A REMARK ON A RESULT OF MARVIN MARCUS

A. L. Dulmage and N. S. Mendelsohn*

(received September 24, 1962)

Marcus [2] has proved the following theorem.

Suppose A is a non-negative normal matrix satisfying $\mathrm{p}(\mathrm{A})=0$ in which $\mathrm{p}(\lambda)$ is a monic polynomial no two of whose non-zero roots have the same modulus. Then there exists a permutation matrix P such that $P A P^{*}$ is a direct sum, $\operatorname{PAP}^{*}=A_{1} \oplus \mathrm{~A}_{2} \oplus \ldots \oplus \mathrm{~A}_{\mathrm{m}}$, in which each A_{i} is either O or primitive.

This note gives a gene ralisation of this result, dropping the non-negative assumption and weakening the normality assumption.

Remark 1. If A is an n by n matrix whose elements are real and if $A A^{T}$ and $A^{T} A$ have the same diagonal elements then there exists a permatation matrix P such that $P^{-1} A P=$ $\operatorname{diag}\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ in which the A_{i} are irreducible.

Proof: There exists a permutation matrix P such that

$$
P^{-1} A P=\left[\begin{array}{cccc}
A_{11} & 0 & \cdots & 0 \\
A_{21} & A_{22} & \cdots & 0 \\
\cdot & \cdot & & \cdot \\
A_{m 1} & & & A_{\mathrm{mm}}
\end{array}\right]
$$

[^0]Canad. Math. Bull. vol. 6, no. 1, January 1963.
where $A_{11}, A_{22}, \ldots, A_{m m}$ are irreducible.
Let A_{11} be a t by t matrix. Since $A A^{T}$ and $A^{T} A$ have the same diagonal elements it follows that the sum of the squares of the elements in row i of A is equal to the sum of the squares of the elements in column i of A, for $i=1,2, \ldots, n$. The same is true of $P^{-1} A P$. Also, the sum of the squares of the elements in the first t rows of $P^{-1} A P$ is equal to the sum of the squares of the elements of A_{11} which in turn is equal to the sum of the squares of the elements of the first t columns of $P^{-1} A P$. It follows that A_{21}, A_{31}, $\ldots, A_{m 1}$ have all their elements equal to 0.

Similar remarks relative to A_{22} show that $\mathrm{A}_{32}, \mathrm{~A}_{42}$, $\ldots, A_{m 2}$ have all their entries equal to 0 . Repeating the argument we have $A_{u v}=0$ for $u \neq v$. Put $A_{i}=A_{i i}$ and Remark 1 is proved.

The directed graph D_{A} of an n-square matrix A is defined as follows. It has vertex set (1, 2, ..., n), and the ordered pair (i, j) is an edge of D_{A} if and only if $A_{i j} \neq 0$. A directed graph D with vertex set V is cyclically k-partite $(k \geq 2)$, if and only if V can be partitioned, $V=V_{1}+V_{2}+$ $\ldots+V_{k}$ such that (i, j) is an edge of D only if $i \in V_{1}$ and $j \in V_{2}$, or $i \in V_{2}$ and $j \in V_{3}$, or \ldots or $i \in V_{k}$ and $j \in V_{1}$.

It has been remarked [1] that if D_{A} is cyclically k-partite then the characteristic polynomial of A has the form $f\left(\lambda^{k}\right) \lambda^{p}$. Remark 2 and Remark 3 follow from this observation.

Remark 2. If D_{A} is cyclically k-partite $(k \geq 2)$, then for every non-zero characteristic root λ of A there exist at least k-1 distinct roots which are distinct from λ and have the same modulus as λ.

Remark 3. If the minimal polynomial of a matrix A has a root $\lambda \neq 0$ and has no root μ such that $\mu \neq \lambda$ and $|\lambda|=|\mu|$, then there is no integer $k \geq 2$ for which D_{A} is cyclically k -partite.

Remark 1 and Remark 3 give us the following theorem.

THEOREM 1. Let A be an n by n matrix with real elements such that $A A^{T}$ and $A^{T} A$ have the same diagonal elements. Suppose $p(\lambda)$ is a monic polynomial such that (i) $\mathrm{p}(\mathrm{A})=0$, and (ii) $\mathrm{p}(\lambda)$ has no pair of roots λ and μ with $\lambda \neq \mu$ and $|\lambda|=|\mu|$. Then there exists a permutation matrix P such that $P^{-1} A P=\operatorname{diag}\left[A_{1}, A_{2}, \ldots, A_{m}\right]$ in which the matrices A_{i} are irreducible. Moreover, for each A_{i}, either every root is zero or there exists no integer $k \geq 2$ such that the directed graph $\mathrm{D}_{\mathrm{A}_{\mathrm{i}}}$ is cyclically k-partite.

In the result of Marcus [2] the assumption that A is nonnegative implies that an A_{i} which is not zero has a non-zero characteristic root λ and thus the first alternative that every root of A_{i} should be zero is not possible. If A_{i} is imprimitive then D_{A} is cyclically d-partite where d is the index of imprimitivity. Thus the second alternative, that the re is no $k \geq 2$ such that $D_{A_{i}}$ is cyclically k-partite, implies that A_{i} is primitive. Thus Theorem 1 generalizes Marcus' Theorem.

REFERENCES

1. A. L. Dulmage and N.S. Mendelsohn "The Cha racteristic Equation of an Imprimitive Matrix". Submitted to the Journal of S. I. A. M.
?. Marvin Marcus "Another Remark on a Result of K. Goldberg". Can. Math. Bull. 6 (1963). p. 7.

Jniversity of Manitoba

[^0]: * This research was supported by the United States Air Force Office of Scientific Research.

