⊂ K} ∈ σ(π ′
K), K ∈ F . (2.7)

Assume that Ek
T ′ is closed. Then Ek

T ′ is a stopping set and

N k

Ek
T ′

= {A ∈ N k : A ∩ {T ′ ⊂ K} ∈ σ(π ′
K) for all K ∈ F }. (2.8)

The proof of this result and further details on a more general concept of a stopping set are
given in Appendix A. If k = 0 then E0

T ′ = T ′. In this case the literature has numerous examples
of stopping sets (see, e.g. [17]). Here is a simple example that applies for any k.

Example 2.1. Let i ∈ N, and define a measurable mapping τi : Nk → [0,∞) by

τi(η) := inf{r ≥ 0 : card(F ∈ η : F ∩ rBd �= ∅) ≥ i}.
It is easy to show that T ′(η) := τi(η)B

d (i.e. T ′(η) := Rd in the case where τi(η) = ∞) gives
a measurable mapping satisfying (2.7).

2.4. Stationary random measures and mark distributions

We work on the probability space (Nk,N k,P), where P is the distribution of a stationary
Poisson process of k-flats with intensity γ > 0. The identity on Nk is denoted by X.
A random measure M on Rd (see, e.g. [4, Chapter 12]) is a random variable taking its values
in the space M of all locally finite measures α on Rd equipped with the σ -field M generated
by the mappings α 
→ α(B), B ∈ Bd . We write M(η,B) := M(η)(B). Note that N0 is a
measurable subset of M . An element of N0 is also called a simple counting measure on Rd .
A (simple) point process on Rd is a random measure M satisfying P(M(X) ∈ N0) = 1.
A random measure M on Rd is called stationary if

M(η,B + x) = M(η − x, B), η ∈ Nk, x ∈ Rd , B ∈ Bd .

Here and later we use, for A ⊂ Ek , y ∈ Rd , and c > 0, the notation A+ y := {F + y : F ∈ A}
and cA := {cF : F ∈ A}. IfM is a stationary random measure then the distribution ofM(·+x)
is the same for any x ∈ Rd .

Let (X,X) be a measurable space, and let MX denote the space of all measures α on
Rd ×X such that α(·×X) is locally finite. The σ -field MX onMX is defined exactly as above.
A marked random measure M on Rd with mark space X is an MX-valued random variable.
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It is called stationary ifM(·×C) is stationary for all C ∈ X. IfM is such a stationary random
measure then EM(B × C) = Hd(B)V′(C) for some measure V′ on X. In case the intensity
γM := V′(X) = EM([0, 1]d × X) of M is positive and finite we may normalize V′ to obtain
the (Palm) mark distribution V of M . We then have the refined Campbell theorem

E
∫
f (x, y)M(X, d(x, y)) = γM

∫∫
f (x, y) dxV(dy) (2.9)

for all measurable f : Rd × X → [0,∞), where dx means integration with respect to the
Lebesgue measure Hd . It is common to call V the distribution of the typical mark of M .

Let N be a stationary random measure on Rd . Then

M(η, ·) :=
∫

1{(x, η − x) ∈ ·}N(η, dx)

is a stationary marked random measure with mark space Nk . If the intensity γN := EN([0, 1]d)
ofN is positive and finite, then the mark distribution of thisM is the Palm probability measure
P0
N of N . Note that this is a distribution on Nk . The refined Campbell theorem takes the form

E
∫
f (X − x, x)N(X, dx) = γN

∫∫
f (η, x) dx P0

N(dη) (2.10)

for all measurablef : Nk×Rd → [0,∞). The measure P0
N is describing the statistical behavior

of X as seen from a typical point of N .

3. Formulation and proof of the main result

For the remainder of the paper, we let (Nk,N k,P) be the underlying probability space; see
Subsection 2.4.

We consider an integer n ≥ 0, measurable mappings S : (Ek)n × Rd × Nk → F (Ek) and
R : (Ek)n×Rd×Nk → [0,∞), and a kernelµ from (Ek)n to Rd with the following properties.
The mapping S(F1, . . . , Fn, x, ·) is assumed to be a stopping set for all F1, . . . , Fn ∈ Ek and
x ∈ Rd . Accordingly, we define N k

F1,...,Fn,x
as the associated stopping σ -field. Furthermore,

we assume that, for all F1, . . . , Fn ∈ Ek , x, y ∈ Rd , and η ∈ Nk , the equivariance property

S(F1 + y, . . . , Fn + y, x + y, η + y) = S(F1, . . . , Fn, x, η)+ y (3.1)

holds. If n = 0, µ is assumed to be the Lebesgue measure on Rd . Otherwise, µ is assumed to
satisfy the equivariance property

µ(F1 + y, . . . , Fn + y, B) = µ(F1, . . . , Fn, B − y) (3.2)

for all F1, . . . , Fn ∈ Ek , y ∈ Rd , and B ∈ Bd . The mapping R has to satisfy the invariance
property

R(F1 + y, . . . , Fn + y, x + y, η + y) = R(F1, . . . , Fn, x, η), (3.3)

and R(F1, . . . , Fn, x, ·) is assumed to be N k
F1,...,Fn,x

-measurable for all F1, . . . , Fn ∈ Ek and
x ∈ Rd . Let m ≥ 0, and define

Rm(F1, . . . , Fn, x, η) := 1{η(S(F1, . . . , Fn, x, η)) = m}R(F1, . . . , Fn, x, η) (3.4)
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for F1, . . . , Fn ∈ Ek , x ∈ Rd , and η ∈ Nk . We assume that, for all c > 0, the following scaling
relation holds: ∫

1{x ∈ c−1[0, 1]d} ERm(F1, . . . , Fn, x,X)µ(F1, . . . , Fn, dx)

= c−j
∫

1{x ∈ [0, 1]d} ERm(cF1, . . . , cFn, x, cX)

× µ(cF1, . . . , cFn, dx), F1, . . . , Fn ∈ Ek, (3.5)

for some j ∈ {0, . . . , d}.
Remark 3.1. Consider the case in which n ≥ 1, and let Z : (Ek)n → F be a measurable
mapping. A possible choice of the kernel µ is

µ(F1, . . . , Fn, ·) :=
∫

1{x ∈ Z(F1, . . . , Fn) ∩ ·}H j ( dx).

Assuming the above to be locally finite for all F1, . . . , Fn ∈ Ek , Corollary 2.1.4 of [16] implies
that µ is a kernel. If Z is equivariant under translations then µ satisfies (3.2). The scaling
relation (3.5) is implied by

ERm(cF1, . . . , cFn, cx, cX) 1{cx ∈ Z(cF1, . . . , cFn)}
= ERm(F1, . . . , Fn, x,X)

× 1{x ∈ Z(F1, . . . , Fn)}, F1, . . . , Fn ∈ Ek, x ∈ Rd , c > 0. (3.6)

This holds, for instance, if S and Z are equivariant under scaling and R is invariant under
scaling.

Remark 3.2. Assume that the kernel µ satisfies the scaling relation (1.2) and that

ERm(cF1, . . . , cFn, cx, cX)

= ERm(F1, . . . , Fn, x,X), F1, . . . , Fn ∈ Ek, x ∈ Rd , c > 0.

Then (3.5) holds.

Recalling (2.3), we now define, for any η ∈ Nk , a measure M(η, ·) on Rd × [0,∞] by

M(η,B × C) :=
∫∫

1{x ∈ B,�(S(F1, . . . , Fn, x, η
!
F1,...,Fn

)) ∈ C}
× Rm(F1, . . . , Fn, x, η

!
F1,...,Fn

)

× µ(F1, . . . , Fn, dx)η(n)(d(F1, . . . , Fn)), (3.7)

where η!
F1,...,Fn

:= η \ {F1, . . . , Fn} and η(n) is the measure on (Ek)n such that integration
with respect to this measure is just summation over all tuples (F1, . . . , Fn) ∈ ηn with pairwise
different entries. In the case in which n = 0 this has to be interpreted as

M(η,B × C) :=
∫
B

1{�(S(x, η)) ∈ C}Rm(x, η) dx. (3.8)

We assume that M(η, · × [0,∞]) is locally finite. Then M ≡ M(·, ·) is clearly a marked
random measure, and the equivariance and invariance assumptions, (3.1)–(3.3), easily imply
that M is stationary in the sense of Subsection 2.4. The proof of Theorem 3.1, below, implies
that the intensity γM of M is given by (1.1).
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Theorem 3.1. Assume that M defined by (3.7) has a positive and finite intensity, and that
m+n−(d−j)/(d−k) > 0. Then the mark distribution ofM is�(m+n−(d−j)/(d−k), γ ),
where j = d in the n = 0 case.

Remark 3.3. For formal reasons, we have defined M as a random measure on Rd × [0,∞].
But, if 0 < γM < ∞ then Theorem 3.1 implies in particular thatM is almost surely concentrated
on Rd × (0,∞). Indeed, we then have EM(B × {0}) = EM(B × {∞}) = 0 for any bounded
(and, hence, any) Borel set B ⊂ Rd . In particular, there is no need to exclude the case
�(S(F1, . . . , Fn, x, η

!
F1,...,Fn

)) = 0 in the definition of M , (3.7), explicitly.

Remark 3.4. Let S̃ : (Ek)n × Rd × Nk → F be measurable, and define S := Ek
S̃

as in (2.6)
and assume that S is closed. Equivariance of S under translation is then equivalent to the
corresponding equivariance of S̃. Similar statements apply to the equivariance and invariance
of S under scaling. The random measure M takes the form

M(η,B × C) :=
∫∫

1{x ∈ B,�∗(S̃(F1, . . . , Fn, x, η
!
F1,...,Fn

)) ∈ C}
×Rm(F1, . . . , Fn, x, η

!
F1,...,Fn

)µ(F1, . . . , Fn, dx)η(n)(d(F1, . . . , Fn)),

where�∗, the generalized integral-geometric contents, is defined in (2.4). By Proposition 2.1,
the stopping set property of S holds if S̃(F1, . . . , Fn, x, ·) has the property (2.7) for all
F1, . . . , Fn ∈ Nk and x ∈ Rd .

To state a second result, we consider a measurable mappingG on (Ek)n × Nk taking values
in some measurable space (X,X). We assume that G is invariant under scaling. For any
η ∈ Nk , B ∈ Bd , and measurable D ⊂ [0,∞] × X, we define

MG(η,B ×D) :=
∫∫

1{(�(S(F1, . . . , Fn, x, η
!
F1,...,Fn

)),

G(F1 − x, . . . , Fn − x, η!
F1,...,Fn

− x)) ∈ D}
× 1{x ∈ B}Rm(F1, . . . , Fn, x, η

!
F1,...,Fn

)µ(F1, . . . , Fn, dx)

× η(n)(d(F1, . . . , Fn)), (3.9)

with the obvious interpretation in the n = 0 case; cf. (3.8). Again, we obtain a stationary marked
random measure MG, this time with mark space [0,∞] × X. Note the equality M(B × C) =
MG(B×(C×X)). The following result generalizes the independence assertions of Theorems 3
and 4 of [12].

Theorem 3.2. Under the hypothesis of Theorem 3.1, the mark distribution of MG is a product
of a gamma distribution and a distribution on X.

In proving our results we extend and unify ideas from [12] and [17]. Moreover, we will use
some specific properties of stopping sets defined on Nk which are listed in Appendix A.

First we recall that the identity X on Nk is a Poisson process of k-flats with intensity
measure γ�. For any ρ > 0, we let Pρ denote the distribution of a Poisson process of k-flats
with intensity measure ρ�. The expectation with respect to Pρ is denoted by Eρ . We have the
useful scaling property

Pρ(·) = P1(ρ
−1/(d−k)X ∈ ·). (3.10)
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Indeed, by the well-known mapping theorem, ρ−1/(d−k)X is a Poisson process under P1, and
an easy computation shows that its intensity measure is given by ρ�. Note that P = Pγ . The
following result is an analogue of Theorem 1 of [12] and Equation (9) of [17]. We recall that
X(B) = card(X ∩ B) for a Borel set B ⊂ Rd . If T : Nk → F (Ek) is measurable then X(T )
is the random variable card(X ∩ T ).
Proposition 3.1. Let T : Nk → F (Ek) be a stopping set, and let ρ > 0. Then we have, for
all measurable g : Nk → [0,∞),

Eρ 1{X(T ) = m}g(X ∩ T ) = ρm

γm
E[exp[(γ − ρ)�(T )] 1{X(T ) = m}g(X ∩ T )].

Proof. Satz 3.1 of [7] says that

E
∫
h(X \ {F }, F )X(dF) = E

∫
h(X, F )�(dF) (3.11)

for all measurable h : Nk × Ek → [0,∞). Assume that m ≥ 1, and let f : Nk × F (Ek) →
[0,∞) be measurable. Using Lemma A.3 along with an iterated version of (3.11), we obtain

E f (X ∩ T , T ) 1{X(T ) = m}
= γm

m!
∫
f ({F1, . . . , Fm}, T ({F1, . . . , Fm})) exp[−γ�(T ({F1, . . . , Fm}))]
× 1{F1, . . . , Fm ∈ T ({F1, . . . , Fm})}�m(d(F1, . . . , Fm)). (3.12)

In the m = 0 case we have instead

E f (X ∩ T , T ) 1{X(T ) = 0} = f (∅, T (∅)) exp[−γ�(T (∅)]. (3.13)

Applying (3.12) with ρ instead of γ yields

Eρ 1{X(T ) = m}g(X ∩ T )
= ρm

γm

γm

m!
∫
g({F1, . . . , Fm}) exp[−γ�(T ({F1, . . . , Fm}))]
× 1{�(T ({F1, . . . , Fm})) < ∞} exp[−(ρ − γ )�(T ({F1, . . . , Fm}))]
× 1{F1, . . . , Fm ∈ T ({F1, . . . , Fm})}�m(d(F1, . . . , Fm)).

Another application of (3.12) gives

BEρ 1{X(T ) = m}g(X ∩ T )
= ρm

γm
E[1{X(T ) = m}g(X ∩ T ) 1{�(T ) < ∞} exp[−(ρ − γ )�(T )]].

As (3.12) also implies that

P(�(T ) = ∞, X(T ) = m) = 0,

we obtain the assertion for m ≥ 1. In the m = 0 case the assertion follows in the same way
from (3.13).
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Proof of Theorem 3.1. We prove the theorem for the case in which n ≥ 1. The proof in the
n = 0 case is similar but simpler. Let V be the mark distribution ofM . Take s < γ , and define
ρ := (γ − s)/γ and Cρ := ρ−1/(d−k)[0, 1]d . Let

L(s) :=
∫

exp[st]V(dt)
be the moment generating function of V evaluated at s. From the definition of M , (3.7), and
the refined Campbell theorem, (2.9), we have

γML(s) = ρd/(d−k) E
∫∫

exp[s�(S(F1, . . . , Fn, x,X
!
F1,...,Fn

))]Rm(F1, . . . , Fn, x,X
!
F1,...,Fn

)

× 1{x ∈ Cρ}µ(F1, . . . , Fn, dx)X(n)(d(F1, . . . , Fn)).

From the multivariate version of Mecke’s formula we obtain

γML(s) = ρd/(d−k)γ n E
∫∫

exp[s�(S(F1, . . . , Fn, x,X))]Rm(F1, . . . , Fn, x,X)

× 1{x ∈ Cρ}µ(F1, . . . , Fn, dx)�n(d(F1, . . . , Fn)).

Since the kernel µ is σ -finite, we can apply Fubini’s theorem to obtain

γML(s) = ρd/(d−k)γ n
∫∫

E[exp[s�(S(F1, . . . , Fn, x,X))]Rm(F1, . . . , Fn, x,X)]
× 1{x ∈ Cρ}µ(F1, . . . , Fn, dx)�n(d(F1, . . . , Fn)). (3.14)

We have assumed that S(F1, . . . , Fn, x, ·) is a stopping set for all F1, . . . , Fn ∈ Ek and x ∈ Rd .
Moreover, we have, from Lemma A.2(i),

R(F1, . . . , Fn, x,X) = R(F1, . . . , Fn, x,X ∩ S(F1, . . . , Fn, x,X)),

since R(F1, . . . , Fn, x, ·) is assumed to be N k
F1,...,Fn,x

-measurable. Taking into account the
definition of Rm, (3.4), we obtain, from Proposition 3.1 and (3.14),

γML(s) = ρd/(d−k)γ n γ m

ρmγm

∫∫
Eργ [exp[(ργ − γ + s)�(S(F1, . . . , Fn, x,X))]

× Rm(F1, . . . , Fn, x,X)]
× 1{x ∈ Cρ}µ(F1, . . . , Fn, dx)�n(d(F1, . . . , Fn)).

Since ργ = γ − s, this simplifies to

γML(s) = ρd/(d−k) γ
n

ρm

∫∫
Eργ [Rm(F1, . . . , Fn, x,X)] 1{x ∈ ρ−1/(d−k)[0, 1]d}
× µ(F1, . . . , Fn, dx)�n(d(F1, . . . , Fn)).

The scaling property (3.10) implies that Pργ = P(ρ−1/(d−k)X ∈ ·). Using the scale invariance
(3.5), we arrive at

γML(s) = ρd/(d−k) γ
n

ρm
ρ−j/(d−k)

×
∫∫

E[Rm(ρ1/(d−k)F1, . . . , ρ
1/(d−k)Fn, x,X)]

× 1{x ∈ [0, 1]d}µ(ρ1/(d−k)F1, . . . , ρ
1/(d−k)Fn, dx)�n(d(F1, . . . , Fn)).
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Recalling definition (2.3) of �, this means that

γML(s) = ρ(d−j)/(d−k) γ
n

ρm

×
∫∫∫

E[Rm(F1 + ρ1/(d−k)x1, . . . , Fn + ρ1/(d−k)xn, ρ1/(d−k)x,X)]
× 1{x ∈ [0, 1]d}µ(F1 + ρ1/(d−k)x1, . . . , Fn + ρ1/(d−k)xn, dx)

× 1{x1 ∈ F⊥
1 , . . . , xn ∈ F⊥

n }(Hd−k)n(d(x1, . . . , xn))Q
n(d(F1, . . . , Fn)).

For any fixed linear subspaces F1, . . . , Fn, the transformation

(y1, . . . , yn) := ρ1/(d−k)(x1, . . . , xn)

has the Jacobian ρ−n(d−k)/(d−k) = ρ−n. Therefore,

γML(s) = γ nρ(d−j)/(d−k)ρ−(m+n)a,

where

a :=
∫∫

E[Rm(F1, . . . , Fn, y,X)] 1{y ∈ [0, 1]d}µ(F1, . . . , Fn, dy)�n(d(F1, . . . , Fn)).

Setting s = 0 yields ρ = 1 and, therefore, γM = γ na, i.e. (1.1). It follows that

L(s) = ρ−(m+n−(d−j)/(d−k)) =
(

γ

γ − s

)m+n−(d−j)/(d−k)
, (3.15)

which is the moment generating function of �(m+ n− (d − j)/(d − k), γ ).

Proof of Theorem 3.2. Let W be the mark distribution of MG, and let f : X → [0,∞) be
measurable. Replacing Rm in the above proof by the translation and scale invariant function
Rm(F1, . . . , Fn, x, η)f (G(F1 − x, . . . , Fn − x, η − x)) we obtain, exactly as before,

γM

∫
exp[st]f (z)W(d(t, z)) = γ nρ−(m+n−(d−j)/(d−k))af , (3.16)

where

af :=
∫∫

E[Rm(F1, . . . , Fn, y,X)f (G(F1 − y, . . . , Fn − y,X − y))]
× 1{y ∈ [0, 1]d}µ(F1, . . . , Fn, dy)�n(d(F1, . . . , Fn)).

The choice s = 0 yields

γM

∫
f (z)W(d(t, z)) = γ naf .

Combining this with (3.15) and (3.16) gives
∫

exp[st]f (z)W(d(t, z)) =
∫

exp[st]W(d(t, z))
∫
f (z)W(d(t, z)).

This is sufficient for concluding the assertion.
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Remark 3.5. Assume that S does not depend on the last argument. Then the measurability
assumptions on S can be weakened. Indeed, the above proof shows that it is sufficient to
assume that (F1, . . . , Fn, x, F ) 
→ 1{F ∈ S(F1, . . . , Fn, x)} is measurable. In particular,
S(F1, . . . , Fn, x) need not be closed.

In the remainder of this section we give an alternative, slightly more succinct, formulation
of the above theorems. To do so, we need to assume the existence of measurable mappings
g1, . . . , gn : Nk → Ek such that, for all η ∈ Nk and all pairwise different F1, . . . , Fn ∈ η, we
have

{g1(η − x)+ x, . . . , gn(η − x)+ x} = {F1, . . . , Fn} (3.17)

for µ(F1, . . . , Fn, ·)-almost every (a.e.) x ∈ Rd with Rm(F1, . . . , Fn, x, η
!
F1,...,Fn

) > 0. This
says that, for all ‘interesting’ tuples (F1, . . . , Fn, x, η), the flats F1, . . . , Fn are determined by
η and x in a measurable and translation-equivariant way. Using these functions, we define

S∗(η) := S(g1(η), . . . , gn(η), 0, η \ {g1(η), . . . , gn(η)}), η ∈ Nk.

We also consider a measurable scale-invariant mappingG on (Ek)n×Nk taking values in some
measurable space (X,X). Let

G∗(η) := G(g1(η), . . . , gn(η), η \ {g1(η), . . . , gn(η)}), η ∈ Nk.

Finally, we define a stationary random measure M ′ by M ′(η, B) := M(η,B × [0,∞]), i.e.

M ′(η, B) :=
∫∫

1{x ∈ B}Rm(F1, . . . , Fn, x, η
!
F1,...,Fn

)

× µ(F1, . . . , Fn, dx)η(n)(d(F1, . . . , Fn)). (3.18)

Theorem 3.3. Let the above assumptions and the assumptions of Theorem 3.1 be satisfied.
Then �(S∗) and G∗ are independent under the Palm probability measure P0

M ′ and �(S∗) has
a �(m+ n− (d − j)/(d − k), γ )-distribution, where j = d in the n = 0 case.

Proof. From (3.17) we can easily show that the random measure MG defined by (3.9) can
be written as

MG(η,B × C) =
∫

1{x ∈ B} 1{(�(S∗(η − x)),G∗(η − x)) ∈ C}M ′(η, dx).

Hence, the refined Campbell theorem, (2.10), shows that P0
M ′((�(S∗(X)),G∗(X)) ∈ ·) is the

mark distribution of MG, and the assertions follow from Theorems 3.1 and 3.2.

Remark 3.6. The results of this paper can be generalized to independently marked Poisson
processes of flats as follows. Let (X,X) be a measurable space, and let Nk

X be the space of all
counting measuresψ on Ek×X such thatψ(·×X) is a locally finite simple counting measure.
The space Nk

X can be equipped with a σ -field N k
X as before. On Nk

X we may then consider
the distribution of a Poisson process on Ek × X with intensity measure γ�⊗ L, where L is a
distribution on X. A stopping set is now a measurable mapping T : Nk

X → F (Ek) such that

{ψ ∈ Nk
X : T (ψ) ⊂ K} ∈ N k

K, K ∈ F (Ek),

where N k
K := σ(πK) and πK(ψ) := {(F, z) ∈ ψ : F ∈ K}. The results in Appendix A apply

in this setting, and the above theorems can be extended in the obvious way. One example of
potential interest (e.g. in mobile telecommunication) is a Poisson processX of lines, with each
line carrying an independent Poisson point process.
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4. Some special cases

In this section we will show how the classical gamma-type results can be derived from our
general theorems.

4.1. Miles’ complementary theorem

In this subsection we assume that S and R do not depend on the last argument, and that
j = 0 and n ≥ 1. Under the assumptions of Theorem 3.1 (in particular (3.5)), the typical mark
of the stationary marked random measureM defined by (3.7) has a �(m+ n− d/(d − k), γ )-
distribution. This is a slight generalization of the so-called complementary theorem derived
in [8]; see also [12]. In its original formulation, S is given as in Remark 3.4, R ≡ 1, and
µ(F1, . . . , Fn, ·) is the Dirac measure at some point z(F1, . . . , Fn). The centroid z : (Ek)n →
Rd is assumed measurable and equivariant with respect to translation and scaling. Taking a
measurable and scale-invariant mapping G on (Ek)n × Nk , the random marked measure (3.9)
takes the form

MG(η,B × ·) :=
∫

1{z(F1, . . . , Fn) ∈ B} 1{(�(S′(F1, . . . , Fn)),G
′(F1, . . . , Fn)) ∈ ·}

× 1{η(S′(F1, . . . , Fn)) = m}η(n)(d(F1, . . . , Fn)),

where S′(F1, . . . , Fn) := S(F1, . . . , Fn, z(F1, . . . , Fn)) and

G′(F1, . . . , Fn) := G(F1 − z(F1, . . . , Fn), . . . , Fn − z(F1, . . . , Fn)).

The scale invariance, (3.5), holds if S (and, hence, also S′) is equivariant under scaling. By
Theorem 3.2, the mark distribution of MG is a product measure. The papers [2], [8], and
[12] present many examples where the complementary theorem applies. In fact, Examples 1.3
and 1.5 also belong to this category. Example 1.2 is based on a simple extension of Miles’
theorem to the case in which R �≡ 1.

4.2. Subprocesses

Again, we will consider a case where S and R do not depend on the last argument. Let
H ∈ N k and S′ : Nk → F (Ek) be measurable. Then

M(η,B × C) :=
∫∫

1{x ∈ B} 1{�(S′({F1 − x, . . . , Fn − x})) ∈ C}
× 1{{F1 − x, . . . , Fn − x} ∈ H }
× 1{η!

F1,...,Fn
(S′({F1 − x, . . . , Fn − x})+ x) = m} dx

× η(n)(d(F1, . . . , Fn))

is of the form (3.7). Indeed, we can take S(F1, . . . , Fn, x) := S′({F1 − x, . . . , Fn − x})+ x,
R(F1, . . . , Fn, x) := 1{{F1 −x, . . . , Fn−x} ∈ H }, and j = d. Using stationarity and Fubini’s
theorem, we obtain

EM(X,B × C) = γm,nH
d(B)Vm,n(C),

where

γm,n := E
∫

1{{F1, . . . , Fn} ∈ H } 1{X!
F1,...,Fn

(S′({F1, . . . , Fn})) = m}X(n)(d(F1, . . . , Fn))
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and

Vm,n := γ−1
m,n E

∫
1{�(S′({F1, . . . , Fn})) ∈ ·} 1{{F1, . . . , Fn} ∈ H }
× 1{X!

F1,...,Fn
(S′({F1, . . . , Fn})) = m}X(n)(d(F1, . . . , Fn)), (4.1)

where we assume that γm,n > 0. We also assume that S′ andH are equivariant and, respectively,
invariant under scaling. Then (3.5) holds and Theorem 3.1 implies that Vm,n = �(m+ n, γ ).

Under additional assumptions, the previous result can be expressed in a different way. So we
assume that there is a point process Y : Nk → Nk which is almost surely uniquely determined
by the conditions Y ⊂ X, Y ∈ H , and (X \Y )(S′(Y )) = m. We may call Y a subprocess ofX.
From (4.1), it is obvious that

Vm,n = P(�(S′(Y )) ∈ · | Y (Ek) = n),

so that the conditional distribution of�(S′(Y )) given Y (Ek) = n is �(m+n, γ ). We may also
consider the scaled point process

Y ′ := (�(S′(Y )))−1/(d−k)Y,

where a−1 := 0 if a = 0. Using the scaling properties of S′, H , and �, it is easy to see that,
almost surely, Y ′ = G(X) for a scale-invariant measurable function G : Nk → Nk . Using
this G, we can define a stationary marked random measure MG by (3.9). The associated mark
distribution equals P((�(S′(Y )), Y ′) ∈ · | Y (Ek) = n). Therefore, we find from Theorem 3.2
that �(S′(Y )) and Y ′ are conditionally independent given Y (Ek) = n. In the m = 0 case and
the setting of Remark 3.4 these results are the content of Theorem 3 of [12].

4.3. The measure of stopping sets

In this subsection we consider the n = 0 case, so that we can then work within the setting
of Theorem 3.3. The stationary random measure M ′ defined by (3.18) is then given by

M ′(η, B) :=
∫

1{x ∈ B} 1{η(S′(η − x)+ x) = m}R′(η − x) dx,

where S′(η) := S(0, η) and R′(η) := R(0, η). From stationarity we obtain, for any A ∈ N k ,

E
∫
B

1{X − x ∈ A}M ′(X, dx) = Hd(B)E 1{X ∈ A} 1{X(S′) = m}R′.

Assuming that
0 < γM ′ = E 1{X(S′) = m}R′ < ∞,

we derive that

Pm(·) := (E 1{X(S′) = m}R′)−1 E 1{X ∈ ·} 1{X(S′) = m}R′

is the Palm probability measure of M ′. The same arguments show that assumption (3.5) takes
the form

E 1{cX(S′(cX)) = m}R′(cX) = E 1{X(S′(X)) = m}R′(X), c > 0.

Under this assumption, Theorem 3.3 implies that �(S′) is �(m, γ )-distributed under Pm.
Moreover, any scale-invariant random variable G is Pm-independent of �(S′). In the R′ ≡ 1
case this is a special case of Theorem 2 of [17].
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5. Fundamental regions in Voronoi tessellation

5.1. Voronoi tessellations

In this section we assume that k = 0 and consider the Voronoi tessellation based on the
Poison process X. Our aim is to apply the results from Section 3 to the fundamental region of
the typical j -faces of the tessellation. We consider both the area-biased and the area-debiased
cases.

We give here a few basic definitions and refer the reader to [11] and Section 10.2 of [14] for
more details. Let η ∈ N0. The Voronoi cell C(η, x) of x ∈ η consists of all points y ∈ Rd

satisfying |y − x| ≤ min{|y − z| : z ∈ η}. Then Sd(η) := {C(η, x) : x ∈ η} is the Voronoi
tessellation based on η. A cell is referred to as a d-face. Let j ∈ {0, . . . , d − 1}. A j -face (of
Sd(η)) is a j -dimensional convex set which is the intersection of (at least) d − j + 1 Voronoi
cells C(η, x1), . . . , C(η, xd−j+1), where x1, . . . , xd−j+1 are points of η. The system of all
j -faces of the Voronoi tessellation Sd(η) is denoted by Sj (η).

5.2. The fundamental region of the area-biased typical j -face

We fix j ∈ {0, . . . , d} and define

Mj(·) :=
∑

F∈Sj (X)

H j (F ∩ ·) (5.1)

as the random measure arising by restricting the j -dimensional Hausdorff measure to the j -faces
of the Poisson–Voronoi tessellation Sd(X). We will see below that this definition (after a
possible modification on an invariant P-null set) yields a stationary random measure in the
sense of Subsection 2.4. The intensity of Mj is positive and finite; see, e.g. Theorem 10.2.4
of [14]. Under the Palm probability measure PMj

(cf. (2.10)), the origin belongs almost surely
to the relative interior of a j -faceLj , say, the area-biased typical j -face of Sd(X). Also, almost
surely, there are d − j + 1 points ξ1, . . . , ξd−j+1 ∈ X (the neighbors of Lj ) such that

Lj = C(X, ξ1) ∩ · · · ∩ C(X, ξd−j+1).

We call
Tj :=

⋃
x∈S0(Lj )

B(x, ‖x − ξ1‖)

the fundamental region of Lj , where S0(Lj ) is the set of vertices of Lj ; see Figure 1 for the
case in which j = 1.

Theorem 5.1. Let m ∈ N0, and assume that m = 0 when j = 0, m = 2 when j = 1, and
m ≥ j + 1 in all other cases. Consider the conditional probability measure P0

Mj
given that

X(Tj ) = m+ d − j + 1. Then the volume of the fundamental region Tj has a �(m+ d − j +
j/d, γ )-distribution.

This result is a consequence of Theorem 3.3. We defer the (technical) proof to Subsection 5.4.

Remark 5.1. In the situation of Theorem 5.1 assume that X(Tj ) = m+ d − j + 1. Then the
typical face Lj has m faces of dimension j − 1.

Remark 5.2. The probability measure P0
M0

describes X as seen from the typical vertex
L0 = {0}. Its fundamental region is the ball centered at 0 and having the d + 1 nearest
X-neighbors of 0 on its boundary. It is a classical fact (see [9]) that the volume of this ball has
a G(d, γ )-distribution (see also [1] and Example 1.1).
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y1

x1

x2

L1

y2

Figure 1: In this picture L1 is an edge of the Voronoi tessellation generated by X. This edge is the
intersection of Voronoi cells C(X, x1) and C(X, x2), where x1, x2 ∈ X are the neighbors of L1. The
fundamental region T1 of L1 is given by the union of the two balls. The vertices of L1 are the intersection

of C(X, x1), C(X, x2), and C(X, y1), and C(X, x1), C(X, x2), and C(X, y2), where y1, y2 ∈ X.

Remark 5.3. In the case in which j = d , Md is the Lebesgue measure and P0
Md

= P. Under
P, the face Ld is the (stationary) 0-cell, i.e. the cell containing the origin. The volume of its
fundamental region Td is, by Theorem 5.1, conditionally G(m + 1, γ )-distributed, given that
Ld has m ≥ d + 1 faces of dimension d − 1. To our surprise, we were not able to find this
result in the literature. (The case in which d = 1 is clearly well known.)

Remark 5.4. The probability measure P0
M1

describes X as seen from the area-biased chosen
typical edge L1. The fundamental region T1 is the union of two balls centered at the endpoints
of L0 and having their nearest X-neighbor on its boundary; see Figure 1. According to
Theorem 5.1, the volume of T ∗

1 is �(d + 1 + 1/d, γ )-distributed.

5.3. The fundamental region of the area-debiased typical j -face

For any compact and nonempty setC ⊂ Rd , we let π(C) denote the center of the circumball
of C. This center function has the equivariance property π(C + x) = π(C)+ x, x ∈ Rd . Fix
j ∈ {0, . . . , d}. If C is a j -dimensional compact and nonempty convex set then π(C) is in the
relative interior of C. Define

Nj :=
∑

F∈Sj (X)

δπ(F ) (5.2)

as the (simple) point process supported by the centers of j -faces of Sd(X). This is clearly a
stationary random measure. The intensity ofNj is positive and finite; see, e.g. Theorem 10.2.4
of [14]. Under the Palm probability measure PNj (cf. (2.10)), the origin is almost surely a center
of a j -face Cj , say, the area-debiased typical j -face of Sd(X). Almost surely, with respect to
PNj , there are d − j + 1 points ξ ′

1, . . . , ξ
′
d−j+1 ∈ X (the neighbors of Cj ) such that

Cj = C(X, ξ ′
1) ∩ · · · ∩ C(X, ξ ′

d−j+1).

We call
T ∗
j :=

⋃
x∈S0(Cj )

B(x, ‖x − ξ ′
1‖) (5.3)

the fundamental region of Cj , where S0(Cj ) is the set of vertices of Cj .
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Theorem 5.2. Let m ∈ N0, and assume that m = 0 when j = 0, m = 2 when j = 1, and
m ≥ j + 1 in all other cases. Consider the conditional probability measure P0

Nj
given that

X(T ∗
j ) = m+d−j+1. Then the volume of the fundamental region T ∗

j has a �(m+d−j, γ )-
distribution.

This result is again a consequence of Theorem 3.3 and will be proved in Subsection 5.4. In
the following we will comment on the cases in which j = d and j = 1. The classical special
case, j = 0, has already been discussed in Remark 5.2. The remaining special cases seem to
be new.

Remark 5.5. Under Pd , the faceCd is the typical cell of Sd(X). The volume of its fundamental
region Sd is conditionallyG(m, γ )-distributed, given thatCd hasm ≥ d+1 faces of dimension
(d−1). This special case of Theorem 5.2 is well known; see [10] and [12]. Note the difference
in the shape parameter when compared with the stationary 0-cell alluded to in Remark 5.3.
The reader is advised to consider the case in which d = 1 to explain this phenomenon. In this
case the fundamental region of a randomly picked cell has a G(2, γ )-distributed length, while
a length-biased chosen cell has a fundamental region with a G(3, γ )-distributed length.

Remark 5.6. The probability measure P0
N1

describes X as seen from the typical edge C1 of
Sd(X). Similarly as in the area-biased case (see Remark 5.4 and Figure 1), the fundamental
region T ∗

1 is the union of two balls centered at the endpoints of C0. Using different methods, it
has been shown in [1] (and in [3] for d = 2) that the volume of the fundamental region of C1
(see Figure 1) has a G(d + 1, γ )-distribution. This is in accordance with Theorem 5.2.

5.4. Proofs of Theorems 5.1 and 5.2

Let j ∈ {0, . . . , d}, let x1, . . . , xd−j+1 ∈ Rd , and, for j < d , assume that these points are
in general position, i.e. not contained in some affine space of dimension d − j − 1. For such
points, we define

Zj (x1, . . . , xd−j+1) := {y ∈ Rd : |y − xj | = |y − x1|, j = 2, . . . , d − j + 1}.
If the closed set

Lj (x1, . . . , xd−j+1, η) := {x ∈ Zj (x1, . . . , xd−j+1) : η ∩ B0(x, |x − x1|) = ∅}
has nonempty relative interior, thenLj (x1, . . . , xd−j+1, η) is a j -face of theVoronoi tessellation
based on η∪ {x1, . . . , xd−j+1}. If Lj (x1, . . . , xd−j+1, η) is compact and nonempty, we define

Sj (x1, . . . , xd−j+1, η) := ∪B(y, |y − x1|),
where the union is over all vertices y of Lj (x1, . . . , xd−j+1, η); see Figure 1. Otherwise, we
let Sj (x1, . . . , xd−j+1, η) := Rd . If x1, . . . , xd−j+1 ∈ Rd are not in general position, we set

Lj (x1, . . . , xd−j+1, η) := Zj (x1, . . . , xd−j+1) := ∅, Sj (x1, . . . , xd−j+1, η) := Rd .

It is quite standard to show that Zj , Lj , and Sj are measurable mappings. Moreover,
these mappings are all equivariant under translations and scaling. The proof of the following
geometrically obvious properties is also left to the reader. For any x1, . . . , xd−j+1 ∈ Rd and
η,ψ ∈ N0 with ψ ⊂ Sj (x1, . . . , xd−j+1, η)

c, we have

Lj (x1, . . . , xd−j+1, η) = Lj (x1, . . . , xd−j+1, η ∩ Sj (x1, . . . , xd−j+1, η) ∪ ψ), (5.4)

Sj (x1, . . . , xd−j+1, η) = Sj (x1, . . . , xd−j+1, η ∩ Sj (x1, . . . , xd−j+1, η) ∪ ψ), (5.5)

x ∈ Lj (x1, . . . , xd−j+1, η) �⇒ B(x, |x − x1|) ⊂ Sj (x1, . . . , xd−j+1, η). (5.6)

https://doi.org/10.1239/aap/1261669578 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1261669578


Gamma distributions for stationary Poisson flat processes SGSA • 931

Equation (5.4) is the reason for calling Sj (x1, . . . , xd−j+1, η) the fundamental region of the
face Lj : changing the underlying configuration outside Sj has no influence on the shape of Lj .

Lemma 5.1. For any x1, . . . , xd−j+1 ∈ Rd , the mapping Sj (x1, . . . , xd−j+1, ·) : N0 →
F is a stopping set and Lj (x1, . . . , xd−j+1, ·) : N0 → F is measurable with respect to
NSj (x1,...,xd−j+1,·).

Proof. The second assertion follows by (5.4) and Lemma A.2(i). To prove the first assertion,
we omit x1, . . . , xd−j+1 in the argument of Sj . Let η,ψ ∈ N0 with ψ = η ∩ Sj (ψ). Using
ψ ⊂ Sj (ψ), η = ψ ∪ (η ∩ Sj (ψ)c), and (5.5), we obtain Sj (ψ) = Sj (η). Equation (5.5)
implies that Sj (η) = Sj (η ∩ Sj (η)). By Proposition A.1, Sj is a stopping set.

Lemma 5.2. For any x1, . . . , xd−j+1, x ∈ Rd , the mapping

R(x1, . . . , xd−j+1, x, ·) : η 
→ 1{η(B0(x, |x − x1|)) = 0, x ∈ Zj (x1, . . . , xd−j+1)}
is invariant under translations and scaling and measurable with respect to NSj (x1,...,xd−j+1,·).

Proof. The invariance property is clear. To prove the stated property of measurablity, we
fix x, x1, . . . , xd−j+1 ∈ Rd and omit them in the argument of R, Sj , and Lj . Obviously,
R(η) ≤ R(η ∩ Sj (η)). Assume that R(η ∩ Sj (η)) = 1. Then we have, by (5.4), x ∈
Lj (η ∩ Sj (η)) = Lj (η), and, by (5.6),

∅ = η ∩ Sj (η) ∩ B0(x, |x − x1|) = η ∩ B0(x, |x − x1|).
Hence, R(η) = 1. This shows that R(η) = R(η ∩ Sj (η)), so that the assertion follows from
Lemma A.2(i).

Withm ≥ 0 and j ≥ 0 fixed as in the previous sections we define stationary measuresMj,m

and Mj by

Mj,m(η, ·) :=
∫∫

1{x ∈ Zj (x1, . . . , xd−j+1) ∩ ·} 1{η!
x1,...,xd−j+1

(B0(x, |x − x1|)) = 0}
× 1{η!

x1,...,xd−j+1
(Sj (x1, . . . , xd−j+1, η

!
x1,...,xd−j+1

)) = m}
× H j (dx)η(d−j+1)(d(x1, . . . , xd−j+1))

and

Mj(η, ·) :=
∫∫

1{x ∈ Zj (x1, . . . , xd−j+1) ∩ ·} 1{η!
x1,...,xd−j+1

(B0(x, |x − x1|)) = 0}
× H j (dx)η(d−j+1)(d(x1, . . . , xd−j+1)).

Almost surely, the random measure Mj,m(X, ·) is the restriction of H j onto the union of
all j -faces of Sd(η) having exactly m (j − 1)-faces on their boundary. In particular, Mj(X, ·)
coincides almost surely with the random measure defined by (5.1). The following lemma
justifies our terminology.

Lemma 5.3. For any η ∈ N0, the measure Mj(η, ·) is locally finite.

Proof. Let η ∈ N0. Note that, for all x1, . . . , xd−j+1 ∈ Rd , we have

H j (Zj (x1, . . . , xd−j+1) ∩ Bd) ≤ κj ,
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where κj denotes the volume of the unit ball in Rj . Fix y ∈ η, and let x1, . . . , xd−j+1 ∈ η be
in general position. If B0(x, |x − x1|) ∩ η = ∅ for some x ∈ Bd ∩ Zj (x1, . . . , xd−j+1) then

B0(x, |x − xi |) ∩ η = ∅, i = 1, . . . , d − j + 1.

In particular, we have y /∈ B0(x, |x − xi |) for i = 1, . . . , d − j + 1. Hence,

|y| + 1 ≥ |y − x| ≥ |xi − x| ≥ |xi | − 1, i = 1, . . . , d − j + 1,

and we conclude that |xi | ≤ |y| + 2 for i = 1, . . . , d − j + 1. We obtain

Mj(η, B
d) ≤ κjη(B(0, |y| + 2))d−j+1 < ∞.

The assertion follows by Mj(η, B + x) = Mj(η − x, B) for x ∈ Rd and B ∈ Bd .

The intensity of Mj,m is positive if and only if one of the following cases hold: j = 0 and
m = 0, j = 1 andm = 2, or j ∈ {2, . . . , d} andm ≥ j+1. In the remainder of this subsection
we will only consider these cases.

Let η ∈ N0 and x ∈ Rd . If 0 is in the relative interior of some j -face L of Sd(η) and if
L is the intersection of exactly d − j + 1 Voronoi cells C(η, x1), . . . , C(η, xd−j+1), where
x1, . . . , xd−j+1 are lexicographically ordered points of η, then we define Lj (η) := L and

g1(η) := x1, . . . , gd−j+1(η) := xd−j+1.

Otherwise, we set Lj (η) := {0} and gi(η) := 0, i = 1, . . . , d − j + 1. We define

Tj (η) := Sj (g1(η), . . . , gd−j+1(η), η \ {g1(η), . . . , gd−j+1(η)}).
Obviously,

Tj (X) = Tj P -almost surely, (5.7)

where the fundamental region Tj has been defined in Subsection 5.2. The refined Campbell
theorem, (2.10), easily implies that γMj,m

= γMj
P0
Mj
(X(Tj ) = m+ d − j + 1) and

P0
Mj,m

= P0
Mj
(· | X(Tj ) = m+ d − j + 1). (5.8)

Using Lemmas 5.1 and 5.2, we may now apply Theorem 3.3 with n = d − j + 1 to show that
the distribution of the volume of Tj under P0

Mj,m
is �(d + m − j + j/d, γ ). In view of (5.7)

and (5.8), this is Theorem 5.1.
We next prove Theorem 5.2. For x1, . . . , xd−j+1 ∈ Rd in general position, we denote

by z(x1, . . . , xd−j+1) the center of the uniquely determined (d − j)-dimensional ball having
x1, . . . , xd−j+1 on its boundary. If x1, . . . , xd−j+1 ∈ Rd are not in general position, we set
z(x1, . . . , xd−j+1) := ∞, where ∞ is some point outside Rd . We define a stationary measure
Nj,m by

Nj,m(η, ·) :=
∫

1{Lj (x1, . . . , xd−j+1, η
!
x1,...,xd−j+1

) �= ∅} 1{z(x1, . . . , xd−j+1) ∈ ·}
× 1{η!

x1,...,xd−j+1
(Sj (x1, . . . , xd−j+1, η

!
x1,...,xd−j+1

)) = m}
× η(d−j+1)(d(x1, . . . , xd−j+1)), (5.9)
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if

N ′
j (η, ·) :=

∫
1{Lj (x1, . . . , xd−j+1, η

!
x1,...,xd−j+1

) �= ∅} 1{z(x1, . . . , xd−j+1) ∈ ·}
× η(d−j+1)(d(x1, . . . , xd−j+1)) (5.10)

is a locally finite measure. Otherwise, we let Nj,m(η, ·) and N ′
j (η, ·) be the zero measure.

The right-hand side of (5.9) is in general neither simple (see Subsection 2.4) nor locally finite.
However, the right-hand side of (5.10) is, for P-a.e., η simple as well as locally finite. Because
of the choice of m and j made above, the intensity of Nj,m is positive.

If N ′
j (η, ·) is simple and has the origin in its support, then there exist a uniquely

determined j -face C′
j (η) of Sd(η) and lexicographically ordered points x1, . . . , xd−j+1 ∈ η

with C′
j (η) = Lj (x1, . . . , xd−j+1, η) and z(x1, . . . , xd−j+1) = 0. If, in addition, the points

x1, . . . , xd−j+1 ∈ η are uniquely determined by C′
j (η), then we define

h1(η) := x1, . . . , hd−j+1(η) := xd−j+1.

Otherwise, we set hi(η) := 0, i = 1, . . . , d − j + 1. We define

T ′
j (η) := Sj (h1(η), . . . , hd−j+1(η), η \ {h1(η), . . . , hd−j+1(η)})

and
T ′
j := T ′

j (X).

As at (5.8), we have γNj,m = γN ′
j

P0
N ′
j

(X(T ′
j ) = m+ d − j + 1) and

P0
Nj,m

= P0
N ′
j
(· | X(T ′

j ) = m+ d − j + 1). (5.11)

Using Lemma 5.1, we may now apply Theorem 3.3 with n = d − j + 1 and j replaced with 0
to obtain the following result.

Proposition 5.1. The distribution of the volume of T ′
j under P0

Nj,m
is �(d +m− j, γ ).

To derive Theorem 5.2 from Proposition 5.1, we need a relationship between the Palm
probability measures P0

N ′
j

and P0
Nj

. The random measures N ′
j and Nj are different. However,

we have the intuitively plausible equations γNj = γN ′
j

and

P0
Nj
(·) = P0

N ′
j
(X − π(C′

j ) ∈ ·),

where C′
j := C′

j (X). A formal proof can, e.g. be based on Theorem 4.1 of [5]. Clearly, we
can write the fundamental region defined by (5.3) in the form Sj = Sj (X) for a well-defined
measurable mapping Sj : N0 → F . With this notation we have

Sj (X − π(C′
j )) = S′

j − π(C′
j ) P0

N ′
j

-almost surely.

Since � is translation invariant, it follows that

P0
Nj
(�(T ∗

j ) ∈ ·, X(T ∗
j ) = m+ d − j + 1) = P0

N ′
j
(�(T ′

j ) ∈ ·, X(T ′
j ) = m+ d − j + 1).

Hence, Theorem 5.2 follows from Proposition 5.1 and (5.11).
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6. Typical faces of a Poisson hyperplane tessellation

6.1. Hyperplane tessellations

In this section we assume that k = d−1 and consider the hyperplane tessellation based on the
Poison processX. We assume thatX is nondegenerate in the sense of Section 10.3 of [14]; see
also Example 1.3. We will use our results from Section 3 to show that the generalized integral-
geometric contents of these faces (see (2.4)) are conditionally gamma distributed. Again, we
consider the area-biased and the area-debiased cases.

We now give some basic definitions. More details can be found in Section 10.3 of [14]. Let
η ∈ Nd−1. The connected components of the complement of the union

⋃
F∈η F is made up of

open polyhedral sets. The closures of these cells form the hyperplane tessellation Sd(η). Let
j ∈ {0, . . . , d− 1}. A j -face (of Sd(η)) is a j -dimensional convex set which is the intersection
of one of the cells in Sd(η) with a supporting hyperplane of this cell. The system of all j -faces
of the hyperplane tessellation Sd(η) is denoted by Sj (η).

6.2. Area-biased and area-debiased typical faces

We fix j ∈ {1, . . . , d} and define the random measure Mj by (5.1). Again, we will see
below that this definition yields a stationary random measure in the sense of Subsection 2.4
(after a possible modification on an invariant P-null set). The intensity of Mj is positive and
finite; see, e.g. Theorem 10.3.3 of [14]. Under the Palm probability measure P0

Mj
, the origin

belongs almost surely to the relative interior of a j -face Lj , say. This is the area-biased typical
j -face of Sd(X). Recall the notation (2.1) and (2.6). In particular, X(Ed−1

Lj
) is the number of

hyperplanes in X intersecting Lj .

Theorem 6.1. Let m ∈ N, and assume that m = 2 when j = 1 and m ≥ j + 1 in all other
cases. Consider the conditional probability measure P0

Mj
under the condition thatX(Ed−1

Lj
) =

m+ d − j . Then �∗(Lj ) has a �(m, γ )-distribution.

Remark 6.1. Assume thatX(Ed−1
Lj

) = m+ d− j . Then the face Lj hasm faces of dimension
j − 1.

Next we define a random measureNj by (5.2). Formally, we have to restrict the sum in (5.10)
to all bounded j -faces. However, by Theorem 10.3.2 of [14], all cells and, hence, all j -faces
are P-almost surely bounded. Therefore, this definition yields a stationary random measure, at
least after a possible modification on an invariant P-null set. The intensity ofNj is positive and
finite; see, e.g. Theorem 10.3.3 of [14]. Under the Palm probability measure PNj , the origin is
almost surely a center of a j -face Cj , say. This is the area-debiased typical j -face of Sd(X).

Theorem 6.2. Let m ∈ N, and assume that m = 2 when j = 1 and m ≥ j + 1 in all other
cases. Consider the conditional probability measure P0

Nj
under the condition that X(Ed−1

Cj
) =

m+ d − j . Then �∗(Cj ) has a �(m− j, γ )-distribution.

Remark 6.2. In the isotropic case, �∗(Lj ) and �∗(Cj ) are respectively proportional to the
mean breadth of Lj and Cj . Then Theorems 6.1 and 6.2 provide very explicit information
about the distribution of a typical face. The special case j = 1 has already been treated in
Examples 1.4 and 1.5.

Remark 6.3. The isotropic case d = j = 2 of Theorem 6.2 can be found in [6, p. 185]. The
j = d case of Theorems 6.1 and 6.2 can be found in Example (v) of [12, Section 5]; see also
[6, p. 177] for Theorem 6.1. In [12], Theorem 6.1 is proved with the help of subprocesses, as
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discussed in Subsection 4.2, while Theorem 6.2 is proved using Miles’s original version of the
complementary theorem (see Subsection 4.1). (In the second case [12] provides no information
on how to actually choose the center function.)

6.3. Proofs of Theorems 6.1 and 6.2

A locally finite system of hyperplanes is said to be in general position if, for any k ∈
{0, . . . , d − 1}, any F ∈ Ek is contained in at most d − k hyperplanes of the system.

Proof of Theorem 6.1. Let F1, . . . , Fd−j+m ∈ Ed−1, and consider the union of the sets
F1∩· · ·∩Fd−j∩Fi for i = d−j+1, . . . , d−j+m. The closures of the connected components
of the complement of this union in F1 ∩ · · · ∩Fd−j are denoted by Sj (F1, . . . , Fd−j+m). (For
j = d, we define F1 ∩ · · · ∩ Fd−j := Rd .) Let Sj,m(F1, . . . , Fd−j+m) denote the (finite) set
of j -dimensional polytopes with m (j − 1)-dimensional faces. Let

µ(F1, . . . , Fd−j+m, ·) :=
∑

F∈Sj,m(F1,...,Fd−j+m)
H j (F ∩ ·). (6.1)

This measure is 0 if the dimension F1 ∩· · ·∩Fd−j is greater than j or if Sj,m(F1, . . . , Fd−j+m)
is empty. For x ∈ Rd , we let Cj (F1, . . . , Fd−j+m, x) := C if C ∈ Sj,m(F1, . . . , Fd−j+m) and
x is in the relative interior of C. In all other cases we define Cj (F1, . . . , Fd−j+m, x) := ∅.
Define

Mj,m(η, ·) :=
∫∫

1{x ∈ ·} 1{(η!
F1,...,Fd−j+m(E

d−1
Cj (F1,...,Fd−j+m,x)) = 0}

× µ(F1, . . . , Fd−j+m, dx)η(d−j+m)(d(F1, . . . , Fd−j )), η ∈ Nd−1.

Next we show that ∑
F∈Sj,m(X)

H j (F ∩ ·) = Mj,m(X, ·) P -almost surely, (6.2)

where Sj,m(X) is the system of all j -faces in Sj (X) with m faces of dimension j − 1. Let
C ⊂ Rd be a j -dimensional bounded polytope withm (j − 1)-dimensional faces. Assume that
there are pairwise different F1, . . . , Fd−j+m ∈ X in general position such that

(i) C ∈ Sj,m(F1, . . . , Fd−j+m),

(ii) X!
F1,...,Fd−j+m(E

d−1
C ) = 0.

Then C ∈ Sj (X). Assume, conversely, that the latter is true. By Theorem 10.3.2 of [14],
there exist almost surely uniquely determined (up to the order) F1, . . . , Fd−j+m ∈ X in general
position satisfying (i) and (ii). Hence, (6.2) holds.

By Theorem 10.3.3 of [14], the intensity γMj,m
ofMj,m is finite. In the case in which j = 1

it is positive only when m = 2. Equation (6.2) easily implies that

P0
Mj,m

= P0
Mj
(· | X(Ed−1

Lj
) = m+ d − j) (6.3)

holds similarly as at (5.8).
To obtain Theorem 6.1, we construct an equivariant measurable mappingL∗

j defined on Ed−1,
taking values in the space of convex subsets of Rd , and having the property that Lj = L∗

j (X)

holds P0
Mj,m

-almost surely. In fact, we can construct mappings

gi : Nk → Ed−1, i ∈ {1, . . . , d − j +m},
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such that, for all η ∈ Nk and all pairwise different F1, . . . , Fn ∈ η,

{g1(η − x)+ x, . . . , gd−j+m(η − x)+ x} = {F1, . . . , Fd−j+m}
forµ(F1, . . . , Fd−j+m, ·)-a.e. x ∈ Rd with η!

F1,...,Fd−j+m(E
d−1
Cj (F1,...,Fd−j+m,x)) = 0. (The details

are left to the reader.) We can then take L∗
j (η) := Cj (g1(η), . . . , gd−j+m(η)). It is now easy to

verify that the assumptions of Theorem 3.3 are all satisfied (with n := d − j +m andm := 0),
to conclude that the distribution of L∗

j under P0
Mj,m

is �(m, γ ). In view of (6.3), this implies
Theorem 6.1.

Proof of Theorem 6.2. For F1, . . . , Fd−j+m ∈ Ed−1, we define Sj,m(F1, . . . , Fd−j+m) as
in the proof of Theorem 6.1. Instead of (6.1) we now define

µ(F1, . . . , Fd−j+m, ·) :=
∑

F∈Sj,m(F1,...,Fd−j+m)
δπ(F )(·). (6.4)

For x ∈ Rd , we define Cj (F1, . . . , Fd−j+m, x) as in the proof of Theorem 6.1. Let

Ñj,m(η, ·) :=
∫∫

1{x ∈ ·} 1{η!
F1,...,Fd−j+m(E

d−1
Cj (F1,...,Fd−j+m,x)) = 0}µ(F1, . . . , Fd−j+m, dx)

× η(d−j+m)(d(F1, . . . , Fd−j+m)), η ∈ Nd−1.

The arguments used to establish (6.2) also show that
∑
F∈Sj,m(X)

δ
π(F )=Ñj,m(X,·) P-almost

surely. Therefore, it is easy to see that P0
Ñj,m

= P0
Nj
(· | X(Ed−1

Cj
) = m+ d − j). The assertion

now follows similarly as in the proof of Theorem 6.1.

Remark 6.4. Letm ≥ d+1, and let F1, . . . , Fm ∈ Ed−1 be in general position. At first glance
one might think that the tessellation Sd(F1, . . . , Fm) (introduced in the proof of Theorem 6.1)
contains at most one bounded cell with m faces. Jürgen Kampf pointed out to us that this is
true in the d = 2 case but not true in higher dimensions. This explains why we have to work
with the sum of possibly several Dirac measures in (6.4). Apparently, it is not enough to work
with just one centroid associated with F1, . . . , Fm.

Appendix A. Stopping sets

In this appendix we present some basic results on stopping sets in a general setting. Let Y

be a locally compact second countable Hausdorff space. The system of all closed subsets of
Y is denoted by F (Y ). On F (Y ) we consider the smallest σ -field containing FK := {F ∈
F (Y ) : F ∩K �= ∅} for all compact K ⊂ Y .

Let (W ,W) be a measurable space, and let πK , K ∈ F (Y ), be a family of measurable
mappings πK : W → W with

πK1 ◦ πK2 = πK1 , K1 ⊂ K2, K1,K2 ∈ F (Y ). (A.1)

Two examples of such mappings are given in (A.5) and (A.7), below. The σ -field generated by
πK is WK := σ(πK) = π−1

K (W). By (A.1) we have WK1 ⊂ WK2 for K1,K2 ∈ F (Y ) with
K1 ⊂ K2. A stopping set (defined on W with respect to (WK)K∈F (Y )) is a mapping T : W →
F (Y ) such that {η ∈ W : T (η) ⊂ K} ∈ WK, K ∈ F (Y ). The stopping σ -field associated
with a stopping set T is defined by WT := {A ∈ W : A ∩ {T ⊂ K} ∈ WK for all K ∈ F (Y )}.
It is easy to check that a stopping set T is WT -measurable. Indeed, if U ⊂ Y is open then
{T ∩ U = ∅} ∩ {T ⊂ K} = {T ⊂ K \ U} ∈ WK\U ⊂ WK.
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Lemma A.1. Let (X,X) be a Borel space, and let f : W → X be a measurable function.
Then f is WK -measurable if and only if f = f ◦ πK .

Proof. Let f be measurable with respect to WK . By Lemma 1.13 of [4], there exists some
measurable mapping h : W → X with f = h ◦ πK . Hence, f ◦ πK = f by (A.1).

For a function T : W → F (Y ), we define πT : W → W by πT (η) := πT (η)(η), η ∈ W .

Lemma A.2. Let T be a stopping set. Then the following assertions hold.

(i) WT = σ(πT ) if πT is measurable.

(ii) T (η) = T (πT (η)) for all η ∈ W .

(iii) Let η ∈ W and K ∈ F (Y ). Then T (η) ⊂ K if and only if T (πK(η)) ⊂ K .

(iv) Let η ∈ W and K ∈ F (Y ), and assume that T (η) ⊂ K . Then T (η) = T (πK(η)).

Proof. To prove WT ⊂ σ(πT ), let A ∈ WT , K ∈ F (Y ), and η ∈ W . By the definition
of WT , the function 1A 1{T ⊂ K} is measurable with respect to WK . Using Lemma A.1, we
obtain

1A(η) 1{T (η) ⊂ K} = 1A(πK(η)) 1{T (πK(η)) ⊂ K}. (A.2)

Setting A = W yields the third assertion, i.e.

1{T (η) ⊂ K} = 1{T (πK(η)) ⊂ K}. (A.3)

Set K := T (η) and use (A.2) and (A.3) to obtain 1A(η) = 1A(πT (η)), which in turn implies
that A = π−1

T (A) ∈ π−1
T (W) = σ(πT ).

Recall that T is WT -measurable. Using (A.2) with A = T −1({T (η)}) ∈ WT and (A.3), we
have, in the case of T (η) ⊂ K , 1 = 1{T (η) = T (η)} = 1{T (πK(η)) = T (η)}. Hence, the
second and fourth assertions are also true.

Now we prove that σ(πT ) ⊂ WT . Let A ∈ W , K ∈ F (Y ), and η ∈ W , and let πT be
measurable. By (A.1), (A.3), and assertion (iv), we obtain

1{πT (η) ∈ A} 1{T (η) ⊂ K} = 1{πT (πK(η)) ∈ A} 1{T (πK(η)) ⊂ K},
which implies WK -measurability of {πT ∈ A}∩{T ⊂ K}. Hence, {πT ∈ A} ∈ WT , completing
the proof of the first assertion.

Proposition A.1. A measurable function T : W → F (Y ) is a stopping set if and only if
T (η) = T (πT (η)) for all η ∈ W and the following implication holds for all η,ψ ∈ W :

ψ = πT (ψ)(η) �⇒ T (ψ) = T (η). (A.4)

Proof. Let T be a stopping set, let ψ, η ∈ W with ψ = πT (ψ)(η), and set K := T (ψ).
Using Lemma A.2(iii), ψ = πK(η), and T (πK(η)) = T (ψ) ⊂ K , we obtain T (η) ⊂ K .
Invoking Lemma A.2(iv), we see that T (η) = T (πK(η)) = T (ψ).Note that T (η) = T (πT (η))

holds by Lemma A.2(ii).
Now assume that T (η) = T (πT (η)) and that (A.4) holds for all η,ψ ∈ W . Let η ∈ W and

K ∈ F (Y ) with T (η) ⊂ K , and define ψ := πT (η). We have T (ψ) = T (η) ⊂ K , so that,
by (A.1), ψ = πT (ψ)(η) = πT (ψ)(πK(η)). If vice versa, there exists ψ ∈ W with T (ψ) ⊂ K
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and ψ = πT (ψ)(πK(η)). Then ψ = πT (ψ)(η) by (A.1), and (A.4) yields T (η) = T (ψ) ⊂ K.

Hence,

T (η) ⊂ K ⇐⇒ there exists ψ ∈ W with T (ψ) ⊂ K and ψ = πT (ψ)(πK(η)).

Therefore, 1{T (η) ⊂ K} = 1{T (πK(η)) ⊂ K}. As {T ⊂ K} ∈ W , we in fact obtain
{T ⊂ K} ∈ WK , so that T is a stopping set.

Proposition A.1 is the right tool for proving Proposition 2.1.

Proof of Proposition 2.1. Let T ′ : Nk → F be measurable such that T := Ek
T ′ is closed.

Assume that (2.7) holds. Then T ′ is a stopping set with respect to (σ (π ′
K))K∈F , where π ′

K is
defined in (2.5), i.e.

π ′
K(η) = {F ∈ η : F ∩K �= ∅}, η ∈ Nk, K ∈ F . (A.5)

Hence, we obtain, from Proposition A.1,

T ′(η) = T ′(π ′
T ′(η)) = T ′(η ∩ T (η)) (A.6)

and the implication
ψ = η ∩ T (ψ) �⇒ T ′(η) = T ′(ψ)

for all η,ψ ∈ Nk . Note that T ′(η) = T ′(ψ) implies that T (η) = T (ψ) and (A.6) implies that
T (η) = T (η ∩ T (η)). By Proposition A.1, T is a stopping set with respect to σ(πK)K∈F (Ek),
where πK is defined by

πK(η) := η ∩K, η ∈ Nk, K ∈ F (Ek). (A.7)

From π ′
T ′ = πT and Lemma A.2(i), we obtain N k

T ′ = σ(π ′
T ′) = σ(πT ) = N k

T , which
proves (2.8).

The next result leads to an easy and transparent proof of Proposition 3.1.

Lemma A.3. SetπK(η) := η∩K , η ∈ Nk , andK ∈ F (Ek). Letη ∈ Nk , letT : Nk → F (Ek)
be a stopping set, and let f : Nk × F (Ek) → [0,∞) be a measurable function. Then

f (πT (η), T (η)) 1{η(T (η)) = m}
= 1

m!
∫
f ({F1, . . . , Fm}, T ({F1, . . . , Fm})) 1{F1, . . . , Fm ∈ T ({F1, . . . , Fm})}
× 1{η!

F1,...,Fm
(T ({F1, . . . , Fm})) = 0}η(m)(d(F1, . . . , Fm))

for m ≥ 1 and

f (πT (η), T (η)) 1{η(T (η)) = 0} = f (∅, T (∅)) 1{η(T (∅)) = 0}.
Proof. We assume that m ≥ 1. In the case in which m = 0 the proof is similar but simpler.

For any η ∈ Nk , we have

f (πT (η), T (η)) 1{η(T (η)) = m}
= 1

m!
∫
f ({F1, . . . , Fm}, T (η)) 1{{F1, . . . , Fm} = πT (η)}η(m)(d(F1, . . . , Fm)).
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From Proposition A.1 we obtain

{F1, . . . , Fm} = πT (η) ⇐⇒ {F1, . . . , Fm} = πT ({F1,...,Fm})(η),

as well as T (η) = T ({F1, . . . , Fm}), if the equations above are true. We conclude that

f (πT (η), T (η)) 1{η(T (η)) = m}
= 1

m!
∫
f ({F1, . . . , Fm}, T ({F1, . . . , Fm}))
× 1{{F1, . . . , Fm} = πT ({F1,...,Fm})(η)}η(m)(d(F1, . . . , Fm))

= 1

m!
∫
f ({F1, . . . , Fm}, T ({F1, . . . , Fm})) 1{F1, . . . , Fm ∈ T ({F1, . . . , Fm})}
× 1{η!

F1,...,Fm
(T ({F1, . . . , Fm})) = 0}η(m)(d(F1, . . . , Fm)).
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