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Abstract

This paper continues the investigation of semigroup constructions motivated by applications in data
mining. We give a complete description of the error-correcting capabilities of a large family of
clusterers based on Rees matrix semigroups well known in semigroup theory. This result strengthens
and complements previous formulas recently obtained in the literature. Examples show that our theorems
do not generalize to other classes of semigroups.
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1. Introduction

The investigation of semigroup constructions motivated by applications in data
mining was begun in [29], where a sophisticated formula was obtained for multiple
classifiers based on two-sided ideals in a semigroup construction defined with Brandt
semigroups.

The present paper is motivated by applications to the more difficult problem of
clustering, and deals with more general constructions. We introduce a new type
of multiple clustering systems, or clusterers, based on Rees matrix semigroups, which
are well-known technical tools of semigroup theory (see [18]). Let us also refer, for
example, to [21, 22, 34] for recent results concerning this construction. The class of
all Brandt semigroups is a proper subclass of the class of all Rees matrix semigroups.

Our second improvement is explained by the fact that multiplication in these matrix
constructions is not commutative and the family of arbitrary one-sided ideals is much

The first author was supported by Discovery Grant DP0449469 from the Australian Research Council.
The second author was supported by Linkage Grant LP0776267 from the Australian Research Council.
The third author was supported by a Queen Elizabeth II Fellowship and Discovery Grant DP0211866
from the Australian Research Council.
c© 2009 Australian Mathematical Publishing Association, Inc. 1446-7887/2009 $16.00

377

https://doi.org/10.1017/S1446788709000299 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788709000299


378 A. V. Kelarev, P. Watters and J. L. Yearwood [2]

larger than that of two-sided ideals (see Section 3 for complete definitions). It is
essential to consider all ideals not only in order to develop theoretical foundations,
but also since the larger set of ideals may lead to the design of clustering systems with
better properties. The aim of this paper is to complement and strengthen the results
of [29] by handling the case of all one-sided ideals.

Our main theorem gives a formula for the number of errors of individual clusterers
which can be corrected by a combined multiple clusterer of this kind (see Theorem 4.1
in Section 4). It follows from a technical result of independent theoretical interest (see
Proposition 4.2 in Section 4). The proofs and examples show that our main results do
not extend to larger classes of semigroups. An interesting open question is included in
Section 7 with a discussion of how our theoretical results of independent interest can
be used to guide the design of future experimental investigations.

2. Motivation

Classification and clustering of data play central roles in data mining (see, for
example [36, 40], and [4, 5, 7, 27, 30, 38]). As a novel example of application let us
mention that classification and clustering have recently been used in internet commerce
security (see [33]).

Classification deals with known classes of data. These classes are represented by
given samples of data. The samples are used for supervised training of the classifier
to enable it to recognize new elements of the same known classes. On the other hand,
clustering handles data without known sensible groupings or clusters. The task of a
clustering system, or clusterer, is to conduct unsupervised investigation of the data in
order to determine new groupings or clusters. Although it is possible to optimize and
train multiple clusterers in order to increase their ability to handle new data sets in the
future, every clustering is undertaken in an unsupervised fashion where the clusters
are unknown in advance (see [36, 40] for more details).

A well-known method for designing multiple clusterers consists in designing
several binary clusterers (each of which divides the data set into two clusters), and
then combining them into one multiple clustering scheme with several clusters. This
method is very effective, and is often recommended for various applications (see
Witten and Frank [36, Section 7.5]). The main advantage of using combined multiple
clusterers is in their ability to correct errors of individual binary clusterers and produce
correct clusterings despite individual clustering errors. It is usually desirable to choose
a convenient representation for the cluster set of the multiple clusterer and to ensure
that it has a small set of generators.

Denote the binary clusterers being combined by b1, . . . , bm . Each of these
clusterers divides its input data into two clusters by producing an output 0 or 1 for
each input element. If o1, . . . , om are the outputs of the binary clusterers, then the
sequence (o1, . . . , om) is called a cluster vector of the combined multiple clusterer,
and the set of all cluster vectors is called the cluster set. Each cluster vector represents
one cluster in the clustering produced by the multiple clusterer (see [36, Table 7.1]).
Every clusterer is uniquely determined by its cluster set.
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Let us review the basic essential properties required of the cluster sets. Denote by
F= GF(2) the finite field of order 2, that is, the set {0, 1} with the standard addition
and multiplication. Denote by Fm the set of all sequences of all possible outcomes of
the binary clusterers which can occur in general. This means that

Fm
= {(r1, . . . , rm) | r1, . . . , rm ∈ F}.

For every element r ∈ Fm , denote by ri the i th component of the sequence r , so that
r = (r1, . . . , rm) ∈ Fm .

The weight of a sequence c in Fm is denoted by wt(c). It is defined as the number
of nonzero coordinates in the vector c. The weight of a cluster set C is the minimum
weight of a nonzero element in C . The information rate of a cluster set C in Fm is
defined as the number log2(|C |)/m.

The minimum distance of a cluster set C is the minimum weight among all weights
of nonzero differences between pairs of elements in C . If the cluster set C forms a
linear subspace of Fm , then it is very well known and easy to verify that its minimum
distance is equal to its weight.

For any real number x , denote by bxc the integral part of x , or the floor of x , that is
the largest integer which does not exceed x . It is well known and easy to verify that the
number of errors of binary clusterers, which the multiple clusterer can correct, is equal
to b(d − 1)/2c, where d is the minimum distance of the cluster set of the clusterer.

All sequences of the cluster set C can be written down in a matrix MC to discuss
their properties. If MC has two identical columns, this means that two binary clusterers
produce identical outputs. This duplication is very inefficient, even though it could
help to correct clustering errors. Therefore, in a situation like this, one of these
clusterers can be removed and a better scheme can be devised. Likewise, it is
undesirable to have strong correlation or functional dependencies between very small
sets of columns in MC or between binary clusterers.

According to [36, Section 7.5], for a clusterer with a cluster set C to be efficient,
the cluster set C must satisfy the following most essential basic properties.

(A1) The minimum distance of C must be large.
(A2) The information rate of C must be large.
(A3) A convenient method of generating the set C is essential.
(A4) If all vectors of C are recorded in a matrix MC , then there should not be strong

correlation or functional dependencies between small sets of columns of MC . In
particular, the matrix MC should not have duplicate columns.

Additional properties may be required depending on the practical application being
considered (see Section 7).

3. Preliminaries

For the convenience of readers we include some concise preliminary observations
and definitions on semigroups. We use standard concepts and refer readers to [18, 24,
26, 36, 40], for more information on semigroup theory, data mining and clustering (see
also [1, 6–9, 14, 16, 19, 25, 28]).
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It is convenient to generate a cluster set C with a small number of generators,
instead of storing the whole large set C in computer memory. To this end we introduce
addition and multiplication on the set Fm . This will enable multiplication between
generators and arbitrary elements of Fm and the generation of sums of these products.

As usual the standard addition is defined on Fm componentwise, that is, the sum of
two arbitrary sequences (r1, . . . , rm) and (s1, . . . , sm) in Fm is defined as

(r1, . . . , rm)+ (s1, . . . , sm)= (r1 + s1, . . . , rm + sm).

In order to generate clusterers with known properties and find optimal multiple
clustering schemes, we take a finite semigroup S and use its ring to introduce additional
structure on the cluster set of a multiple clusterer. If S has a zero, then it will be
denoted by θ . The number of nonzero elements in S will be equal to the number of
binary clusterers being combined. In other words, we assume that

S \ θ = {s1, . . . , sm}.

The semigroup ring F[S] is the set

F[S] =
{∑

s∈S

fss

∣∣∣∣ fs ∈ F
}

with addition and multiplication defined by the associative and distributive laws and
the rules ∑

s∈S

fss +
∑
s∈S

f ′s s =
∑
s∈S

( fs + f ′s )s,(∑
s∈S

rss

)(∑
t∈S

r ′t t

)
=

∑
s,t∈S

(rsr ′t )st.

If S has a zero θ , then a contracted semigroup ring is denoted by F0[S] and is
defined as the quotient ring of F[S] modulo the ideal Fθ . Notice that if S has no
zero, then S0 stands for the semigroup S ∪ {θ} with zero θ adjoined; and F[S] is
isomorphic to F0[S0

]. If S is a semigroup without zero, then we also let F0[S] =
F0[S0

] ∼= F[S]. The present paper uses contracted semigroup rings, which helps to
record our results more concisely. These constructions are used and considered, for
example, in [1, 9, 11, 12, 14, 16, 32].

Regarded as an abelian group, the set Fm is isomorphic to the additive group of the
contracted semigroup ring F0[S]. It is natural to regard S as being embedded in F0[S]
by identifying each element s of S with 1s in F0[S].

In order to introduce an additional operation on the cluster set Fm , we identify the
set Fm with the contracted semigroup ring F0[S] by identifying each sequence r ∈ Fm

with the element
∑m

i=1 ri si of the contracted semigroup ring F0[S]. This means that

(r1, . . . , rm)= r1s1 + · · · + rmsm ∈ F0[S] = Fm .
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Given an arbitrary element r = r1s1 + · · · + rmsm ∈ F0[S] and any 1≤ i ≤ m, we
introduce the notation rsi = ri . This allows us to rewrite any element r ∈ Fm

=

F0[S] as
r =

∑
s∈S

rss.

Thus, the set Fm
= F0[S] has been endowed with a product defined, for x, y ∈ F0[S],

by the rule ∑
s∈S

xss ·
∑
t∈S

yt t =
∑
s,t∈S

(xs yt · st).

Clearly, the weight wt(r) of an element

r =
∑
s∈S

rss ∈ F0[S] = Fm

coincides with the number of nonzero coefficients rs in r .
Every element of the form f s, where f ∈ F and s ∈ S, is called a homogeneous

element of F0[S]. Each term rss is called a homogeneous component, or an
s-component, of the element r =

∑
s∈S rss. The support of an element r ∈ F0[S] is

defined as the set
supp(r)= {s ∈ S \ θ | rs 6= 0}.

The weight of r is equal to the cardinality of supp(r).
Let g1, . . . , gk ∈ Fm . An ideal or two-sided ideal generated by the elements

g1, . . . , gk is the set denoted by id(g1, . . . , gk) and defined by the equality

id(g1, . . . , gk) = Fm g1Fm
+ · · · + Fm gkFm

=

{ m1∑
j=1

`1, j g1r1, j + · · · +

mk∑
j=1

`k, j gkrk, j

∣∣∣∣ `i, j , ri, j , ∈ Fm
∪ {1}

}
.

Two-sided ideals in Fm were considered in [29]. The present paper deals with one-
sided ideals, that is, left ideals and right ideals. A right ideal generated by the elements
g1, . . . , gk is the set denoted by idr (g1, . . . , gk) and defined by

idr (g1, . . . , gk) = g1Fm
+ · · · + gkFm

= {g1r1 + · · · + gkrk | r1, . . . , rk ∈ Fm
∪ {1}}.

A left ideal generated by g1, . . . , gk is the set denoted by id`(g1, . . . , gk) and
defined by

id`(g1, . . . , gk) = Fm g1 + · · · + Fm gk

= {`1g1 + · · · + `k gk | `1, . . . , `k ∈ Fm
∪ {1}}.

Our paper [29] used two-sided ideals as class sets of multiple classifiers. Since
the multiplication does not commute, the family of one-sided ideals turns out to be
substantially larger. Here we consider finitely generated right ideals as cluster sets
of multiple clusterers. This will make it possible to investigate larger families of
clusterers. Note that the situation of left ideals is dual to that of right ideals.
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As customary, in order to avoid ambiguities that may occur in considering
semigroup rings, zeros of semigroups are denoted by θ , and the symbol 0 stands for
the zero of a ring. As usual, the sets {0} and {θ} will be also denoted by 0 and θ ,
respectively.

Rees matrix semigroups and associated notions of completely 0-simple semigroups
and Rees quotients are very well known in semigroup theory and play crucial roles in
describing the structure of semigroups. See [20–22, 34] for examples of recent results
concerning these constructions.

Suppose that G is a group, I and 3 are nonempty sets, and e is the identity
of G. As usual, we denote by G1

= G ∪ {1} and G0
= G ∪ {θ} the group G with

identity 1 and, respectively, zero θ adjoined in a standard fashion. Let P = [pλi ] be a
(3× I )matrix with entries pλi ∈ G0, for all λ ∈3, i ∈ I . The Rees matrix semigroup
M0(G; I, 3; P) over G with sandwich matrix P consists of all triples (g; i, λ), where
i ∈ I , λ ∈3, and g ∈ G0, where all triples (θ; i, λ) are identified with θ , and where
multiplication is defined by the rule

(g1; i1, λ1)(g2; i2, λ2)= (g1 pλ1i2 g2; i1, λ2).

A Brandt semigroup is a Rees matrix semigroup with identity sandwich matrix
(see [29] for references to recent results on Brandt semigroups).

If G is a group, M = M0(G; I, 3; P), and i ∈ I , λ ∈3, then we use standard
notation for the sets

G∗λ = {(g; i, λ) | g ∈ G, i ∈ I },

Gi∗ = {(g; i, λ) | g ∈ G, λ ∈3},

Giλ = {(g; i, λ) | g ∈ G}.

Let S be a subsemigroup of the Rees matrix semigroup M0(G; I, 3; P). The
following standard notation will be used. For any i, λ ∈ I , set

Siλ = S ∩ Giλ,

S∗λ = S ∩ G∗λ,

Si∗ = S ∩ Gi∗.

Further, for any subsets X ⊆ I , Y ⊆3, let

SX∗ =
⋃
i∈X

Si∗,

S∗Y =
⋃
λ∈Y

S∗λ.

A semigroup is said to be right (left) simple if it has no proper right (left) ideals.
A semigroup is left (right) cancellative if xy = xz (yx = zx) implies y = z, for all
x, y, z ∈ S. A semigroup is called a right (left) group if it is right (left) simple and left
(right) cancellative.
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We need a few known properties of right or left groups, as collected in the next
lemma. A band is a semigroup entirely consisting of idempotents. A band is called a
left zero (right zero) band if it satisfies the identity xy = x (xy = y).

LEMMA 3.1 [10, Theorem 1.27]. For any finite semigroup S, the following are
equivalent:

(i) S is right (left) simple.
(ii) S is a right (left) group.
(iii) S is isomorphic to the direct product of a right (left) zero band and a group.
(iv) S is a union of its left (right) ideals and each of these ideals is a group.

4. Main results

Suppose that T = M0(G; I, 3; P) is a Rees matrix semigroup with a
subsemigroup S. Denote by L = L(S) the set

L = L(S)=

{
λ ∈3|S∗λ ⊆ θ or

⋃
i∈I

pλi Si∗ ⊆ θ

}
,

where pλi Si∗ = {(pλi g; i, µ) | (g; i, µ) ∈ Si∗}. In particular, pλi Si∗ ⊆ θ means that
pλi = θ or Si∗ = ∅.

THEOREM 4.1. Let T = M0(G; I, 3; P) be a Rees matrix semigroup over a group G
with zero and sandwich matrix P. If every column of the sandwich matrix P has
at most one nonzero entry, then for every finite subsemigroup S of T , the maximum
number Er of errors of binary clusterers, which can be corrected by a multiple
clusterer defined in F0[S] by a cluster set of the form idr (g1, . . . , gk), is equal to

Er =max
{⌊
|S∗L | − 1

2

⌋
, max
λ∈3\L

⌊
|S∗λ| − 1

2

⌋}
, (4.1)

where L = L(S). Moreover, if |G|> 1 and equality (4.1) holds for every finite
subsemigroup S of T , then every column of the sandwich matrix P has at most one
nonzero entry.

Our main theorem follows from a formula for the largest weights of right ideals
idr (g1, . . . , gk) in F0[S], which we record as an auxiliary proposition here. Notice
that 2b(x + 1)/2c is equal to the smallest even integer which is not more than x , and
2bx/2c is equal to the largest even integer which is less than x .

PROPOSITION 4.2. With the notation of Theorem 4.1 the following conditions are
equivalent.

(i) For every finite subsemigroup S of T and L = L(S), the largest weight Wr of the
cluster sets of the form idr (g1, . . . , gk) in F0[S] is equal to

Wr =max
{
|S∗L |, max

λ∈3\L
|S∗λ|

}
. (4.2)

(ii) Every column of the sandwich matrix P has at most one nonzero entry.
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Inverse semigroups form an important class and have been investigated by many
authors. As an illustration here we cite only a few articles [2, 13–15, 17, 19, 31] and
refer the readers to our previous paper [29] for a broader bibliography. It is well known
that a Rees matrix semigroup over a group with zero is inverse if and only if every row
and column of the sandwich matrix contains precisely one nonzero entry. Therefore
Theorem 4.1 and Proposition 4.2 apply to inverse Rees matrix semigroups.

The following small example shows that it is impossible to replace two implications
of Theorem 4.1 by two equivalent conditions as in Proposition 4.2.

EXAMPLE 1. Let T = M0(G; I, 3; P), where G = {e}, I = {i}, 3= {µ, ν}, and
P =

[
e
e
]
. Then the only column of P has two nonzero entries. Nevertheless, a tedious

but routine verification shows that equality (4.1) holds for all subsemigroups S of T ,
because all clusterers of the form indicated in Theorem 4.1 cannot correct any errors
of the binary clusters.

5. Proofs

The left annihilator Ann`(S) of S is the set defined by

Ann`(S)= {x ∈ S | x 6= θ, x S = θ}.

It follows from the definitions of a Rees matrix semigroup and the sets L and S∗L that

Ann`(S)= S∗L . (5.1)

PROOF OF PROPOSITION 4.2. (i) implies (ii). Suppose to the contrary that
condition (i) holds, but there exist two nonzero entries in one of the columns of the
sandwich matrix P . Denote these entries by pµj and pν j , where j ∈ I , µ, ν ∈3, and
pµj , pν j ∈ G. Consider the elements

a = (p−1
µj ; j, µ), b = (p−1

ν j ; j, ν) ∈ M0(G; I, 3; P).

It follows from the definition of a Rees matrix semigroup that a = a2
= ba and

b = b2
= ab. Thus B = {a, b} is a right zero band.

Letting S = B ∪ {θ} and g = a − b ∈ F0[S], we consider the cluster set idr (g). It
is straightforward to verify that the weight Wr = wt(idr (g))= wt(g) in the left-hand
side of (4.2) is equal to 2. However, S∗L = ∅ implies |S∗L | = 0. Furthermore,

|S∗λ| =

{
1 if λ ∈ {µ, ν}
0 otherwise.

Therefore the right-hand side of equality (4.2) is equal to 1. This contradicts
condition (i) and completes the proof that (i) implies (ii).

(ii) implies (i). Suppose that every column of the sandwich matrix P has at most
one nonzero entry. We prove that condition (i) holds.

Take an arbitrary subsemigroup S of M0(G; I, 3; P). First, following the advice
of a referee, let us handle the easy situation where S does not contain θ . Consider two
elements (g1; i1, λ1) and (g2; i2, λ2) of S (possibly identical). Any product of these
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in either order is nonzero. However, no column of the sandwich matrix P contains
more than one nonzero entry by (ii). Hence λ1 = λ2. Putting µ= λ1, we see that
all matrix entries pµi1 and pµi2 , which occur in the products we have just looked at
above, are nonzero. It follows that every nonempty subset Siµ is a subsemigroup of S
and is contained in a subgroup Tiµ of T . Every finite subsemigroup of a group is also a
group. Obviously, every Siµ is a right ideal of S and S is a union of these right ideals. It
follows from Lemma 3.1 that S is a left group. Therefore L =3 \ {µ}, Ann`(S)= ∅,
S∗L = ∅ and |S∗L | = 0. Furthermore, 3 \ L = {µ} implies that S = Sµ. Therefore in
this situation equality (4.2) simplifies to Wr = |S|.

The inequality Wr ≤ |S| is obvious. On the other hand, consider the element
g =

∑
s∈S s. It follows from Lemma 3.1 that Ss = S for every s ∈ S. Hence g

generates a one-dimensional right ideal idr (g)= Fg in F0[S]. Therefore wt(idr (g))=
wt(g)= |S|. Thus, condition (ii) is satisfied if S does not contain θ .

In the rest of the proof we assume that θ ∈ S. Choose a right ideal C =
idr (g1, . . . , gk) with the largest weight Wr among all weights of right ideals of this
form in F0[S]. Obviously, all right ideals idr (g1), . . . , idr (gk) are contained in C . It
is clear that the weight of a nonzero subideal is never less than the weight of an ideal
containing it. Hence, by the maximality of Wr , all right ideals idr (g1), . . . , idr (gk)

have the same weight Wr too. Therefore it is enough to prove condition (i) in the case
where k = 1. Hence we further assume that C is generated by one element g = g1, so
that C = idr (g) and Wr = wt(C).

Denote the maximum in the right-hand side of equality (4.2) by R. We prove two
inequalities Wr ≥ R and Wr ≤ R. This is divided into two parts below.

Part 1. First, we verify that
Wr ≥ R. (5.2)

Let us choose and fix an element λ ∈3 such that

|S∗λ| = max
λ∈3\L

|S∗λ|. (5.3)

Consider two possible cases.

Case 1. |S∗L | ≥ |S∗λ|. Then R = |S∗L | and we have to prove that Wr ≥ |S∗L |. To
this end it suffices to demonstrate that F0[S] contains an element gL generating a right
ideal with

wt(idr (gL))= |S∗L |. (5.4)

Let us consider the element

gL =
∑

x∈S∗L

x ∈ F0[S]. (5.5)

We claim that gL satisfies (5.4).
First of all, it is clear that the weight of the element gL itself is equal to

wt(gL)= |S∗L |. (5.6)
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Now consider the whole right ideal idr (gL). Take any s ∈ S. By (5.1), we get
S∗L · s = θ . Hence gL · s = 0 in F0[S] by the definition of a contracted semigroup
ring. By the definition of a right ideal, we see that the right ideal idr (gL) is equal to
the linear space FgL spanned by gL in F0[S]. Therefore the weight of the whole right
ideal idr (gL) is equal to the weight of its generator gL . Thus (5.6) yields (5.4), as
required.

Case 2. |S∗L |< |S∗λ|. Then (5.3) implies that |S∗λ| =maxγ∈3{|S∗γ |} =
maxγ∈3\L{|S∗γ |}. Hence R = |S∗λ| and we have to prove that Wr ≥ |S∗λ|. By the
maximality of Wr , to this end it suffices to find an element gλ ∈ F0[S] which generates
a right ideal with

wt(idr (gλ))= |S∗λ|. (5.7)

Notice that |S∗λ|> 0, because |S∗λ|> |S∗L |. Consider the element

gλ =
∑

x∈S∗λ

x . (5.8)

We claim that gλ satisfies (5.7).
Pick a nonzero element x with minimal weight in idr (gλ). Since wt(x)=

wt(idr (gλ)), it suffices to show that wt(x)= |S∗λ|. The proof of this claim is nontrivial
and relies on the maximality in the choice of λ. After the proof we include Example 2,
which demonstrates that the maximality of |S∗λ| is indeed essential in this step of
our proof.

By the definition of a right ideal, there exists r ∈ F0[S] ∪ {1} such that x = gλr .
If r = 1, then x = gλ and the claim follows. Hence we may further assume that
r ∈ F0[S]. Since F has only two elements, the definition of a semigroup algebra
implies that

x =
∑

s∈ supp(r)

gλ · s. (5.9)

Consider any element s ∈ supp(r). There exist g ∈ G, i ∈ I , µ ∈3 such that
s = (g; i, µ). If pλi = 0, then S∗λ · s = θ implies that gλ · s = 0, and so we can
subtract s from r and remove s from supp(r) to simplify (5.9). Thus, we may further
assume that pλi 6= 0, and so pλi ∈ G, for all s = (g; i, µ) ∈ supp(r).

Now, for any s ∈ (g; i, µ) ∈ supp(r), using the definition of a Rees matrix
semigroup (5.9), the assumption pλi ∈ G and the fact that G is a group, it is
straightforward to verify that |S∗λs| = |S∗λ| and S∗λs ⊆ S∗µ. The maximality of
|S∗λ| shows that |S∗λs| = |S∗µ|, and so S∗λs = S∗µ. Thus we see that the following
equalities hold:

gλs =
∑

t∈S∗µ

t, (5.10)

|S∗µ| = |S∗λ|. (5.11)

If the number of elements s ∈ supp(r) ∩ S∗µ is even, then it follows from what
we have proved above that the sum of all products gλs, for all of these elements s, is
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equal to zero, because F has characteristic 2. If, however, the number of the elements
s ∈ supp(r) ∩ S∗µ is odd, then it follows that the sum of all products gλs, for all of
these elements s, is equal to

∑
t∈S∗µ t .

Therefore it follows from (5.9), (5.10) and (5.11) that there exist elements
µ1, . . . , µ` in 3 such that

x =
∑

t∈S∗µ1

t + · · · +
∑

t∈S∗µ`

t,

|S∗λ| = |S∗µ1 | = · · · = |S∗µ` |,

supp(x)= S∗µ1 ∪ · · · ∪ S∗µ`,

where each of the sums
∑

t∈S∗µ1
t, . . . ,

∑
t∈S∗µ`

t is obtained by collecting similar
terms from (5.9), and so all of these sums belong to the right ideal idr (gλ).

By the minimality of the weight of x in the right ideal idr (gλ), we get `= 1.
Therefore the weight of the whole ideal idr (gλ) is equal to wt(x)= |S∗λ|. Thus we
have found the desired element gλ in Case 2, as required.

Since one of the two cases above always occurs, this completes the proof of
inequality (5.2).

We now prove that the reversed inequality

wt(idr (g))≤ R (5.12)

holds for all elements g ∈ F0[S]. Clearly, it suffices to consider only one element g,
which is chosen in F0[S] with the property that the weight wt(idr (g)) achieves the
largest possible value.

Pick a nonzero element x of minimal weight in idr (g). We have

wt(idr (g))= wt(x).

If supp(x)⊆ S∗L , then we get wt(x)≤ |S∗L | ≤ R, and so (5.12) is satisfied. Hence
it remains to consider the case where supp(x) is not contained in S∗L .

Then there exists an element (h; i, λ) in supp(x) \ S∗L , where i ∈ I , λ ∈3 \ L and
h ∈ G. Since λ /∈ L , it follows from the definition of the set L that pλ j S j∗ 6= θ for
some j ∈ I . Hence we can choose y ∈ S j∗ such that

pλ j y 6= θ. (5.13)

There exists ν ∈3 such that y ∈ S jν . Since the j th column of the sandwich
matrix P has at most one nonzero entry pλ j 6= θ , we see that

pµj = θ for all µ 6= λ. (5.14)

Let us now regard y as an element of F0[S]. Since G is a group, it follows from the
definition of a Rees matrix semigroup and (5.13) that the mapping z 7→ zy from S∗λ
to S∗ν is injective. By (5.14), pλ j 6= θ implies that the product xy is nonzero.

Given that y is a homogeneous element of F0[S], we see that |supp(xy)| does not
exceed |supp(x)|. Clearly, xy also belongs to the right ideal generated by g. Therefore
it follows from the minimality of the weight of x that |supp(x)| = |supp(xy)|.
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Since y ∈ S jν , we get supp(xy)⊆ S∗ν by the definition of a Rees matrix semigroup.
Therefore |supp(x)| ≤ |S∗ν |. If ν ∈ L , then |supp(g)| ≤ |S∗L | ≤ R. On the other hand,
if ν /∈ L , then |S∗ν | ≤ R by the definition of R. Hence |supp(g)| ≤ R again.

Thus, we see that (5.12) always holds. This completes the proof of
Proposition 4.2. 2

The following example shows that our proof cannot be simplified by omitting the
choice of λ at the beginning of Part 1 and claiming that the weight of every right ideal
generated by gi =

∑
x∈S∗i x is greater than or equal to |S∗i | for each i . Notice that this

is true for i = λ. Now we show that it may be wrong for some other values of i .

EXAMPLE 2. Let G = Z4 = {e, g, g2, g3
} be the cyclic group of order 4 with

identity e, let P be the identity matrix over G, and let I =3= {1, 2, 3}. In the Rees
matrix semigroup M0(G; I, 3; P) consider the subset

S = {θ, (e; 1, 2), (g; 1, 2), (g2
; 1, 2), (e; 1, 3), (g; 1, 3), (g2

; 1, 3),

(g3
; 1, 3), (e; 2, 3), (g; 2, 3)}.

It is routine to verify that S is a subsemigroup of M0(G; I, 3; P) and S2 is contained
in S13.

Here we have |S∗2| = |S12| = 4, and so 2b(|S∗2| + 1)/2c = 4= |S∗2|. However,
letting

g2 = (e; 1, 2)+ (g; 1, 2)+ (g2
; 1, 2),

we get g2 · ((e; 2, 3)+ (g; 2, 3))= (e; 1, 3)+ (g3
; 1, 3). Therefore

wt(idr (g2))= 2< |S12|.

PROOF OF THEOREM 4.1. For an arbitrary G, the first assertion of our theorem with
equality (4.1) immediately follows from Proposition 4.2, because we know that every
multiple clusterer with a cluster set of weight Wr can correct b(Wr − 1)/2c errors of
binary clusterers.

To prove the second assertion, consider the case where |G|> 1. As in the proof of
Proposition 4.2, suppose to the contrary that there are two nonzero entries pµj and pν j
in one of the columns of the sandwich matrix P . Put

S = {θ} ∪ T jµ ∪ T jν

and consider the element

g =
∑
h∈G

[(h; j, µ)− (h; j, ν)].

Let C = idr (g). Since the characteristic of F is equal to 2, it follows from the
definition of a Rees matrix semigroup that C = Fg. Since |G|> 1, we see that
wt(C)= wt(g)= 2|G|. Therefore the combined clusterer with the cluster set C
can correct |G| − 1 errors of the binary clusterers. However, S∗L = ∅ implies that
|S∗L | = 0. Furthermore, |S∗λ| ≤ |G| for all λ, a contradiction with (4.1), because
|G| − 1> b(|G| − 1)/2c. This completes the proof of Theorem 4.1. 2
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6. Corollaries

REMARK. The case of left ideals is dual to that of right ideals. Hence as immediate
corollaries we get dual versions of Theorem 4.1 and Proposition 4.2 answering
analogous questions for left ideals.

Our proof shows that previous results obtained in [29] can be recorded in the
following equivalent form. First [29, Theorem 2 and Example 4] in combination are
equivalent to the following.

COROLLARY 6.1 [29]. Let T = M0(G; I, 3; P) be a completely 0-simple semigroup
over a group G with zero and sandwich matrix P. If T is an inverse semigroup,
then for every finite subsemigroup S of T , the maximum number E of errors of
binary clusterers, which can be corrected by a multiple clusterer with cluster set
id(g1, . . . , gk) in F0[S], is equal to

E =

⌊
max{MZ , MX , MY , MG} − 1

2

⌋
, (6.1)

where X = {i ∈ I | Si∗ = θ}, Y = {λ ∈3 | S∗λ = θ}, and

MZ = |SY∗ ∩ S∗X |,

MX = max{|Si∗ ∩ S∗X | : i /∈ X},

MY = max{|S∗λ ∩ SY∗| : λ /∈ Y },

MG = max{|Siλ| : i /∈ X, λ /∈ Y }.

Furthermore, if |G|> 1 and equality (6.1) holds for all finite S ⊆ T , then T is inverse.

The present paper deals with contracted semigroup rings. In this construction
another formula obtained in [29] can be recorded more concisely as follows. Our
proof shows that [29, Proposition 5 and Example 4] in combination are equivalent to
the following.

COROLLARY 6.2 [29]. With the notation of Corollary 6.1 the following conditions
are equivalent.

(i) For every finite subsemigroup S of T = M0(G; I, 3; P), the largest weight W
of the cluster sets id(g1, . . . , gk) in F0[S] is equal to

W = max{MZ , MX , MY , MG}. (6.2)

(ii) T is inverse.

7. Practical applications and open question

The design of multiple clusterers by combining individual binary clusterers is quite
common in the literature. This method has been used in various application areas
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by many researchers (see [36, Section 7.5]). For example, it can be applied to all
data sets available online for multiple clustering tasks in the UCI Machine Learning
Repository [3].

Following Witten and Frank [36, Section 4.6], here we briefly mention only
one situation, where it is absolutely necessary to combine several binary clusterers.
Suppose that support vector machines are to be used in clustering. These are quite
efficient, but can produce only binary clusterings. This is why one always has to
combine several support vector machines in one scheme in order to design a multiple
clusterer.

Our paper makes the very first step in research of the properties of Rees matrix
constructions essential for clustering of data. It contains only theoretical results of
independent interest, which can be used to guide future experiments for determining
how the constructions perform in various practical situations.

There do not exist exact and conclusive theoretical criteria of efficiency in
classification and data mining. This is also confirmed by the so-called ‘no free lunch’
theorems in search, optimization, and machine learning (see, for example, [37]). The
efficiency of applications is always decided on the basis of experimental research.
The results of experiments usually depend on the particular application area and are
evaluated using statistical methods (see, for example, [7]).

The present paper is motivated by applications and aims to obtain results essential
for guiding the design of future experimental work. Theorem 4.1 gives a complete
description of the multiple clusterers in this construction, which are optimal with
respect to property (A1) in Section 2. This result is essential, because in the design of
experiments researchers are first of all interested in the cluster sets satisfying the basic
properties (A1)–(A4). However, the following natural question motivated by property
(A2) remains open.

QUESTION 1. For each positive integer m, each Rees matrix semigroup T =
M0
[G; I, 3; P], and every finite subsemigroup S of T , describe all cluster sets of

the form id(g1, . . . , gk) and idr (g1, . . . , gk) in F0[S] with weight m and the largest
possible information rate.

An answer to this question could help in the choice of cluster sets satisfying the
basic properties (A1) and (A2) simultaneously for experimental evaluation in the
future. Several separate experimental publications by a number of authors would be
required for conclusive evaluation of the practical performance of applications like this
in various areas. We refer to the monographs [36, 40] and recent articles [23, 27, 33,
35, 38, 39] for examples of experimental investigations of this kind.
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