A REMARK ON A RESULT OF MARVIN MARCUS

A. L. Dulmage and N. S. Mendelsohn*

(received September 24, 1962)

Marcus [2] has proved the following theorem.

Suppose A is a non-negative normal matrix satisfying p(A) = 0 in which $p(\lambda)$ is a monic polynomial no two of whose non-zero roots have the same modulus. Then there exists a permutation matrix P such that PAP^* is a direct sum, $PAP^* = A_1 \bigoplus A_2 \bigoplus \dots \bigoplus A_m$, in which each A_i is either O or primitive.

This note gives a generalisation of this result, dropping the non-negative assumption and weakening the normality assumption.

Remark 1. If A is an n by n matrix whose elements are real and if AA^{T} and $A^{T}A$ have the same diagonal elements then there exists a permutation matrix P such that $P^{-1}AP =$ diag (A_1, A_2, \ldots, A_m) in which the A_i are irreducible.

Proof: There exists a permutation matrix P such that

	A 11	0	0
	A_21	A ₂₂	0
$P^{-1}AP =$			
	A m1		Amm

* This research was supported by the United States Air Force Office of Scientific Research.

Canad. Math. Bull. vol. 6, no. 1, January 1963.

where $A_{11}, A_{22}, \ldots, A_{mm}$ are irreducible.

Let A_{11} be a t by t matrix. Since AA^{T} and $A^{T}A$ have the same diagonal elements it follows that the sum of the squares of the elements in row i of A is equal to the sum of the squares of the elements in column i of A, for i = 1, 2, ..., n. The same is true of $P^{-1}AP$. Also, the sum of the squares of the elements in the first t rows of $P^{-1}AP$ is equal to the sum of the squares of the elements of A_{11} which in turn is equal to the sum of the squares of the elements of the first t columns of $P^{-1}AP$. It follows that $A_{21}, A_{31}, ..., A_{n1}$ have all their elements equal to 0.

Similar remarks relative to A_{22} show that A_{32} , A_{42} , ..., A_{m2} have all their entries equal to 0. Repeating the argument we have $A_{uv} = 0$ for $u \neq v$. Put $A_i = A_{ii}$ and Remark 1 is proved.

The directed graph D_A of an n-square matrix A is defined as follows. It has vertex set (1, 2, ..., n), and the ordered pair (i, j) is an edge of D_A if and only if $A_{ij} \neq 0$. A directed graph D with vertex set V is cyclically k-partite $(k \ge 2)$, if and only if V can be partitioned, $V = V_1 + V_2 +$ $\dots + V_k$ such that (i, j) is an edge of D only if $i \in V_1$ and $j \in V_2$, or $i \in V_2$ and $j \in V_3$, or \dots or $i \in V_k$ and $j \in V_1$.

It has been remarked [1] that if D_A is cyclically k-partite then the characteristic polynomial of A has the form $f(\lambda^k)\lambda^p$. Remark 2 and Remark 3 follow from this observation.

Remark 2. If D_A is cyclically k-partite $(k \ge 2)$, then for every non-zero characteristic root λ of A there exist at least k-1 distinct roots which are distinct from λ and have the same modulus as λ . Remark 3. If the minimal polynomial of a matrix A has a root $\lambda \neq 0$ and has no root μ such that $\mu \neq \lambda$ and $|\lambda| = |\mu|$, then there is no integer $k \geq 2$ for which D_A is cyclically k-partite.

Remark 1 and Remark 3 give us the following theorem.

THEOREM 1. Let A be an n by n matrix with real elements such that AA^{T} and $A^{T}A$ have the same diagonal elements. Suppose $p(\lambda)$ is a monic polynomial such that (i) p(A) = 0, and (ii) $p(\lambda)$ has no pair of roots λ and μ with $\lambda \neq \mu$ and $|\lambda| = |\mu|$. Then there exists a permutation matrix P such that $P^{-1}AP = \text{diag}[A_1, A_2, \ldots, A_m]$ in which the matrices A_i are irreducible. Moreover, for each A_i , either every root is zero or there exists no integer $k \geq 2$ such that the directed graph D_{A_i} is cyclically k-partite.

In the result of Marcus [2] the assumption that A is nonnegative implies that an A_i which is not zero has a non-zero characteristic root λ and thus the first alternative that every root of A_i should be zero is not possible. If A_i is imprimitive then D_A is cyclically d-partite where d is the index of imprimitivity. Thus the second alternative, that there is no $k \ge 2$ such that D_{A_i} is cyclically k-partite, implies that A_i is primitive. Thus Theorem 1 generalizes Marcus' Theorem.

REFERENCES

 A. L. Dulmage and N. S. Mendelsohn "The Characteristic Equation of an Imprimitive Matrix". Submitted to the Journal of S. I. A. M.

 Marvin Marcus "Another Remark on a Result of K. Goldberg". Can. Math. Bull. 6 (1963). p. 7.

Jniversity of Manitoba

13