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Abstract

Let H2 be the Hardy space over the bidisk. It is known that Hilbert–Schmidt invariant subspaces of H2

have nice properties. An invariant subspace which is unitarily equivalent to some invariant subspace
whose continuous spectrum does not coincide with D is Hilbert–Schmidt. We shall introduce the concept
of splittingness for invariant subspaces and prove that they are Hilbert–Schmidt.
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1. Introduction
Let H2 = H2(D2) be the Hardy space over the bidisk D2 with variables z and w. Then
H2 = H2(z) ⊗ H2(w), where H2(z) is the z-variable Hardy space. A nonzero closed
subspace M of H2 is said to be invariant if zM ⊂ M and wM ⊂ M. For an invariant
subspace L of H2(z), by the Beurling theorem, L = ϕ(z)H2(z) for some inner function
ϕ(z). The structure of invariant subspaces of H2 = H2(D2) is extremely complicated
(see [3, 14]). For a function φ in H∞(D2), we denote by Tφ the multiplication operator
on H2 by φ. For an invariant subspace M of H2, we write RM

z = Tz|M and RM
w = Tw|M .

We will simply write Rz, Rw when no confusion occurs. Then (Rz, Rw) is a pair of
commuting isometries on M. In the study of invariant subspaces of H2, the operators
Rz,Rw play important roles in the study of operator theory and function theory. Since

M =

∞⊕
n=0

wn(M 	 wM),

the space M 	 wM contains much information about the properties of M.

[R∗w,Rw] := R∗wRw − RwR∗w = IM − PwM = PM	wM ,
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where PE is the orthogonal projection from H2 onto the closed subspace E of H2,
[R∗w, Rz] = 0 on wM and [R∗w, Rz] = R∗wRz on M 	 wM. So [R∗z , Rz][R∗w, Rw] and
[R∗w, Rz] are key operators in the study of invariant subspaces of H2 (see [4, 5, 7–
9, 11, 12, 15, 16, 18–23]).

In [19], Yang defined two numerical invariants for M,

Σ0(M) =
∥∥∥[R∗z ,Rz][R∗w,Rw]

∥∥∥2
HS, Σ1(M) =

∥∥∥[R∗w,Rz]
∥∥∥2

HS,

where ‖ · ‖HS is the Hilbert–Schmidt norm, and showed that∥∥∥[R∗z ,Rz][R∗w,Rw]
∥∥∥2

HS =
∥∥∥[R∗w,Rw][R∗z ,Rz]

∥∥∥2
HS

and ∥∥∥[R∗w,Rz]
∥∥∥2

HS =
∥∥∥[R∗z ,Rw]

∥∥∥2
HS.

In [19, Proposition 3.3], he showed also that if M is unitarily equivalent to M1,
then Σ0(M) = Σ0(M1) and Σ1(M) = Σ1(M1). In [22], Yang introduced the concept
of Hilbert–Schmidtness for M. It is equivalent to the fact that PM − RzR∗z − RwR∗w −
RzTwR∗zR∗w is Hilbert–Schmidt (see [5, Proposition 1.1]). By [5, Corollary 3.3], M is
Hilbert–Schmidt if and only if Σ0(M) + Σ1(M) < ∞. For a given M, it is generally
difficult to compute the exact values of Σ0(M) and Σ1(M).

Hilbert–Schmidt invariant subspaces have many nice properties (see [5, 15, 16, 19–
23]). Let FM

z be the compression operator of Tz on M 	 wM. In [19], Yang called
FM

z the fringe operator and studied properties of FM
z . If M is Hilbert–Schmidt, then,

by [21], FM
z is Fredholm. Hence, by [19, Corollary 4.3], zM + wM is closed and

dim (M 	 (zM + wM)) <∞.
Let N = H2 	 M. Let S N

z and S N
w be the compression operators of Tz and Tw on N,

that is, S N
z f = PNTz f for f ∈ N. We have (S N

z )∗ = T ∗z |N and (S N
w )∗ = T ∗w|N . We will

simply write S z, S w when no confusion occurs. We denote by σc(S z) and σc(S w) the
continuous spectra of S z and S w, that is, λ ∈ σc(S z) if and only if either dim (S z −

λIN) = ∞ or S z − λIN does not have closed range. Set σc(M) = σc(S z) ∩ σc(S w). In
[19, Theorem 2.3], Yang showed that if σc(M) , D, then Σ0(M) + Σ1(M) <∞, so M is
Hilbert–Schmidt. If ϕ(z)H2 ⊂ M for some inner function ϕ(z), then, by the model
theory of Sz.-Nagy and Foiaş [13, 17], σc(M) , D, so there are a lot of Hilbert–
Schmidt invariant subspaces. If M is a unitarily equivalent to an invariant subspace
M1 such that σc(M1) , D, then M is Hilbert–Schmidt. In this paper, we shall study a
Hilbert–Schmidt invariant subspace M satisfying that σc(M1) = D for every M1 that is
unitarily equivalent to M.

In Section 2, we shall define splitting invariant subspaces of H2 and prove that they
are Hilbert–Schmidt. In Section 3, we shall study a Rudin-type invariant subspaceM
which was first studied in [14, page 72]. We shall show thatM is splitting, and that
σc(M1) = D for every M1 that is unitarily equivalent toM.

Let M0 = zM + wM. Then M0 is an invariant subspace. We shall show that,
under some additional assumptions, M0 is Hilbert–Schmidt, M0 is not splitting and
σc(M2) = D for every M2 that is unitarily equivalent toM0.
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2. Splitting invariant subspaces

Let ϕ(z) be a nonconstant inner function. An invariant subspace M of H2 is said to
be splitting for ϕ(z) if

(#1) M = (M ∩ ϕ(z)H2) ⊕ (M ∩ (H2 	 ϕ(z)H2))

and
(#2) M ∩ (H2 	 ϕ(z)H2) , {0}.

Similarly, we may define a splitting invariant subspace for a nonconstant inner function
ψ(w). We say simply that M is splitting if M is splitting either for ϕ(z) or for ψ(w). In
this section, we shall study splitting invariant subspaces M for ϕ(z). We set

A = A(ϕ) = M ∩ (H2 	 ϕ(z)H2). (2.1)

We write

Kϕ(z) = H2(z) 	 ϕ(z)H2(z) and Kψ(w) = H2(w) 	 ψ(w)H2(w).

Lemma 2.1. Let M be a splitting invariant subspace for ϕ(z). Then wA ⊂ A and there
is an inner function ψ(w) (may be constant) such that M ∩ ψ(w)H2 = A ⊕ ϕ(z)ψ(w)H2,
A ⊂ ψ(w)Kϕ(z) ⊗ H2(w), Kϕ(z) ⊗ Kψ(w) ⊥ M and T ∗z ϕ(z)ψ(w) 6⊥ A. Moreover, if η(w)
is an inner function satisfying A ⊂ η(w)H2, then ψ(w)H2 ⊂ η(w)H2.

Proof. By (#2) and (2.1), A , {0}, wA ⊂ A and zA 6⊂ A. For f ∈ A, we write

z f = f1 ⊕ f2 ∈ ϕ(z)H2 ⊕ (H2 	 ϕ(z)H2).

Since f ∈ H2 	 ϕ(z)H2, f1 ∈ ϕ(z)H2(w),

zwn f = wn f1 ⊕ wn f2 ∈ ϕ(z)H2(w) ⊕ (H2 	 ϕ(z)H2)

for every n ≥ 0 and { f1 : f ∈ A} , {0}. Then, by the Beurling theorem, there is an inner
function ψ(w) such that ∨

n≥0

wn{ f1 : f ∈ A} = ϕ(z)ψ(w)H2(w),

where
∨

n≥0 En is the closed linear span of E0,E1, . . . . This shows that T ∗z ϕ(z)ψ(w) 6⊥ A.
By (#1), f1 ∈ M ∩ ϕ(z)H2. Hence ϕ(z)ψ(w)H2(w) ⊂ M, so ϕ(z)ψ(w)H2 ⊂ M. One
easily sees that A ⊂ ψ(w)H2, and ψ(w)H2 ⊂ η(w)H2 for every inner function η(w)
satisfying A ⊂ η(w)H2. By (#1) and (2.1), M ∩ ψ(w)H2 = A ⊕ ϕ(z)ψ(w)H2, A ⊂
ψ(w)Kϕ(z) ⊗ H2(w) and Kϕ(z) ⊗ Kψ(w) ⊥ M. �

An inner function ψ(w) given in Lemma 2.1 is unique except for constant
multiplication and depends on ϕ(z). So ψ(w) is said to be the associated inner function
of ϕ(z) for M.

Let M be a splitting invariant subspace for ϕ(z) and ψ(w) be the associated inner
function of ϕ(z). By Lemma 2.1,

L1 := A ⊕ ϕ(z)ψ(w)H2 = M ∩ ψ(w)H2. (2.2)

https://doi.org/10.1017/S1446788716000203 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788716000203


208 K. J. Izuchi, K. H. Izuchi and Y. Izuchi [4]

Since ϕ(z)ψ(w)H2 ⊂ M ∩ ϕ(z)H2, let

B = B(ϕ) = (M ∩ ϕ(z)H2) 	 ϕ(z)ψ(w)H2.

Then zB ⊂ B and B ⊂ ϕ(z)H2(z) ⊗ Kψ(w). By Lemma 2.1, again, A ⊂ ψ(w)Kϕ(z) ⊗
H2(w), so A ⊥ B. By (#1) and (2.1),

M = A ⊕ B ⊕ ϕ(z)ψ(w)H2. (2.3)

We set
L2 := B ⊕ ϕ(z)ψ(w)H2 = M ∩ ϕ(z)H2. (2.4)

Then L1 and L2 are invariant subspaces and L1 ∩ L2 = ϕ(z)ψ(w)H2. Since ψ(w) is the
associated inner function of ϕ(z),∨

{ f (0,w) : f ∈ A} = ψ(w)H2(w).

When B , {0}, ψ(w) is nonconstant and M is splitting for ψ(w). Let ϕ1(z) be the
associated inner function of ψ(w) for M. Then ϕ1(z)H2(z) ⊂ ϕ(z)H2(z). We shall show
the following theorem.

Theorem 2.2. If M is a splitting invariant subspace of H2, then M is Hilbert–Schmidt.

To show Theorem 2.2, we use several known facts, as mentioned in the introduction.
We will list them as lemmas.

Lemma 2.3.

(i) Σ0(M) = ‖PM	zMPM	wM‖
2
HS.

(ii) If {ψn}n≥1 is an orthonormal basis of M 	 wM, then Σ1(M) =
∑∞

n=1 ‖R
∗
wRzψn‖

2.

Lemma 2.4. Let M be an invariant subspace of H2. Then M is Hilbert–Schmidt if and
only if Σ0(M) + Σ1(M) <∞.

Lemma 2.5. Let M be an invariant subspace of H2. If σc(M) , D, then Σ0(M) +

Σ1(M) <∞.

Let M1 and M2 be invariant subspaces of H2. A unitary operator T : M1 → M2 is
called a unitary module map if TzT = TTz and TwT = TTw on M1. We say that M1 is
unitarily equivalent to M2 if there is a unitary module map T : M1 → M2.

Lemma 2.6. Let M1 and M2 be invariant subspaces of H2. If M1 is unitarily equivalent
to M2, then Σ0(M1) = Σ0(M2) and Σ1(M1) = Σ1(M2).

Proof of Theorem 2.2. We may assume that M is splitting for ϕ(z). Let ψ(w) be the
associated inner function of ϕ(z). By (2.2), L1 ⊂ ψ(w)H2. Then T ∗ψ(w)L1 is an invariant
subspace and T ∗ψ(w) : L1 → T ∗ψ(w)L1 is a unitary module map. By Lemma 2.6, Σ0(L1) =

Σ0(T ∗ψ(w)L1) and Σ1(L1) = Σ1(T ∗ψ(w)L1). By (2.2), again, T ∗ψ(w)L1 = T ∗ψ(w)A ⊕ ϕ(z)H2.
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Let N1 = H2 	 T ∗ψ(w)L1. Then N1 ⊂ H2 	 ϕ(z)H2. Hence ϕ(S N1
z ) = 0, so, by the model

theory of Sz.-Nagy and Foiaş [13, 17]

σc(S N1
z ) ⊂ σ(S N1

z ) ⊂ {z ∈ D : ϕ(z) = 0} ∪ ∂D , D.

Hence σc(T ∗ψ(w)L1) , D. By Lemma 2.5, Σ0(T ∗ψ(w)L1) + Σ1(T ∗ψ(w)L1) <∞, so

Σ0(L1) + Σ1(L1) <∞. (2.5)

Similarly,
Σ0(L2) + Σ1(L2) <∞. (2.6)

To show that M is Hilbert–Schmidt, we shall compute the values Σ0(M) and Σ1(M),
respectively. First, we shall show that Σ0(M) < ∞. By (2.3) and (2.4), M = A ⊕ L2.
Since wA ⊂ A and wL2 ⊂ L2,

M 	 wM = (A 	 wA) ⊕ (L2 	 wL2).

Let {gn}n≥1 and { fn}n≥1 be orthonormal bases of A 	 wA and L2 	 wL2, respectively. By
Lemma 2.3(i),

Σ0(M) =

∞∑
n=1

(
‖PM	zMgn‖

2 + ‖PM	zM fn‖2
)
. (2.7)

Since M = B ⊕ L1 and zB ⊂ B,

M 	 zM = (B 	 zB) ⊕ (L1 	 zL1).

By (2.3), A ⊥ B, so gn ⊥ B 	 zB. Since L1 = A ⊕ ϕ(z)ψ(w)H2 and

L1 	 wL1 = (A 	 wA) ⊕ ϕ(z)ψ(w)H2(z),

∞∑
n=1

‖PM	zMgn‖
2 =

∞∑
n=1

‖PL1	zL1 gn‖
2

=

∞∑
n=1

‖PL1	zL1 PL1	wL1 gn‖
2

≤ ‖PL1	zL1 PL1	wL1‖
2
HS

= Σ0(L1) by Lemma 2.3.

By (2.7),

Σ0(M) ≤ Σ0(L1) +

∞∑
n=1

‖PM	zM fn‖2. (2.8)

Also
∞∑

n=1

‖PM	zM fn‖2 =

∞∑
n=1

(
‖PB	zB fn‖2 + ‖PL1	zL1 fn‖2

)
.
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Since
L2 	 zL2 = (B 	 zB) ⊕ ϕ(z)ψ(w)H2(w),

∞∑
n=1

‖PM	zM fn‖2 ≤
∞∑

n=1

‖PL2	zL2 fn‖2 +

∞∑
n=1

‖PL1	zL1 fn‖2

=

∞∑
n=1

‖PL2	zL2 PL2	wL2 fn‖2 +

∞∑
n=1

‖PL1	zL1 fn‖2

= ‖PL2	zL2 PL2	wL2‖
2
HS +

∞∑
n=1

‖PL1	zL1 fn‖2

= Σ0(L2) +

∞∑
n=1

‖PL1	zL1 fn‖2.

Hence, by (2.8),

Σ0(M) ≤ Σ0(L1) + Σ0(L2) +

∞∑
n=1

‖PL1	zL1 fn‖2. (2.9)

Let {hk}k≥1 be an orthonormal basis of L1 	 zL1. Then, for each n ≥ 1,

‖PL1	zL1 fn‖2 =

∞∑
k=1

|〈PL1	zL1 fn, hk〉|
2 =

∞∑
k=1

|〈 fn, hk〉|
2.

Since L1 	 zL1 ⊥ zϕ(z)ψ(w)H2, we may write

hk = hk,1 ⊕ ϕ(z)ψ(w)ηk(w) ∈ A ⊕ ϕ(z)ψ(w)H2(w).

Since fn ∈ L2 and L2 ⊥ A,

‖PL1	zL1 fn‖2 =

∞∑
k=1

|〈 fn, hk〉|
2 =

∞∑
k=1

|〈 fn, ϕ(z)ψ(w)ηk(w)〉|2.

Since fn ∈ L2 	 wL2, fn ⊥ wϕ(z)ψ(w)H2. Hence we may write

fn = fn,1 ⊕ ϕ(z)ψ(w)σn(z) ∈ B ⊕ ϕ(z)ψ(w)H2(z).

Since B ⊥ ϕ(z)ψ(w)H2,

‖PL1	zL1 fn‖2 =

∞∑
k=1

|〈ϕ(z)ψ(w)σn(z), ϕ(z)ψ(w)ηk(w)〉|2

= |σn(0)|2
∞∑

k=1

|ηk(0)|2.
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Here
∞∑

k=1

|ηk(0)|2 =

∞∑
k=1

|〈hk, ϕ(z)ψ(w)〉|2 =

∞∑
k=1

‖PC·ϕψhk‖
2

≤

∞∑
k=1

‖PL1	wL1 hk‖
2 =

∞∑
k=1

‖PL1	wL1 PL1	zL1 hk‖
2

= ‖PL1	wL1 PL1	zL1‖
2
HS = Σ0(L1) by Lemma 2.3.

Similarly,
∑∞

n=1 |σn(0)|2 ≤ Σ0(L2). Hence

∞∑
n=1

‖PL1	zL1 fn‖2 ≤ Σ0(L1)
∞∑

n=1

|σn(0)|2 ≤ Σ0(L1)Σ0(L2).

By (2.5), (2.6) and (2.9),

Σ0(M) ≤ Σ0(L1) + Σ0(L2) + Σ0(L1)Σ0(L2) <∞.

Next, we shall prove that Σ1(M) <∞. Since {gn, fn : n ≥ 1} is an orthonormal basis
of M 	 wM, by Lemma 2.3(ii),

Σ1(M) =

∞∑
n=1

(‖R∗wRzgn‖
2 + ‖R∗wRz fn‖2).

Since M 	 wM = (A 	 wA) ⊕ (L2 	 wL2) and wA ⊥ L2,

R∗wRz = RM∗
w RM

z = RL2∗
w RL2

z on L2.

Since { fn}n≥1 is an orthonormal basis of L2 	 wL2, by Lemma 2.3, again,

∞∑
n=1

‖R∗wRz fn‖2 = Σ1(L2).

Hence

Σ1(M) = Σ1(L2) +

∞∑
n=1

‖R∗wRzgn‖
2. (2.10)

Since {gn}n≥1 is an orthonormal basis of A 	 wA and A 	 wA ⊂ L1 	 wL1,

∞∑
n=1

‖RL1∗
w RL1

z gn‖
2 ≤ Σ1(L1). (2.11)

By Lemma 2.1, PAT ∗z ϕ(z)ψ(w) , 0. Since zwA ⊥ ϕ(z)ψ(w), PAT ∗z ϕ(z)ψ(w) ∈ A 	 wA,
so we may assume that

g1 =
PAT ∗z ϕ(z)ψ(w)
‖PAT ∗z ϕ(z)ψ(w)‖

.
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For each n ≥ 2,

0 = 〈gn, g1〉 =
1

‖PAT ∗z ϕ(z)ψ(w)‖
〈gn, PAT ∗z ϕ(z)ψ(w)〉,

so zgn ⊥ ϕ(z)ψ(w). Hence

zgn ∈ A ⊕ ϕ(z)ψ(w)wH2(w) ⊂ A ⊕ ϕ(z)ψ(w)H2 = L1.

This shows that R∗wRzgn = RL1∗
w RL1

z gn for every n ≥ 2. Therefore, by (2.11),
∞∑

n=1

‖R∗wRzgn‖
2 = ‖R∗wRzg1‖

2 +

∞∑
n≥2

‖RL1∗
w RL1

z gn‖
2

≤ ‖R∗wRzg1‖
2 + Σ1(L1).

Thus, by (2.5), (2.6) and (2.10), Σ1(M) <∞. By Lemma 2.4, M is Hilbert–Schmidt. �

As mentioned in the introduction, by Yang’s works we have the following corollary.

Corollary 2.7. Let M be a splitting invariant subspace of H2. Then zM + wM is
closed, 1 ≤ dim(M 	 (zM + wM)) <∞ and FM

z on M 	 wM is Fredholm.

Example 2.8. Let ϕ(z), ψ(w) be nonconstant inner functions and M = ϕ(z)H2 +

ψ(w)H2. Then M is a splitting invariant subspace for ϕ(z). �

Example 2.9. Let µ, ν be bounded positive singular measures on ∂D. Let

ψµ(z) = exp
(
−

∫
∂D

eiθ + z
eiθ − z

dµ(eiθ)
)
, z ∈ D.

Then ψµ(z) is an inner function (see [6]). Let

M =
∨

0<t<∞

ψµ(z)tψν(w)1/tH2.

Then it is clear that M is a splitting invariant subspace for ψµ(z). �

Proposition 2.10. Let η be an inner function on D2. If ηH2 is splitting, then η =

ϕ1(z)ψ1(w) for some inner functions ϕ1(z) and ψ1(w).

Proof. We may assume that ηH2 is splitting for a nonconstant inner function ϕ(z).
Let ψ(w) be the associated inner function of ϕ(z) for ηH2. Then, by Lemma 2.1,
ϕ(z)ψ(w)H2 ⊂ ηH2 and Kϕ(z) ⊗ Kψ(w) ⊥ ηH2. There is σ ∈ H2 satisfying ησ =

ϕ(z)ψ(w). We note that σ is an inner function on D2. We have T ∗z ϕ(z)T ∗wψ(w) ⊥ ηH2,
so ϕ(z)ψ(w) ⊥ zwηH2. Hence σ ⊥ zwH2.

Suppose that σ is not a one variable function. Then we may write σ = f (z) ⊕ g(w),
where f (z) ∈ H2(z), g(w) ∈ H2(w) and g(0) = 0. Also g(w) , 0 and f (z) is not constant.
For every n ≥ 1, 〈 f (z), zn f (z)〉 = 〈σ, znσ〉 = 0, so f (z) = cϕ1(z) for some nonconstant
inner function ϕ1(z) and nonzero constant c. Since

1 = ‖σ‖2 = ‖ f (z)‖2 + ‖g(w)‖2 = |c|2 + ‖g(w)‖2
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and ‖g(w)‖2 , 0, 0 < |c| < 1. Since σ is inner, σ(z, λ) is inner for almost every λ ∈ ∂D.
We have σ(z, λ) = cϕ1(z) + g(λ). Since g(w) , 0, this leads to a contradiction. Then σ
is a one variable inner function.

Suppose that σ = σ(z). Since ησ = ϕ(z)ψ(w), ϕ(z)/σ ∈ H2(z). Put ϕ1(z) = ϕ(z)/σ
and ψ1(w) = ψ(w). Then η = ϕ1(z)ψ1(w). Similarly, we get the assertion for the case
σ = σ(w). �

3. Rudin-type invariant subspaces

Let {ϕ(z)}∞n=−∞ and {ψ(w)}∞n=−∞ be sequences of nonconstant one variable inner
functions satisfying the following conditions:

(α1) ζn(z) := ϕn(z)/ϕn+1(z) is a nonconstant inner function for every −∞ < n <∞;

(α2) ϕn(z)→ 1 as n→∞ for every z ∈ D;

(α3) ϕn(z)→ 0 as n→ −∞ for every z ∈ D;

(α4) ξn(w) := ψn+1(w)/ψn(w) is a nonconstant inner function for every −∞ < n <∞;

(α5) ψn(w)→ 1 as n→ −∞ for every w ∈ D; and

(α6) ψn(w)→ 0 as n→∞ for every w ∈ D.

Moreover, we assume that

(α7) ϕn(0) ≥ 0, ψn(0) ≥ 0, ζn(0) ≥ 0 and ξn(0) ≥ 0 for every −∞ < n <∞.

Let

M =

∞∨
n=−∞

ϕn+1(z)ψn(w)H2. (3.1)

ThenM is an invariant subspace. This type of invariant subspace was first studied by
Rudin [14, page 72] (see also [8–10, 15, 16]), so M is called a Rudin-type invariant
subspace. By (α2) and (α3),M 6⊂ ϕ(z)H2 and ϕ(z)H2 6⊂ M for every nonconstant inner
function ϕ(z). By (α5) and (α6),M 6⊂ ψ(w)H2 and ψ(w)H2 6⊂ M for every nonconstant
inner function ψ(w).

By (α1), (α2), (α4), (α5) and (α7), we may assume that

ϕn(z) =

∞∏
k=n

ζk(z), ψn(w) =

n−1∏
k=−∞

ξk(w)

and

M=

∞⊕
n=−∞

ϕn+1(z)ψn(w)H2(z) ⊗ Kξn (w)

=

∞⊕
n=−∞

ϕn+1(z)ψn(w)Kζn (z) ⊗ H2(w).
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Now it is clear thatM is splitting for ϕ1(z) and ψ1(w) is the associated inner function
of ϕ1(z), so, by Theorem 2.2 and Corollary 2.7, we have the following corollary.

Corollary 3.1. M is Hilbert–Schmidt, zM + wM is closed, dim (M	 (zM + wM))
<∞ and FMz onM	 wM is Fredholm.

Let N = H2 	M. Then

N =

∞⊕
n=−∞

ψn(w)Kϕn+1 (z) ⊗ Kξn (w)

=

∞⊕
n=−∞

ϕn+1(z)Kζn (z) ⊗ Kψn (w).

We shall prove the following theorem.

Theorem 3.2. σc(M) = D.

To prove Theorem 3.2, we use the following lemma freely (see [2, 13, 17]).
For a one variable inner function ϕ(z), we define the operator S Kϕ

z on Kϕ(z) by
S Kϕ

z = PKϕ(z)Tz|Kϕ(z). We write S z when no confusion occurs. We have S ∗z = T ∗z |Kϕ(z).

Lemma 3.3. Let ϕ(z) be a nonconstant inner function. Then:

(i) T ∗z ϕ(z) ∈ Kϕ(z);
(ii) S z = Tz on Kϕ(z) 	 C · T ∗z ϕ(z); and
(iii) S zT ∗z ϕ(z) = −ϕ(0)(1 − ϕ(0)ϕ(z)).

For α ∈ D, let kα(z) = 1/(1 − αz). We have kα(z) ∈ H2(z) and T ∗z kα(z) = αkα(z).

Lemma 3.4. Let ϕ(z) be a nonconstant inner function. Then, for every α ∈ D, there
exists f (z) ∈ Kϕ(z) with ‖ f (z)‖ = 1 satisfying ‖(S ∗z − αI) f (z)‖ ≤ 4|ϕ(α)|/

√
1 − |ϕ(α)|2.

Proof. We note that S ∗z = T ∗z |Kϕ(z). Let

η(z) = (1 − ϕ(α)ϕ(z))kα(z) ∈ Kϕ(z).

Then η(z) is the reproducing kernel of Kϕ(z) for the point z = α. We have ‖η(z)‖2 =

(1 − |ϕ(a)|2)/(1 − |α|2). For h(z), g(z) ∈ H2(z) satisfying (hg)(z) ∈ H2(z), T ∗z h(z) =

(h(z) − h(0))/z and

T ∗z (hg)(z) = T ∗z (h(z))g(z) + h(0)T ∗z g(z).

Hence

(S ∗z − αI)η(z) =−ϕ(α)
ϕ(z) − ϕ(0)

z
kα(z) + α(1 − ϕ(α)ϕ(0))kα(z)

− α(1 − ϕ(α)ϕ(z))kα(z)

= ϕ(α)
ϕ(z) − ϕ(0)

z
(αz − 1)kα(z).
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Therefore

‖(S ∗z − αI)η(z)‖
‖η(z)‖

≤
4
√

1 − |α|2|ϕ(α)|‖kα(z)‖√
1 − |ϕ(α)|2

=
4|ϕ(α)|√

1 − |ϕ(α)|2
.

Set f = η(z)/‖η(z)‖. Then we get the assertion. �

For an invariant subspace M of H2, let N = H2 	 M. Then T ∗z N ⊂ N and T ∗wN ⊂ N,
so N is called a backward shift invariant subspace. We may define the compression
operators S N

z , S
N
w of Tz,Tw on N. We have (S N

z )∗ = T ∗z |N and (S N
w )∗ = T ∗w|N .

Lemma 3.5. Let N be a backward shift invariant subspace of H2. If there are sequences
of nonconstant inner functions {ϕn(z)}n≥0 and {ψn(w)}n≥0 such that Kϕn (z) ⊗ Kψn (w) ⊂ N
for every n ≥ 0 and ϕn(α)→ 0 for every α ∈ D, then σ(S N

z ) = D.

Proof. Let α ∈ D. By Lemma 3.4, for each n ≥ 0 there exists fn(z) ∈ Kϕn (z) with
‖ fn(z)‖ = 1 satisfying

‖((S Kϕn
z )∗ − αI) fn(z)‖ ≤

4|ϕn(α)|√
1 − |ϕn(α)|2

.

Let gn(w) ∈ Kψn (w) with ‖gn(w)‖ = 1. Then fn(z)gn(w) ∈ Kϕn (z) ⊗ Kψn (w) ⊂ N and
‖ fn(z)gn(w)‖ = 1. By the assumption,

‖((S N
z )∗ − αI) fn(z)gn(w)‖= ‖gn(w)‖ ‖((S Kϕn

z )∗ − αI) fn(z)‖

≤
4|ϕn(α)|√

1 − |ϕn(α)|2
→ 0

as n→∞. Hence (S N
z )∗ − αI is not invertible, so α ∈ σ((S N

z )∗) = σ(S N
z ). Thus we get

σ(S N
z ) = D. �

Recall that SNz = PNTz|N and SNw = PNTw|N . We have Kϕn (z) ⊗ Kψn (w) ⊂ N for
every −∞ < n < ∞. By (α3) and (α6) and by applying Lemma 3.5 we obtain the
following corollary, which is proved by Yang [24, Theorem 4.3].

Corollary 3.6. σ(SNz ) = σ(SNw ) = D.

Proof of Theorem 3.2. Recall that σc(M) = σc(SNz ) ∩ σc(SNw ). Since we are working
on N , we write S z and S w, for short. It is sufficient to prove that σc(S z) = D.
Let Z(ϕn) = {z ∈ D : ϕn(z) = 0}. By (α1), Z(ϕn) ⊂ Z(ϕk) for −∞ < k < n < ∞ and⋃∞

n=−∞ Z(ϕn) is at most a countable set. Let λ ∈ D. We shall show that λ ∈ σc(S z).
We study two cases separately.

Case 1. Suppose that λ ∈
⋃∞

n=−∞ Z(ϕn). Then there is an integer n0 such that ϕn(λ) = 0
for every −∞ < n ≤ n0. We write

bλ(z) =
z − λ

1 − λz
, z ∈ D.
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For each n ≤ n0, there is an inner function σn(z) satisfying ϕn(z) = bλ(z)σn(z). Then
σn(z)/(1 − λz) ∈ Kϕn (z). Let

fn =
σn(z)

1 − λz
ψn−1(w)T ∗wξn−1(w).

We have fn ∈ N and

(z − λ) fn = ϕn(z)ψn−1(w)T ∗wξn−1(w) ∈ M.

Hence
{ fn : −∞ < n ≤ n0} ⊂ ker(S z − λIN ).

Since fn ⊥ fk for k < n ≤ n0, ker(S z − λIN ) =∞. Hence λ ∈ σc(S z).

Case 2. Suppose that λ <
⋃∞

n=−∞ Z(ϕn). Let g ∈ ker(S z − λIN )∗. Then (S z − λIN )∗g = 0,
so g ⊥ (z − λ)H2. Hence there is h(w) ∈ H2(w) such that g = h(w)/(1 − λz). Since
g ∈ N , g ⊥ ϕn+1(z)ψn(w)Kξn (w) for every −∞ < n < ∞. Since ϕn+1(λ) , 0, h(w) ⊥
ψn(w)Kξn (w). By condition (α6),

ψk(w)H2(w) =

∞⊕
n=k

ψn(w)Kξn (w)

for every −∞ < k <∞. Hence h(w) ⊥ ψk(w)H2(w). By condition (α5),

H2(w) =

∞∨
k=−∞

ψk(w)H2(w),

so h(w) ⊥ H2(w). This shows that h(w) = 0 and g = 0. Thus we get ker(S z − λIN )∗

= {0}.
Next, we shall show that ker(S z − λIN ) = {0}. Let f ∈ N and (S z − λIN ) f = 0. For

each integer j, let
M j = T ∗ψ j(w)M and N j = T ∗ψ j(w)N .

ThenM j is an invariant subspace and N j = H2 	M j.

M j =

∞∨
n= j

ϕn+1(z)
ψn(w)
ψ j(w)

H2.

Hence ϕ j+1(SN j
z ) = 0.

Set N j,1 = ψ j(w)N j. Then N j,1 ⊂ N . Let N j,2 = N 	N j,1. We have S zN j,1 ⊂ N j,1
and S zN j,2 ⊂ N j,2. Hence S zPN j,1 = PN j,1 S z. It is not difficult to show that S z|N j,1 is
unitarily equivalent to SN j

z , that is, T ∗ψ j(w)S z|N j,1 = SN j
z T ∗ψ j(w)|N j,1 . Hence

σ(S z|N j,1 ) = σ(SN j
z ) ⊂ Z(ϕ j+1) ∪ ∂D.

Since ϕ j+1(λ) , 0, λ < σ(S z|N j,1 ). Since (S z − λIN ) f = 0,

0 = PN j,1 (S z − λIN ) f =
(
S z|N j,1 − λIN j,1

)
PN j,1 f .
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Hence PN j,1 f = 0, so f ⊥ N j,1 for every −∞ < j < ∞. We have N j,1 ⊂ Nk,1 for k < j
andN =

∨∞
j=−∞N j,1. Therefore f ⊥N . Since f ∈ N , f = 0. Thus ker(S z − λIN ) = {0}.

To show that λ ∈ σc(S z), suppose that λ < σc(S z). Then S z − λIN has closed range.
Since ker(S z − λIN ) = ker(S z − λIN )∗ = {0}, λ < σ(S z). This contradicts the fact given
in Corollary 3.6. Hence λ ∈ σc(S z).

By Cases 1 and 2, D ⊂ σc(S z) ⊂ D. To show that σc(S z) = D, let λ ∈ ∂D satisfy
λ < σc(S z). Then S z − λIN has closed range. Let g ∈ N satisfy (S z − λIN )∗g = 0.
Then g ⊥ (z − λ)H2, so g ⊥ H2. Hence g = 0 and ker(S z − λIN )∗ = {0}. Let h ∈ N
satisfy S zh = λh. Then ‖S zh‖ = ‖h‖. Hence zh ∈ N and (z − λ)h = 0. This shows that
h = 0 and ker(S z − λIN ) = {0}. Therefore λ < σ(S z). This also contradicts the fact
given in Corollary 3.6. Thus we get σc(S z) = D. �

As mentioned in the introduction, if M is a unitarily equivalent to an invariant
subspace M1 such that σc(M1) , D, then M is Hilbert–Schmidt. We shall show the
following theorem.

Theorem 3.7. Let M1 be an invariant subspace of H2 which is unitarily equivalent to
M. Then σc(M1) = D.

To prove Theorem 3.7, we first show the following lemma.

Lemma 3.8. Let M be an invariant subspace of H2 and η be an inner function on D2.
If σc(M) = D, then σc(ηM) = D.

Proof. Let N = H2 	 M, M1 = ηM and N1 = H2 	 M1. To show that σc(M1) = D, we
suppose the contrary. We may assume that there is λ ∈ D such that λ < σc(S N1

z ) (see
the proof of Theorem 3.2). Then S N1

z − λIN1 has closed range and dim ker(S N1
z − λIN1 )

<∞.
First, we shall show that dim ker(S N

z − λIN) <∞. Since η is inner,

ηH2 = η(M ⊕ N) = M1 ⊕ ηN ⊂ H2.

Then ηN ⊂ N1 and Tη|N : N → ηN is a unitary operator. Let f ∈ N and write z f =

f1 ⊕ f2 ∈ M ⊕ N. Then S N
z f = f2 and TηS N

z f = η f2. Since zη f = η f1 ⊕ η f2 ∈ M1 ⊕ ηN,
S N1

z Tη f = η f2 = TηS N
z f . Hence S N1

z Tη = TηS N
z on N, so

(S N1
z − λIN1 )Tη = Tη(S N

z − λIN) on N.

Therefore
dim ker(S N

z − λIN) ≤ dim ker(S N1
z − λIN1 ) <∞.

Next, we shall show that S N
z − λIN has closed range. Since S N1

z − λIN1 has closed
range, there exists δ > 0 such that δ‖g‖ ≤ ‖(S N1

z − λIN1 )g‖ for every g ∈ N1 	 ker(S N1
z −

λIN1 ). Since dim ker(S N1
z − λIN1 ) <∞,

dim PηN ker(S N1
z − λIN1 ) <∞.
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Let E be a closed subspace of N such that

PηN ker(S N1
z − λIN1 ) = ηE.

Then dim E < ∞ and ηN = η(N 	 E) ⊕ ηE. Let f ∈ N 	 E and h ∈ ker(S N1
z − λIN1 ).

Then η f ⊥ M1, PηNh = ησ for some σ ∈ E and

〈η f , h〉 = 〈η f , PηNh〉 = 〈η f , ησ〉 = 〈 f , σ〉 = 0.

Hence
η(N 	 E) ⊂ H2 	

(
M1 + ker(S N1

z − λIN1 )
)
.

Therefore η(N 	 E) ⊂ N1 	 ker(S N1
z − λIN1 ) and

δ‖ f ‖ = δ‖η f ‖ ≤ ‖(S N1
z − λIN1 )η f ‖, f ∈ N 	 E.

Thus we get

δ‖ f ‖ ≤ ‖Tη(S N
z − λIN) f ‖ = ‖(S N

z − λIN) f ‖, f ∈ N 	 E.

This shows that (S N
z − λIN)(N 	 E) is closed. Since dim E <∞, (S N

z − λIN)N is closed.
By the last paragraph, λ < σc(S N

z ), so λ < σc(M). This contradicts the assumption.
Thus we get D ⊂ σc(M1) and σc(M1) = D. �

Proof of Theorem 3.7. By [1], there is a unimodular function u on ∂D × ∂D such that
M1 = uM. We write H2

z = H2(z) ⊗ L2(w), where L2(w) is the w-variable Lebesgue
space on ∂D. Since ϕn+1(z)ψn(w) ∈ M,

uϕn+1(z)ψn(w) ∈ M1 ⊂ H2 ⊂ H2
z .

Hence uϕn+1(z) ∈ H2
z for every −∞ < n <∞. We have ϕn+1(z) = ϕn+1(0) + zT ∗z ϕn+1(z).

Then 1 = |ϕn+1(0)|2 + ‖T ∗z ϕn+1(z)‖2. By (α2), ‖T ∗z ϕn+1(z)‖ → 0 as n→∞.

zT ∗z ϕn+1(z) = ϕn+1(z) − ϕn+1(0) = ϕn+1(z) − 1 + 1 − ϕn+1(0),

so
‖T ∗z ϕn+1(z)‖ = ‖zT ∗z ϕn+1(z)‖ ≥ ‖ϕn+1(z) − 1‖ − |1 − ϕn+1(0)|.

By (α2), again, ‖ϕn+1(z) − 1‖ → 0 as n→∞. Hence u ∈ H2
z . Similarly, u ∈ H2

w. Then
u ∈ H2

z ∩ H2
w = H2. Therefore u is an inner function. By Theorem 3.2, σc(M) = D. By

Lemma 3.8, σc(M1) = σc(uM) = D. �

Let M be an invariant subspace of H2. Let

Ω = Ω(M) = M 	 (zM + wM)

and
M0 = zM + wM = M 	Ω.

Then M0 is an invariant subspace, zΩ ⊂ M0 and wΩ ⊂ M0. We write N = H2 	 M and
N0 = H2 	 M0. Then N0 = N ⊕ Ω. In the last part of this paper, we shall show the
following theorem.
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Theorem 3.9.

(i) M0 is Hilbert–Schmidt.
(ii) Let M1 be an invariant subspace of H2. If M1 is unitarily equivalent toM0, then

σc(M1) = D.
(iii) M0 is splitting if and only if ϕn(0)ψn(0) = 0 for some −∞ < n <∞.

To prove this theorem, we need two lemmas.

Lemma 3.10. (S N
z − λIN)N = N ∩ (S N0

z − λIN0 )N0 for every λ ∈ D \ {0}.

Proof. Let h ∈ N ∩ (S N0
z − λIN0 )N0. Then there is f1 ⊕ f2 ∈ N ⊕ Ω such that h =

(S N0
z − λIN0 )( f1 ⊕ f2).

h = (S N0
z − λIN0 ) f1 − λ f2

= (S N
z − λIN) f1 + PΩS N0

z f1 − λ f2
= (S N

z − λIN) f1 because h ∈ N ∈ (S N
z − λIN)N.

Hence N ∩ (S N0
z − λIN0 )N0 ⊂ (S N

z − λIN)N.
Let g1 ∈ N and λ ∈ D \ {0}. Set g2 = PΩS N0

z g1/λ.

(S N
z − λIN)g1 = (S N

z − λIN)g1 + PΩS N0
z g1 − PΩS N0

z g1

= (S N0
z − λIN0 )g1 − λg2

= (S N0
z − λIN0 )(g1 ⊕ g2).

Since g1 ⊕ g2 ∈ N0, we get (S N
z − λIN)N ⊂ N ∩ (S N0

z − λIN0 )N0. �

Lemma 3.11. If σc(M) = D and dim Ω <∞, then σc(M0) = D.

Proof. Suppose that σc(M0) , D. We may assume that σc(S N0
z ) , D. Then there is

λ ∈ D such that dim ker(S N0
z − λIN0 ) < ∞ and S N0

z − λIN0 has closed range (see the
proof of Theorem 3.2).

Since
(S N0

z − λIN0 ) ker(S N
z − λIN) ⊂ Ω

and dim Ω <∞, there are f1, . . . , fn ∈ ker(S N
z − λIN) such that

ker(S N
z − λIN) 	 (C · f1 + · · · + C · fn) ⊂ ker(S N0

z − λIN0 ).

Since dim ker(S N0
z − λIN0 ) <∞, dim ker(S N

z − λIN) <∞.
Suppose that λ , 0. By Lemma 3.10, S N

z − λIN has closed range. Hence λ < σc(S N
z ),

so λ < σc(M). This contradicts that σc(M) = D.
Next, suppose that λ = 0. Then S N0

z N0 is closed. Since S N0
z N0 = S N0

z N, S N0
z N is

closed. Since dim Ω <∞, there are g1, . . . , gm ∈ S N0
z N such that

S N0
z N 	 (C · g1 + · · · + C · gm) = N ∩ S N0

z N.

Hence
S N

z N = PNS N0
z N = (N ∩ S N0

z N) + PN(C · g1 + · · · + C · gm),
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so S N
z N is closed. Therefore 0 < σc(S N

z ), so 0 < σc(M). This contradicts that
σc(M) = D. Thus we get the assertion. �

Now we shall study M given in (3.1) and M0. By Corollary 3.1, M is Hilbert–
Schmidt, zM + wM is closed and dim (M	 (zM + wM)) < ∞. We note that M0 =

zM + wM, Ω(M) =M	M0 and N0 = N ⊕Ω(M).

Proof of Theorem 3.9. (i) We have M0 ⊂ M and dim (M	M0) = dim Ω(M) < ∞.
SinceM is Hilbert–Schmidt, it is not difficult to see thatM0 is Hilbert–Schmidt.

(ii) By Theorem 3.2 and Lemma 3.11, σc(M0) = D. By [1], there is a unimodular
function u on ∂D × ∂D such that M1 = uM0. SinceM0 = zM + wM, zuM⊂ uM0 =

M1 ⊂ H2. By the proof of Theorem 3.7, zu is inner. Similarly, wu is inner. Then one
easily sees that u is inner. By Lemma 3.8, σc(M1) = σc(uM0) = D.

(iii) Suppose that ψn(0) = 0 for some −∞ < n < ∞. We shall show that M0 is
splitting. By (α5), there is an integer n0 such that

ψn0+1(0) = 0 and ψn0 (0) , 0. (3.2)

Since M is splitting for ϕn0+1(z) and ψn0+1(w) is the associated inner function of
ϕn0+1(z),

M = (M∩ ϕn0+1(z)H2) ⊕
(
M∩ (H2 	 ϕn0+1(z)H2)

)
and

M∩ (H2 	 ϕn0+1(z)H2) ⊂ ψn0+1(w)Kϕn0+1 (z) ⊗ H2(w). (3.3)

We shall show that
Ω(M) ⊥ ϕn0+1(z)ψn0+1(w)H2. (3.4)

Let f ∈ Ω(M). Since f ⊥ wM, we may write

f =

∞⊕
n=−∞

ϕn+1(z)ψn(w) fn(z) ∈
∞⊕

n=−∞

ϕn+1(z)ψn(w)Kζn (z).

By (3.2),
n0⊕

n=−∞

ϕn+1(z)ψn(w) fn(z) ⊥ ϕn0+1(z)ψn0+1(w)H2.

Also
∞⊕

n=n0+1

ϕn+1(z)ψn(w) fn(z) ∈
∞⊕

n=n0+1

ϕn+1(z)Kζn (z) ⊗ H2(w)

= Kϕn0+1 (z) ⊗ H2(w).

Hence
∞⊕

n=n0+1

ϕn+1(z)ψn(w) fn(z) ⊥ ϕn0+1(z)ψn0+1(w)H2.

Thus we get (3.4).
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For f ∈ Ω(M), we may write

f = f1 ⊕ f2 ∈ (M∩ ϕn0+1(z)H2) ⊕
(
M∩ (H2 	 ϕn0+1(z)H2)

)
.

By (3.4), f1 ∈ ϕn0+1(z)H2(z) ⊗ Kψn0+1 (w) and, by (3.3),

f2 ∈ ψn0+1(w)Kϕn0+1 (z) ⊗ H2(w).

Then it is not difficult to show that f1, f2 ∈ Ω(M). Hence

Ω(M) = (Ω(M) ∩ ϕn0+1(z)H2) ⊕
(
Ω(M) ∩ (H2 	 ϕn0+1(z)H2)

)
.

Thus we get

M0 =M	Ω(M)
= (M0 ∩ ϕn0+1(z)H2) ⊕

(
M0 ∩ (H2 	 ϕn0+1(z)H2)

)
.

This shows thatM0 is splitting.
Similarly, if ϕn(0) = 0 for some −∞ < n < ∞, then we may prove that M0 is

splitting.
To show the converse assertion, suppose that ϕn(0) , 0 and ψn(0) , 0 for every

−∞ < n < ∞. By [19, pages 532–533], Ω(M) = C · PM1. By (α7), one can easily
check that

PM1 =

∞⊕
n=−∞

ϕn+1(0)ψn(0)ϕn+1(z)ψn(w)(1 − ζn(0)ζn(z))

=

∞⊕
n=−∞

ϕn+1(0)ψn(0)ϕn+1(z)ψn(w)(1 − ξn(0)ξn(w)). (3.5)

To prove thatM0 is not splitting, we assume thatM0 is splitting. We may assume that
M0 is splitting for ϕ(z). Let ψ(w) be the associated inner function of ϕ(z) forM0. We
have Kϕn (z) ⊗ Kψn (w) ⊥M, so Kϕn (z) ⊗ Kψn (w) ⊥ ϕ(z)ψ(w)H2 for every −∞ < n <∞.
Hence either T ∗z ϕn(z) ⊥ ϕ(z)H2(z) or T ∗wψn(w) ⊥ ψ(w)H2(w). This shows that either
ϕ(z)/ϕn(z) ∈ H2(z) or ψ(w)/ψn(w) ∈ H2(w). By (α6), ψ(w)/ψn(w) < H2(w) for a large n,
so ϕ(z)/ϕn(z) ∈ H2(z) for a large n. By (α3), ϕ(z)/ϕn(z) < H2(z) for a sufficiently small
n. Then there is an integer n0 such that ϕ(z)/ϕn0+1(z) ∈ H2(z) and ϕ(z)/ϕn0 (z) < H2(z).
We have ψ(w)/ψn0 (w) ∈ H2(w). Hence

ϕ(z)ψ(w)H2 ⊂ ϕn0+1(z)ψn0 (w)H2.

Since ψ(w) is the associated inner function of ϕ(z) for M0, Kϕ(z) ⊗ Kψ(w) ⊥M0, so
Kϕ(z) ⊗ Kψ(w) ⊂ N0. Let

σ(z) = ϕ(z)/ϕn0+1(z) and η(w) = ψ(w)/ψn0 (w).

Then ϕn0+1(z)Kσ(z) ⊂ Kϕ(z), ψn0 (w)Kη(w) ⊂ Kψ(w) and

ϕn0+1(z)ψn0 (w)Kσ(z) ⊗ Kη(w)
⊂ (Kϕ(z) ⊗ Kψ(w)) ∩ ϕn0+1(z)ψn0 (w)H2

⊂ N0 ∩ ϕn0+1(z)ψn0 (w)H2

⊂ N0 ∩M = Ω(M) = C · PM1.
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If Kσ(z) ⊗ Kη(w) , {0}, then

ϕn0+1(z)ψn0 (w)Kσ(z) ⊗ Kη(w) = C · PM1

and this contradicts (3.5). Thus Kσ(z) ⊗ Kη(w) = {0}. Hence we may assume that either
ϕ(z) = ϕn0+1(z) or ψ(w) = ψn0 (w). Suppose that ϕ(z) = ϕn0+1(z). SinceM0 is splitting
for ϕn0+1(z),

M0 = (M0 ∩ ϕn0+1(z)H2) ⊕
(
M0 ∩ (H2 	 ϕn0+1(z)H2)

)
. (3.6)

Let

f = ϕn0+2(z)ψn0+1(w)(1 − ζn0+1(0)ζn0+1(z))
⊕ cϕn0+1(z)ψn0 (w)(1 − ζn0 (0)ζn0 (z))

for some c ∈ C. Then f ∈ M. We may take c ∈ C such that 〈 f , PM1〉 = 0. Since
M =M0 ⊕ C · PM1, f ∈ M0. By (3.6),

f1 := ϕn0+2(z)ψn0+1(w)(1 − ζn0+1(0)ζn0+1(z)) ∈ M0

〈 f1, PM1〉 = ϕn0+2(0)ψn0+1(0)(1 − ζn0+1(0)2) , 0.

This shows f1 <M0 and this is a contradiction.
Suppose that ψ(w) = ψn0 (w). Since

(M0 ∩ ϕn0+1(z)H2) 	 ϕn0+1(z)ψn0 (w)H2 , {0},

M0 is splitting for ψn0 (w) (see above Theorem 2.2). In the same way as the last
paragraph, we have a contradiction. As a result,M0 is not splitting. �

Corollary 3.12. The splittingness is not stable under the finite dimensional
perturbations.
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[17] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space (North Holland,

Amsterdam, 1970).
[18] R. Yang, ‘The Berger–Shaw theorem in the Hardy module over the bidisk’, J. Operator Theory 42

(1999), 379–404.
[19] R. Yang, ‘Operator theory in the Hardy space over the bidisk (III)’, J. Funct. Anal. 186 (2001),

521–545.
[20] R. Yang, ‘Beurling’s phenomenon in two variables’, Integral Equ. Operator Theory 48 (2004),

411–423.
[21] R. Yang, ‘The core operator and congruent submodules’, J. Funct. Anal. 228 (2005), 469–489.
[22] R. Yang, ‘Hilbert–Schmidt submodules and issues of unitary equivalence’, J. Operator Theory 53

(2005), 169–184.
[23] R. Yang, ‘On two variable Jordan block II’, Integral Equ. Operator Theory 56 (2006), 431–449.
[24] Y. Yang, ‘Two inner sequences based invariant subspaces in H2(D2)’, Integral Equ. Operator

Theory 77 (2013), 279–290.

KEI JI IZUCHI, Department of Mathematics, Niigata University,
Niigata 950-2181, Japan
e-mail: izuchi@m.sc.niigata-u.ac.jp

KOU HEI IZUCHI, Department of Mathematics, Faculty of Education,
Yamaguchi University, Yamaguchi 753-8511, Japan
e-mail: izuchi@yamaguchi-u.ac.jp

YUKO IZUCHI, Aoyama-shinmachi 18-6-301, Nishi-ku,
Niigata 950-2006, Japan
e-mail: yfd10198@nifty.com

https://doi.org/10.1017/S1446788716000203 Published online by Cambridge University Press

mailto:izuchi@m.sc.niigata-u.ac.jp
mailto:izuchi@yamaguchi-u.ac.jp
mailto:yfd10198@nifty.com
https://doi.org/10.1017/S1446788716000203

	Introduction
	Splitting invariant subspaces
	Rudin-type invariant subspaces
	References

