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Abstract

Let H? be the Hardy space over the bidisk. It is known that Hilbert—-Schmidt invariant subspaces of H>
have nice properties. An invariant subspace which is unitarily equivalent to some invariant subspace
whose continuous spectrum does not coincide with D is Hilbert—Schmidt. We shall introduce the concept
of splittingness for invariant subspaces and prove that they are Hilbert—Schmidt.

2010 Mathematics subject classification: primary 47A15; secondary 32A35, 47B35.

Keywords and phrases: Hardy space over the bidisk, splitting invariant subspace, Hilbert—Schmidt
invariant subspace, Rudin type invariant subspace.

1. Introduction

Let H?> = H*(D?) be the Hardy space over the bidisk D? with variables z and w. Then
H? = H*(z) ® H*(w), where H?(z) is the z-variable Hardy space. A nonzero closed
subspace M of H? is said to be invariant if zM c M and wM c M. For an invariant
subspace L of H*(z), by the Beurling theorem, L = ¢(z)H?(z) for some inner function
¢(z). The structure of invariant subspaces of H> = H*(D?) is extremely complicated
(see [3, 14]). For a function ¢ in H(D?), we denote by T4 the multiplication operator
on H? by ¢. For an invariant subspace M of H?, we write RY = T,|; and RM =T, |y
We will simply write R,, R,, when no confusion occurs. Then (R, R,,) is a pair of
commuting isometries on M. In the study of invariant subspaces of H>, the operators
R;, R,, play important roles in the study of operator theory and function theory. Since

(e8]
M= EB w'(M e wM),
n=0
the space M © wM contains much information about the properties of M.
[Rys Ryl := RURyw — RuRy, = I — Pum = Pyowm,
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where Pg is the orthogonal projection from H? onto the closed subspace E of H?,
[R),,R.] =0 on wM and [R},R;] =R;,R, on MewM. So [R},R][R;,R,] and
[R:, R.] are key operators in the study of invariant subspaces of H? (see [4, 5, 7—
9,11, 12,15, 16, 18-23]).

In [19], Yang defined two numerical invariants for M,
* * 2 * 2
Zo(M) = IR RAR;, Rl Z1(M) = [[[Ry. R
where || - ||gs is the Hilbert—Schmidt norm, and showed that

iR RAR,. Rl g = (RS RAIRE R

and ) s
1R R[[ys = IR Rl

In [19, Proposition 3.3], he showed also that if M is unitarily equivalent to My,
then Xo(M) = Zo(M;) and Z;(M) = £;(M;). In [22], Yang introduced the concept
of Hilbert—Schmidtness for M. It is equivalent to the fact that Py, — R,R; — R,,R}, —
R.T\,RR;, is Hilbert—Schmidt (see [5, Proposition 1.1]). By [5, Corollary 3.3], M is
Hilbert—-Schmidt if and only if Zy(M) + Z;(M) < co. For a given M, it is generally
difficult to compute the exact values of Zo(M) and X(M).

Hilbert—-Schmidt invariant subspaces have many nice properties (see [5, 15, 16, 19—
23]). Let F¥ be the compression operator of 7, on M © wM. In [19], Yang called
FM the fringe operator and studied properties of F. If M is Hilbert-Schmidt, then,
by [21], Fé” is Fredholm. Hence, by [19, Corollary 4.3], zM + wM is closed and
dim (M & (zM + wM)) < oo.

Let N = H>© M. Let SY and S be the compression operators of 7, and T,, on N,
that is, S¥f = PyT,f for f € N. We have (SY)* = T}|y and (S)* = T} |y. We will
simply write S, S,, when no confusion occurs. We denote by o.(S;) and o(S ) the
continuous spectra of S, and §,,, that is, 4 € 0(S) if and only if either dim (S, —
Aly) = oo or S, — Aly does not have closed range. Set o.(M) = 5.(S;) N o(S,). In
[19, Theorem 2.3], Yang showed that if o.(M) # D, then Zo(M) + X, (M) < 0, s0 M is
Hilbert—-Schmidt. If ¢(z)H? ¢ M for some inner function ¢(z), then, by the model
theory of Sz.-Nagy and Foias [13, 17], o.(M) # D, so there are a lot of Hilbert—
Schmidt invariant subspaces. If M is a unitarily equivalent to an invariant subspace
M, such that o.(M;) # D, then M is Hilbert—Schmidt. In this paper, we shall study a
Hilbert—Schmidt invariant subspace M satisfying that o.(M;) = D for every M, thatis
unitarily equivalent to M.

In Section 2, we shall define splitting invariant subspaces of H> and prove that they
are Hilbert—Schmidt. In Section 3, we shall study a Rudin-type invariant subspace M
which was first studied in [14, page 72]. We shall show that M is splitting, and that
o (M) = D for every M, that is unitarily equivalent to M.

Let My =zM + wM. Then M, is an invariant subspace. We shall show that,
under some additional assumptions, My is Hilbert—Schmidt, M is not splitting and
o(M>) =D for every M, that is unitarily equivalent to M.
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2. Splitting invariant subspaces

Let ¢(z) be a nonconstant inner function. An invariant subspace M of H? is said to
be splitting for ¢(z) if

#1) M=MneEH? &M N (H* e p(z)H?)
and
#2) Mn(H?*o e(z)H?) # {0}.

Similarly, we may define a splitting invariant subspace for a nonconstant inner function
Y(w). We say simply that M is splitting if M is splitting either for ¢(z) or for Y(w). In
this section, we shall study splitting invariant subspaces M for ¢(z). We set

A=A(p) =M N (H? e p()H?). (2.1)
We write
K,(z) = H*(2) © p(2)H*(z) and K, (w) = H*(w) © y(w)H*(w).
Lemma 2.1. Let M be a splitting invariant subspace for ¢(z). Then wA C A and there
is an inner function y(w) (may be constant) such that M N y(W)H? = A ® p()y(w)H?,
A CyYyw)Ky(2) ® H*(w), K,(2) ® Ky(w) L M and T} p(z)y(w) L A. Moreover, if n(w)
is an inner function satisfying A C n(w)H?, then y(w)H* C n(w)H>.
Proor. By (#2) and (2.1), A # {0}, wA C A and zA ¢ A. For f € A, we write
f =fi®frepH & (H* e p(x)H).
Since f € H? © p(2)H?, fi € p(z)H* (W),
' f =W fi @w'fr € eH (W) & (H* © p(2)H’)

forevery n > 0 and {f1 : f € A} # {0}. Then, by the Beurling theorem, there is an inner
function ¥(w) such that

\/ Wi : f € A} = p@uw)H> (w),
n>0
where V5o E, is the closed linear span of Ey, E, . ... This shows that T ¢(2)y(w) L A.
By (#1), fi € M N (z)H?>. Hence o)y (w)H*(w) C M, so @(2)y(w)H> C M. One
easily sees that A C y(w)H?, and y(w)H? C n(w)H? for every inner function n(w)
satisfying A c n(w)H>. By (#1) and (2.1), M Ny(w)H? = A ® p(2)y(w)H?, A C
Y(W)K,(z) ® H*(w) and K,(2) ® Ky(w) L M. o
An inner function ¥(w) given in Lemma 2.1 is unique except for constant
multiplication and depends on ¢(z). So y¥(w) is said to be the associated inner function
of ¢(z) for M.
Let M be a splitting invariant subspace for ¢(z) and ¥(w) be the associated inner
function of ¢(z). By Lemma 2.1,

L := A® o(QUW)H? = M N y(w)H>. (2.2)
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Since p(2)Y(w)H> € M N p(z)H?, let
B = B(p) = (M N @(x)H*) © p(2)p(w)H’.

Then zB C B and B C ¢(2)H*(z) ® Ky(w). By Lemma 2.1, again, A C ¢y(w)K,(z) ®
H?(w), s0o A L B. By (#1) and (2.1),

M =A® B® o(2)y(w)H?. (2.3)

We set
L, := B® o(2)y(W)H* = M N (z)H. 2.4

Then L; and L, are invariant subspaces and L; N L, = ¢(z)y(w)H?>. Since y(w) is the
associated inner function of ¢(z),

\/ 1O, w) : £ € A} = ) H> (W),

When B # {0}, ¥(w) is nonconstant and M is splitting for ¢(w). Let ¢;(z) be the
associated inner function of y(w) for M. Then ¢, (z)H*(z) C ¢(z)H?(z). We shall show
the following theorem.

Turorem 2.2. If M is a splitting invariant subspace of H?, then M is Hilbert—Schmidt.

To show Theorem 2.2, we use several known facts, as mentioned in the introduction.
We will list them as lemmas.

Lemma 2.3.

(i) Zo(M) = 1Py Puewmllfs-
(1) If {¥n}ns1 is an orthonormal basis of M © wM, then (M) = Z;’;l ||R:‘VRZ¢/,,||2.

Lemma 2.4. Let M be an invariant subspace of H*>. Then M is Hilbert—Schmidt if and
only if 2o(M) + Z1(M) < oo.

Levmva 2.5. Let M be an invariant subspace of H?. If o.(M) # D, then Zo(M) +
(M) < 0.

Let M, and M, be invariant subspaces of H>. A unitary operator T : M; — M, is
called a unitary module map if 7,7 =TT, and T,,7 = TT,, on M. We say that M, is
unitarily equivalent to M, if there is a unitary module map 7 : M| — M,.

Lemma 2.6. Let My and M be invariant subspaces of H>. If M is unitarily equivalent
to M», then Zo(M,) = Zo(M>) and X1(M;) = Z1(M>).

Proor oF THEOREM 2.2. We may assume that M is splitting for ¢(z). Let y(w) be the
associated inner function of ¢(z). By (2.2), L; € y(w)H>. Then T;(W)lq is an invariant
subspace and le 1Ly — T3, L is aunitary module map. By Lemma 2.6, X¢(L;) =

(w) Y(w)
ZO(T;(W)Ll) and X,(L;) = Z](T.Z Ly). By (2.2), again, T;(W)Ll = T;(W)A ® p(2)H>.

(w)
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Let N; = H* o TzZ(w)Ll' Then N, ¢ H? © ¢(z)H?. Hence go(SéV') = 0, so, by the model
theory of Sz.-Nagy and Foias [13, 17]

TS co(SM) c{zeD: p(z) =0} UID # D.

Hence GC(T;(W)LI) #D. By Lemma 2.5, EO(T;(W)Ll) + EI(T;(W)Ll) < 00, SO

o(Ly) + Z1(Ly) < oo, (2.5)
Similarly,

o(La) + Z1(Lp) < oo, (2.6)

To show that M is Hilbert—Schmidt, we shall compute the values Xy(M) and X{(M),
respectively. First, we shall show that Xyo(M) < co. By (2.3) and (2.4), M = A& L,.
Since wA C A and wl, C L,,

MoewM=(AewA)® (L, owl,).
Let {g,}n>1 and {f,,},>1 be orthonormal bases of A © wA and L, © wL,, respectively. By
Lemma 2.3(i),

0o

So(M) = > (IPuocugall® + 1Py full). 2.7)

n=1

Since M = B® L, and zB C B,
Moez:M=(BoezB)® (L ozl).
By (2.3),A L B,sog, L BozB. Since L; = A ® p(z)y(w)H? and
LiowL; = (A©wA) ® ey (w)H(2),

(o] (o]
2 2
D IPyecngall? = ) IPL et 2l
n=1 n=1

(o]

2
Z 1Pz, Priowr, &nll
n=1

<|IPLeer, Priows, s
=2p(L;) by Lemma 2.3.
By (2.7),

So(M) < Zo(Li) + ) IPucc fll (2.8)

n=1

Also - -
D IPyecnfall = > (1Psecn full +1PLecs, £ill).
n=1 n=1
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Since
L, 6zL, = (B zB) ® (2 (w)H* (W),

Me

> IPyeamfull® <

n=1 n

(o)
2 2
1PLocs full? + ) IPL ez, il
1 n=1

oo
2 E 2
”PLz@ZLzPLz@WsznH + ||PL191L1ff’l”

n=1

Me

1l
—_

n

(o]
2 2
= ”PLzeszPLzewszHs + § ”PLlelefn”

n=1

=Zo(La) + Y IPLecr, full
n=1
Hence, by (2.8),
o(M) < Zo(Ln) + Zo(La) + ) IPLect, fill 2.9)

n=1

Let {ht}1>1 be an orthonormal basis of L; © zL;. Then, foreachn > 1,
IPLeet, fall? = D KPLect, fu P = > Ko P
k=1 k=1

Since L; © zL; L zp(z)y(w)H?, we may write
hy = hyy ® @@QUWIK(w) € A ® (@Y (W)H ().

Since f, € L, and L, L A,
1Pt il = )" K BOP = D K @)
k=1 k=1

Since f, e L, owl,, f, L wgo(z)!,//(w)Hz. Hence we may write
fo = fu1 ® @Y W) u(2) € B® p(2)Y(W)H?(2).

Since B L @(z)y(w)H?,

IPLeer, ful* = Z K@ (W) (2), @Y w)m(w))
k=1

=102 O)F > Ink(O)P.

k=1
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Here

D OF = Khi, QU = > 1Pc gyl
k=1 k=1

k=1
(o) (o)
2 2
< > WP P = Y IPLowt, Pricct,
k=1 k=1

= 1Prowe, Prioer, s = Zo(L1) by Lemma 2.3.

Similarly, 37 lo7,(0)I* < Zo(L,). Hence

D PLeet, filP < Zo(La) Y 10a(O)F < Zo(Li)Zo(Lo).

n=1 n=1

By (2.5), (2.6) and (2.9),
Zo(M) < XZo(Ly) + Zo(Lo) + Zo(L1)Zo(Ly) < oo.

Next, we shall prove that £, (M) < co. Since {g,, f, : n > 1} is an orthonormal basis
of M ©wM, by Lemma 2.3(ii),

Si(M) = ) (IR, Regall* + IR, R- f,l).
n=1

Since MewM = (AewA)® (L, ©wl,) and wA L L,
R:R. = RM'RY = RL*RL> on L.

Since {f,},>1 is an orthonormal basis of L, © wL,, by Lemma 2.3, again,
DUIRLRAlP = 21(La).
n=1

Hence
S1(M) = Z1(La) + ) IR R-gall. (2.10)
n=1
Since {g,},>1 is an orthonormal basis of A © wA and A & wA C Ly © wl,,

RS RY gull® < Z1(Ly). Q.11)
n=1
By Lemma 2.1, PAT; (2)y(w) # 0. Since zwA L @(2)y(w), PAT; p(2)(w) € A © WA,
so we may assume that
PATZ p(2)gp(w)

81 = IPAT eIl
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For each n > 2,

0={(gn.81)= (@ns PAT; p(2)p(W)),

1
IPAT: @yl
S0 zg, L @(2)¥(w). Hence
28n € A® @Y (W)WH(w) C A® @(2W(w)H" = L.
This shows that R} R g, = Rval*Rf‘ gn for every n > 2. Therefore, by (2.11),

D IR R-gul? = IR, Rg1lP + > IR RE g,
n=1

n>2

<IIRR:g1l +Zi(Ly).
Thus, by (2.5), (2.6) and (2.10), £;(M) < co. By Lemma 2.4, M is Hilbert—Schmidt. O
As mentioned in the introduction, by Yang’s works we have the following corollary.

CoroLLARY 2.7. Let M be a splitting invariant subspace of H*>. Then zM + wM is
closed, 1 <dim(M 6 (zM + wM)) < o and F ?’1 on M ©wM is Fredholm.

ExampLE 2.8. Let ¢(z), y(w) be nonconstant inner functions and M = @(z)H? +
W(w)H?. Then M is a splitting invariant subspace for ¢(2). O

ExampLE 2.9. Let u, v be bounded positive singular measures on dD. Let

i6
Yu(2) = exp (—fa z A dﬂ(eig)), zeD.
D

iH_Z

Then ¢,(z) is an inner function (see [6]). Let

M=\/ 4@ H.

0<t<oo
Then it is clear that M is a splitting invariant subspace for ,,(z). O

ProrositioN 2.10. Let  be an inner function on D?. If nH? is splitting, then n =
w11 (w) for some inner functions ¢1(z) and Yy (w).

Proor. We may assume that nH? is splitting for a nonconstant inner function ¢(z).
Let (w) be the associated inner function of ¢(z) for nH>. Then, by Lemma 2.1,
e(@Y(W)H* c nH? and K,(z) ® Ky(w) L nH?. There is o € H* satisfying no =
o(z)y(w). We note that o is an inner function on D?. We have T Yo(@Tp(w) L nH?,
s0 @(2)¢¥(w) L zwnH?. Hence o L zwH>.

Suppose that o is not a one variable function. Then we may write o = f(z) ® g(w),
where f(z) € H*(z), g(w) € H*(w) and g(0) = 0. Also g(w) # 0 and f(2) is not constant.
For every n > 1, (f(2), 7" f(2)) = (0, 7"0) = 0, so f(z) = cy1(z) for some nonconstant
inner function ¢;(z) and nonzero constant c. Since

L= ol = If@IF + g = Ic + llgw)II?
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and |lgw)|[> # 0, 0 < |c| < 1. Since o is inner, o(z, ) is inner for almost every A € dD.
We have o(z, 1) = cp;1(z) + g(4). Since g(w) # 0, this leads to a contradiction. Then o
is a one variable inner function.

Suppose that o = 0(z). Since o = ()Y (W), ¢(z)/o € H*(z). Put ¢1(z) = ¢(z)/0
and ¥ (w) = y(w). Then n = ¢1(2)y1(w). Similarly, we get the assertion for the case
o =ocw). O

3. Rudin-type invariant subspaces

Let {¢(2)},2_., and {¥(w)},~_., be sequences of nonconstant one variable inner
functions satisfying the following conditions:

(@1) £u(z) := ¢n(2)/pn+1(z) is @ nonconstant inner function for every —co < n < co;
(@2) @u(z) = 1 as n — oo for every z € D;

(a3) ¢u(z2) = 0 as n —» —oo for every z € D;

(a4) &,(w) := Y01 (W) /i, (W) 1s a nonconstant inner function for every —oco < n < oo;
(a5) Y, (w) = 1 as n — —oo for every w € D; and

(a6) Y, (w) — 0 as n — oo for every w € D.

Moreover, we assume that

@7) ¢,(0) >0, ¥,(0)>0, ¢,(0)>0andé&,(0)>0 forevery —oo<n < oo.

Let .
M= \/ @na@un(wH, (3.1)

Then M is an invariant subspace. This type of invariant subspace was first studied by
Rudin [14, page 72] (see also [8-10, 15, 16]), so M is called a Rudin-type invariant
subspace. By (a2) and (a3), M ¢ ¢(z)H? and ¢(z)H> ¢ M for every nonconstant inner
function ¢(z). By (a5) and (6), M ¢ y(w)H? and y(w)H? ¢ M for every nonconstant
inner function ¥ (w).

By (al), (@2), (a4), (@5) and (a’7), we may assume that

o n-1
en@ = [a@, v =[] &

k=n k=—co

and

M= D ¢ (@UaWH* ) ® K, (w)

n=-—00

= P er1@UatwIKe, (2) @ HA(w).

n=—oo
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Now it is clear that M is splitting for ¢;(z) and ;(w) is the associated inner function
of ¢1(2), so, by Theorem 2.2 and Corollary 2.7, we have the following corollary.

CoroLLARY 3.1. M is Hilbert—Schmidt, zM + wM is closed, dim (M & (M + wM))
< oo and F?" on MewM is Fredholm.

Let N = H> © M. Then

N = D vakK,,. () ® Ke,(w)

n=—0oo

= @ n+1(2)Ky, (2) ® Ky, (W).

We shall prove the following theorem.
TheOREM 3.2. 0((M) =

To prove Theorem 3.2, we use the following lemma freely (see [2, 13, 17]).
For a one variable inner function ¢(z), we define the operator S f“’ on K,(z) by
S f”” = Pk, T|k,)- We write S ; when no confusion occurs. We have 7 = Tk, ;)-

LemMma 3.3. Let ¢(z) be a nonconstant inner function. Then:

(1) T7¢(z) € Ky(2);
(i) S, =T,0nK,(2)©C-T;¢(z); and

(iii) S.T7¢(2) = —(0)(1 — @(0)p(2)).
For @ € D, let k,(z) = 1/(1 — @z). We have k,(z) € H*(z) and T ko(2) = @ko(2).

Lemma 3.4. Let ¢(z) be a nonconstant inner function. Then, for every a € D, there
exists f(z) € Ky(2) with || f(2)ll = 1 satisfying (ST —aD) f@)l < 4lp(@)l/ V1 = lp(@)]*.

Proor. We note that S 7 = T7 |k, ;- Let

1(z) = (1 = p(@)p(2)ka(2) € K,(2).

Then 7(z) is the reproducing kernel of K,(z) for the point z = &. We have In)I? =
(1 - le@I»)/(1 —lal®). For h(z),g(z) € H*(z) satisfying (hg)(z) € H*(z), T h(z) =
(h(z) — h(0))/z and

T (hg)(z) = T;(M(2))g(z) + h(0)T}g(2).
Hence

(S: —ahniz) = —¢(a )(P(Z) (P( ) ko(2) + a(l — m‘p(o))kw(Z)

-a(l- 90(a)so(z))ka(z)
=o(a )M( = Dky(2).
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Therefore
I(SZ = aDn@)| < 41 =lalle@like @Il — 4lpa)l
@I~ T Ig@P T=lg@P
Set f = n(z)/|ln(z)|l. Then we get the assertion. o

For an invariant subspace M of H?,let N = H> © M. Then TNCcNandT,NCN,
so N is called a backward shift invariant subspace. We may define the compression
operators S¥, SN of T, T,, on N. We have (S)* = T?|y and (SY)* = T}|v.

Lemma 3.5. Let N be a backward shift invariant subspace of H>. If there are sequences
of nonconstant inner functions {¢,(2)}n=0 and {Yr,(W)} .0 such that K, (z) ® Ky, (w) C N
for everyn > 0 and ¢,(a) — 0 for every a € D, then O'(Sév) =D.

Proor. Let @ € D. By Lemma 3.4, for each n > 0 there exists f,(z) € K, (z) with
£, = 1 satisfying

4o (a)| ‘
V1= lga(a)P

Let g,(w) € K, (w) with ||g,(w)l| = 1. Then f,(2)g.(w) € K,,(2) ® Ky, (w) C N and
I/ (2)g.(w)|| = 1. By the assumption,

(S Xy —anf el <

Ko

IS = @D fu(2)gaWI = ligaWITIS )" = @D f ()l
4en(a)l

<—
VI =len(@)?

as n — co. Hence (SY)* — @l is not invertible, so @ € o-((SY)*) = o«(SY). Thus we get
o(sY) =D. o
Recall that S = PyT,|y and S% = PyT,|y. We have K, (z) ® K,,(w) C N for

every —oo < n < co. By (@3) and (a6) and by applying Lemma 3.5 we obtain the
following corollary, which is proved by Yang [24, Theorem 4.3].

-0

COROLLARY 3.6. O'(Sév) =0(S ﬁ) =D.

Proor oF Tueorem 3.2. Recall that oo(M) = o.(SY) N oo (S). Since we are working
on N, we write S, and §,,, for short. It is sufficient to prove that o.(S,) = D.
Let Z(¢,) ={z€D: ¢,(2) =0}). By (al), Z(¢,) C Z(px) for —co < k <n < co and
Unz_eo Z(¢y) is at most a countable set. Let A € D. We shall show that 2 € o(S ;).
We study two cases separately.

Case 1. Suppose that A € | J;~_., Z(¢,). Then there is an integer ng such that ¢,(1) =0

for every —oo < n < ng. We write

-4
- Az
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For each n < ny, there is an inner function o7, (z) satisfying ¢,(z) = ba(z)ox(z). Then
ou(2)/(1 = Az) € K, (2). Let

on(2)
1 -2z

fn = Yn- I(W)T é‘:n 1(w).

We have f, € N and
(2= Dfn = n@Yn-1WT 3 En-1(W) € M.

Hence
{fu: —c0o <n<ng} Cker(S, — AUy).

Since f,, L f; for k < n < ng, ker(S,; — Aly) = oo. Hence A € o.(S ;).

Case 2. Suppose that 1 ¢ |, _., Z(p,). Let g e ker(S; — Aly)*. Then (S, — AUp)"g =0,
so g L (z— A)H?. Hence there is h(w) € H2(w) such that g = A(w)/(1 — Az). Since
8EN, & L @n1(@Yn(W)Kg,(w) for every —co <n < oco. Since @,41(A) #0, h(w) L
U (W)Ke, (w). By condition (a6),

Y H(w) = ED) Yn(w)Ke, (w)
n=k

for every —oo < k < co. Hence h(w) L ¢ (w)H?(w). By condition (a5),

[

Hw) = \/ g H (w),
k=—o00
so h(w) L H*(w). This shows that #(w) = 0 and g = 0. Thus we get ker(S, — Ay)*
={0}.
Next, we shall show that ker(S, — Alxy) = {0}. Let f € N and (S, — Aly)f = 0. For

each integer j, let

M KP w
Then M; is an invariant subspace and N; = H>o M -

yMoand N; =T, \N.

YnW)

M; = \/%+1(Z)w( )

Nij
Hence ¢;1(S;7) =0
Set Nj,l = l/lj(W)Nj. Then Nj,l CN. Let Nj’z =No Nj‘]. We have SzNj,l C Njﬂ]
and S N> € Nj2. Hence S Py, = Py, S;. It is not difficult to show that S|y, is

unitarily equivalent to S, N , that is, Tl’/j o) Sin, =S év'/' T.Zj(w)l N, - Hence
(S zln;,) = o (S M) € Z(gj1) U D.
Since @j+1(A) # 0, 1 € 0(S;|n;,). Since (S, — AUpn)f =0,
0="Pn,(S:=AUN)f =Sy, — Un, PN, ]
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Hence Py, f =0, so f L Nj; for every —oco < j < co. We have N;; C Ny fork < j
and N = v;‘;_m N;i1. Therefore f L N. Since f € N, f = 0. Thus ker(S ; — Aly) = {0}.

To show that A € 0.(S;), suppose that 4 ¢ o.(S ;). Then S, — Alx has closed range.
Since ker(S; — Aly) = ker(S, — AUp)* ={0}, 1 € 0(S,). This contradicts the fact given

in Corollary 3.6. Hence 4 € 0(S ;).

By Cases 1 and 2, D Cc 0(S ;) C D. To show that (S, = D, let 1 € 4D satisfy
A¢ o.(S;). Then S, — Aly has closed range. Let g € N satisfy (S, — Alpn)"g = 0.
Then g L (z — A)H?, so g L H*>. Hence g =0 and ker(S. — Ay)* ={0}). Let he N
satisfy S h = Ah. Then ||S 4|l = ||4]|. Hence zh € N and (z — A)h = 0. This shows that
h =0 and ker(S, — Aly) = {0}. Therefore A ¢ o°(S;). This also contradicts the fact
given in Corollary 3.6. Thus we get o7+(S,) = D. o

As mentioned in the introduction, if M is a unitarily equivalent to an invariant
subspace M, such that o.(M;) # D, then M is Hilbert—-Schmidt. We shall show the
following theorem.

Tueorem 3.7. Let My be an invariant subspace of H? which is unitarily equivalent to
M. Then o.(M;) = D.

To prove Theorem 3.7, we first show the following lemma.

Levma 3.8. Let M be an invariant subspace of H? and n be an inner function on D?.
If o.(M) =D, then o.(nM) = D.

Proor. Let N = H2© M, M; = nM and N, = H? 6 M,. To show that o.(M;) = D, we
suppose the contrary. We may assume that there is 4 € D such that 4 ¢ o (S iv‘) (see
the proof of Theorem 3.2). Then S?’ ' — Aly, has closed range and dim ker(S év "= Aly,)
< o0,

First, we shall show that dimker(SY — Aly) < co. Since 7 is inner,
nH? =n(M & N) = M, @3N c H>.

Then nN C Ny and T,|y : N — 1N is a unitary operator. Let f € N and write zf =
fi®fre M&N. ThenSYf = f, and T,,SY f = nf>. Since znf = nfi ®nf € My 1N,
ST, f=nf=T,SNf. Hence SM'T, = T,SY on N, so

(S?h_/UNl)Tnz n(S?I—/UN) onN.

Therefore
dimker(SY — Aly) < dimker(SM — Aly,) < 0.

Next, we shall show that S?’ — Aly has closed range. Since SQV ' — Aly, has closed
range, there exists 6 > 0 such that d||g|| < ||(S2V‘ — Aly,)gl| forevery g € N, © ker(SéV‘ -
Aly,). Since dim ker(SY" — Aly,) < oo,

dim P,y ker(SY' — Aly,) < oo.
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Let E be a closed subspace of N such that
Pyvker(SY — Aly,) = nE.

Then dimE < co and yN = p(N © E)®nE. Let f e NOE and h € ker(SY" — Aly,).
Thennf L M, P,yh = no for some o € E and

mf,hy = mf, Pywhy = nf,noy = (f, o) = 0.

Hence
n(NeE)c H* e (M; +ker(SM — Aly)).

Therefore n(N © E) C Ny © ker(S™' — Al,) and

S\l = SlnfIl < SN = Ay mfll, feNeOE.
Thus we get

SIAI<NIT,(SY = ANSI =S = AN fll, feNOSE.

This shows that (SéV — Ay)(N© E)is closed. Since dim E < oo, (SQ’ — AIy)N is closed.
By the last paragraph, A ¢ o.(S ?’ ), so A ¢ o.(M). This contradicts the assumption.

Thus we get D C o.(M7) and o.(M;) = D. O

Proor oF THEOREM 3.7. By [1], there is a unimodular function # on dD X D such that
M; = uM. We write H? = H*(z) ® L*(w), where L*(w) is the w-variable Lebesgue
space on dD. Since ¢,+1 ()Y, (w) € M,

UPni1 (DYn(w) € My C H?c I’]Z2

Hence up,1(z) € sz for every —co < n < co. We have ¢,,41(z) = ¢4+1(0) + 277 0,11(2).
Then 1 = |©u1(0)* + 1T @nr1(IIP. By (@2), T @ns1(2)ll = 0 as n — co.
T Pn41(2) = Pui1(2) = Pn+1(0) = @n41(2) = 1 + 1 = 9441(0),

SO
T ne1 @I = 11277 nse1 @I = llns1(2) = LI = 1 = @ns1 (O)].

By (@2), again, |l¢,+1(z) — 1| = 0 as n — co. Hence u € H2. Similarly, u € H2. Then
ue sz N H? = H?. Therefore u is an inner function. By Theorem 3.2, o.(M) = D. By
Lemma 3.8, o.(M;) = o-(uM) = D. O

Let M be an invariant subspace of H>. Let
Q=QM)=Mo (M +wM)

and
Moy=zM+wM =M o Q.

Then M is an invariant subspace, zQ € My and wQ C M. We write N = H*> © M and
No = H> © My. Then Ny = N ® Q. In the last part of this paper, we shall show the
following theorem.
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THEOREM 3.9.

(i) My is Hilbert—Schmidt.

(ii) Let My be an invariant subspace of H*. If My is unitarily equivalent to My, then
o(M;) =D.

(iii) My is splitting if and only if ©,(0)W,,(0) = 0 for some —c0 < n < oo.

To prove this theorem, we need two lemmas.
Lemma 3.10. (S?' —AIy)N=NnN (SéVO — Aly,)Ny for every A € D\ {0}.
Proor. Let he NN (SévO — Aly,)Ng. Then there is f; & f, € N ® Q such that 1 =
S - ALy)(fi @ o).
h=(SY - Aly)fi - Af2
=Y~ Uy fi + PaSNfi — 2fs
=Y - Aly)fi because he N € (S — Ay)N.
Hence N N (S2° — Aly,)No € (S — AIy)N.
LetgieNand 1 e D\ {0}. Set & = PQSQ/“gl//l.
SN = Aly)g1 = (SY - AUy)g + PaSog — PaSiog
=(SM - A8 - 282
= (SN - Ay (g1 ® 22).
Since g1 ® g2 € No, we get (S — AUy)N € N N (S — Aly,)Np. o
Levma 3.11. If oo(M) = D and dim Q < oo, then o.(My) = D.

Proor. Suppose that o.(My) # D. We may assume that o (S Q’“) # D. Then there is
A € D such that dimker(S Q’O — Aly,) < oo and § Q’O — Aly, has closed range (see the
proof of Theorem 3.2).
Since
(SN — Ay ker(SY — Aly) c Q
and dim Q < oo, there are fi, ..., f, € ker(SY — Aly) such that
ker(SY —AIy)©(C- fi +---+ C- f,) Cker(SY - Aly,).

Since dimker(S2 — Aly,) < oo, dimker(SY — Aly) < co.

Suppose that 1 # 0. By Lemma 3.10, SQ’ — Aly has closed range. Hence A ¢ O'C(SQ’),
so A ¢ o.(M). This contradicts that o.(M) = D.

Next, suppose that A = 0. Then SX°Nj is closed. Since SY°Ny = SN, SMN is
closed. Since dim Q < oo, there are g1,...,gu, € SQV“N such that

SMNe(C g+ +C-g,)=NnSKN.

Hence
SNN =PySMYN=(NNSYN)+Py(C-gi +--+C-gp),
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so S Q’N is closed. Therefore 0 ¢ o.(S Q’), so 0 ¢ o.(M). This contradicts that

o.(M) =D. Thus we get the assertion. O

Now we shall study M given in (3.1) and M,. By Corollary 3.1, M is Hilbert—
Schmidt, zM + wM is closed and dim (M & (zM + wM)) < co. We note that M, =
M+ wM, QM) = Mo My and Ny = N & QM).

Proor oF THEOREM 3.9. (i) We have My € M and dim (M 6 Mp) = dim Q(M) < co.
Since M is Hilbert—Schmidt, it is not difficult to see that M, is Hilbert—Schmidt.

(ii) By Theorem 3.2 and Lemma 3.11, o.(My) = D. By [1], there is a unimodular
function u on dD X dD such that M; = uM,. Since My = zZM + wM, zuM C uMy =
M, C H?. By the proof of Theorem 3.7, zu is inner. Similarly, wu is inner. Then one
easily sees that i is inner. By Lemma 3.8, o.(M) = o.(uMy) = D.

(iii) Suppose that ¥,(0) = 0 for some —co < n < co. We shall show that M, is
splitting. By (a5), there is an integer ng such that

WUny+1(0) =0 and ¥, (0) #0. (3.2)
Since M is splitting for ¢,,+1(z) and ¥, (w) is the associated inner function of
§0n0+1(z)’
M= (M0 Qa1 RQH?) & (M N (H? © @1 (2)H?))
and
MO (H? © @nys1(QH?) C a1 WKy, (2) ® H(w). (3.3)
We shall show that
QM) L @nyet (W1 WH. (3.4)

Let f € Q(M). Since f L wM, we may write

= P ena@ua)fa(@) € P eun1 @K, 2).

By (3.2), _ _
é; Crit @WnW) [(2) L Pugi1 @Wngr1 (WH.
Also o
é Guit (@Wn(W) fo(2) € é ens1(DK,, (2) ® HA(W)
- = le () ® HA(w).
Hence

B ert @U@ L g1 @1 W)H?.

n=ny+1

Thus we get (3.4).
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For f € Q(M), we may write
f=1i®fr e M0 @i @QH) & (M0 (H? © 91001 (D)HY)).
By (3.4), fi € pnyr1()H*(2) ® Ky, ,, (w) and, by (3.3),
fr € Y1t W)Ky, (D) ® HA(W).
Then it is not difficult to show that fi, f; € Q(M). Hence
QM) = (QM) N @1 (RH?) & (M) N (H? © @41 (JH?)).
Thus we get
Mo = Mo QM)
= (Mo N @nyr1 QH?) @ (Mo N (H? © @py41 (JH?)).

This shows that My is splitting.

Similarly, if ¢,(0) =0 for some —co < n < oo, then we may prove that M is
splitting.

To show the converse assertion, suppose that ¢,(0) # 0 and ,(0) # 0 for every
—oco < n < oo. By [19, pages 532-533], Q(M) = C - Pp(1. By (a7), one can easily

check that
PMl = @ QO,H](O)I,//,,(O)QD,,H(Z)ll/n(W)(l - é’n(o)gn(z))
= EB n1 (O (0)@ni1 (Y (WY1 = £,(0)5,(W)). (3.5)

To prove that M is not splitting, we assume that M, is splitting. We may assume that
M is splitting for ¢(z). Let y(w) be the associated inner function of ¢(z) for My. We
have K, (2) ® Ky, (w) L M, so K, (2) ® Ky, (w) L (2 (w)H? for every —co < n < co.
Hence either T;¢,(2) L @(2)H?(z) or Ty, (w) L y(w)H?*(w). This shows that either
©(2)/n(z) € H*(2) or r(w) [ (w) € H*(W). By (ab), (W) /v, (w) ¢ H*(w) for a large n,
$0 ¢(2)/¢n(2) € H*(z) for a large n. By (a3), ¢(z)/¢.(z) ¢ H*(z) for a sufficiently small
n. Then there is an integer ng such that ¢(z)/@,,+1(z) € H 2(z) and ¢(z)/ On,(2) ¢ H%(2).
We have y(w)/,,(w) € H?(w). Hence
P@QYWH? C @yt (D)W, (W H?.
Since y(w) is the associated inner function of ¢(z) for My, K,(2) ® Ky(w) L My, so
K.(2) ® Ky(w) C Np. Let
0(2) = @)/ pny+1(2) and - (W) = Y(W)/ P, (W).

Then ¢,,+1(2) K (2) C Kp(2), Y, (WK, (W) C Ky(w) and

o+ 1(DWYny (WK (2) @ Kyy(w)

C (Kp(2) ® Ky(W)) N gt (i, (W) H?

C No N @1 @ny (W) H?

CNoNM=QM)=C-Ppl.
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If K,(z) ® K,(w) # {0}, then
‘pﬂ0+1(z)wno(w)Ka(Z) ® Kn(W) =C-Pyuyl

and this contradicts (3.5). Thus K;(z) ® K,,(w) = {0}. Hence we may assume that either
©(2) = Puy+1(2) or Y(w) =y, (w). Suppose that ¢(z) = @,,+1(2). Since My is splitting
fOr ‘pn0+1(z)’

Mo = (Mo 0 @u1(H?) & (Mo N (H © @1 (2)HY)). (3.6)
Let

S = Onor2@QWng1 WA = £1541(0)4 00 41(2))
® CPny+1 (Z)l//no(w)(l - gno (O)gng (Z))

for some ¢ € C. Then f € M. We may take ¢ € C such that (f, Pyp41) = 0. Since
M=My®C-Ppl, f e M. By (3.6),

1 1= Ons 2@Vt WL = £y+1(0)041(2)) € Mo
iy Prm1) = @ngs2(000 41 (0)(1 = £y +1(0)?) # 0.

This shows f; ¢ My and this is a contradiction.
Suppose that y(w) = i, (w). Since

(Mo N @ry11(VH?) © @1 (2, (W) H? # {0},

M, is splitting for y,,(w) (see above Theorem 2.2). In the same way as the last
paragraph, we have a contradiction. As a result, M is not splitting. O

CoroLLARY 3.12. The splittingness is not stable under the finite dimensional
perturbations.

Acknowledgement

The authors would like to thank the referee for various comments on the original
manuscript.

References

[1] O. Agrawal, D. Clark and R. Douglas, ‘Invariant subspaces in the polydisk’, Pacific J. Math. 121
(1986), 1-11.

[2] H. Bercovici, ‘Operator theory and arithmetic in H*’, in: Mathematical Surveys and Monographs,
Vol. 26 (American Mathematical Society, Providence, RI, 1988).

[3] X. Chen and K. Guo, Analytic Hilbert Modules (Chapman & Hall/CRC, Boca Raton, FL, 2003).

[4] R. Douglas and R. Yang, ‘Operator theory in the Hardy space over the bidisk I, Integral Equ.
Operator Theory 38 (2000), 207-221.

[5]1 K. Guo and R. Yang, ‘The core function of submodules over the bidisk’, Indiana Univ. Math. J.
53 (2004), 205-222.

[6] K. Hoftman, Banach Spaces of Analytic Functions (Prentice Hall, Englewood Cliffs, NJ, 1962).

https://doi.org/10.1017/51446788716000203 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788716000203

[19]

[7]

[8]

[9]
(10]
(11]
[12]
(13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]

(21]
(22]

[23]
[24]

Splitting invariant subspaces 223

K. J. Izuchi and K. H. Izuchi, ‘Rank-one commutators on invariant subspaces of the Hardy space
on the bidisk’, J. Operator Theory 60 (2008), 239-251.

K. J. Izuchi, K. H. Izuchi and Y. Izuchi, ‘Blaschke products and the rank of backward shift invariant
subspaces over the bidisk’, J. Funct. Anal. 261 (2011), 1457-1468.

K. J. Tzuchi, K. H. Izuchi and Y. Izuchi, ‘Ranks of invariant subspaces of the Hardy space over the
bidisk’, J. reine angew. Math. 659 (2011), 67-100.

K. J. Izuchi, K. H. Izuchi and Y. Izuchi, ‘Ranks of backward shift invariant subspaces of the Hardy
space over the bidisk’, Math. Z. 274 (2013), 885-903.

K. J. Izuchi, T. Nakazi and M. Seto, ‘Backward shift invariant subspaces in the bidisc II’,
J. Operator Theory 51 (2004), 361-375.

V. Mandreckar, ‘The validity of Beurling theorems in polydiscs’, Proc. Amer. Math. Soc. 103
(1988), 145-148.

N. Nikol’skil, Treatise on the Shift Operator (Springer, New York, 1986).

W. Rudin, Function Theory in Polydiscs (Benjamin, New York, 1969).

M. Seto, ‘Infinite sequences of inner functions and submodules in H*(D?)’, J. Operator Theory 61
(2009), 75-86.

M. Seto and R. Yang, ‘Inner sequence based invariant subspaces in H>(D?)’, Proc. Amer. Math.
Soc. 135 (2007), 2519-2526.

B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space (North Holland,
Amsterdam, 1970).

R. Yang, ‘The Berger—-Shaw theorem in the Hardy module over the bidisk’, J. Operator Theory 42
(1999), 379-404.

R. Yang, ‘Operator theory in the Hardy space over the bidisk (III)’, J. Funct. Anal. 186 (2001),
521-545.

R. Yang, ‘Beurling’s phenomenon in two variables’, Integral Equ. Operator Theory 48 (2004),
411-423.

R. Yang, ‘The core operator and congruent submodules’, J. Funct. Anal. 228 (2005), 469—489.

R. Yang, ‘Hilbert—Schmidt submodules and issues of unitary equivalence’, J. Operator Theory 53
(2005), 169-184.

R. Yang, ‘On two variable Jordan block II’, Integral Equ. Operator Theory 56 (2006), 431-449.
Y. Yang, ‘Two inner sequences based invariant subspaces in H>(D?)’, Integral Equ. Operator
Theory 77 (2013), 279-290.

KEI JI IZUCHI, Department of Mathematics, Niigata University,
Niigata 950-2181, Japan
e-mail: izuchi@m.sc.niigata-u.ac.jp

KOU HEI IZUCHI, Department of Mathematics, Faculty of Education,
Yamaguchi University, Yamaguchi 753-8511, Japan
e-mail: izuchi@yamaguchi-u.ac.jp

YUKO IZUCHI, Aoyama-shinmachi 18-6-301, Nishi-ku,
Niigata 950-2006, Japan
e-mail: yfd10198 @nifty.com

https://doi.org/10.1017/51446788716000203 Published online by Cambridge University Press


mailto:izuchi@m.sc.niigata-u.ac.jp
mailto:izuchi@yamaguchi-u.ac.jp
mailto:yfd10198@nifty.com
https://doi.org/10.1017/S1446788716000203

	Introduction
	Splitting invariant subspaces
	Rudin-type invariant subspaces
	References

