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Abstract

We present our experience in implementing a group communication toolkit in Objective

Caml, a dialect of the ML family of programming languages. We compare the toolkit both

quantitatively and qualitatively to a predecessor toolkit which was implemented in C. Our

experience shows that using the high-level abstraction features of ML gives substantial

advantages. Some of these features, such as automatic memory management and message

marshalling, allowed us to concentrate on those pieces of the implementation which required

careful attention in order to achieve good performance. We conclude with a set of suggested

changes to ML implementations.

Capsule Review

This paper reports on the author’s experience in implementing Ensemble, a network group

communication system. The experience is especially interesting because (a) the communication

system is ‘serious’ in the sense that it supports several real-world applications and is an

improvement of a previous commercial-grade system, (b) it is written almost entirely in Ocaml,

leading to dramatic reductions in code complexity (and improvements in the programmer’s

quality of life!) and (c) despite the fact that it was written in Ocaml, Ensemble performs

significantly better than the earlier C-based version. The paper describes what was good

and what was bad about using Ocaml for systems-level programming, and in the case of

the bad, the methods by which the problems were overcome. Certainly, many ML (and

typed functional programming) researchers will find the experience to be informative and

inspirational; and perhaps a few systems researchers might become a bit more open-minded

about ML.

1 Introduction

This paper presents our experiences building a group communication system in a

dialect of the ML programming language. We believe our experiences are interesting

for several reasons. First, the system is the third generation of its kind built by

our research group. The previous systems were developed in the C programming

language; we draw comparisons between three similar efforts, the last two of which

primarily differ in the use of ML rather than C. Second, all of these systems were

ã This work was completed while the author was at the Cornell University Computer Science Department.
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multi-year development efforts and are big enough to be able to test their languages’

(in particular, ML’s) ability to support systems ‘in the large’. Third, we also address

questions regarding the usability of ML for systems style programs. Finally, the

change to a new language was motivated by demonstrable advantages, including

performance, of an implementation in ML over that of one in C.

The impact of ML on our work forms the thread of this paper. The questions

addressed include: how much (and in what ways) did the use of ML help or hinder?

Also, what could be added to ML implementations to better support systems work?

For instance, do they need support for direct access to low-level data types such as

untagged word arrays or data structures defined in C? These questions are briefly

addressed below and then in more detail in the remainder of the paper.

1.1 Background

Since 1985, the distributed systems research group at Cornell has developed three

generations of group communication toolkits. The first, ISIS (Birman and van

Renesse, 1994), was a pioneering group communication system that eventually grew

into a successful commercial product. The second generation, Horus (van Renesse

et al., 1996), was a reimplementation of ISIS based on a more flexible architecture

with dynamically configurable protocol layers. Both ISIS and Horus were written in

C. Ensemble, the third generation, is a reimplementation of Horus in ML. All three

systems are similar in that they support the same basic process group communication

model, but all have important differences. Architecturally, Ensemble and Horus are

closer than Horus and ISIS. The similarity of Ensemble and Horus is important

because it allows us to draw comparisons between them in order to understand the

impact of the respective programming languages. However, care must be taken in

making comparisons because of the large number of factors involved. This paper

does not present details of the architectures except where necessary in order to

demonstrate the impacts of the relative programming languages.

All three of these systems have been used in a variety of applications. As a com-

mercial product, ISIS appears in many real-world systems in current use, including

several stock exchanges, a major air traffic control system, VLSI fabrication process

planning software, and other significant, critical applications. Horus was introduced

as a more flexible, better structured alternative to ISIS, and might be commercialized

by Stratus (the owner of ISIS). The most recent system, Ensemble, has a number

of applications being used in the Cornell Computer Science department, including

a virtual private network service, a partitionable process management system, and a

distributed audio server. Also, other research groups are actively developing appli-

cations using Ensemble’s C++ interfaces, and some ISIS users are now switching

over to use Ensemble. Given time, we believe that Ensemble will penetrate the same

types of critical environments as did ISIS.

Horus and Ensemble are similar because Ensemble was initially intended as a

reference implementation of Horus for use in prototyping changes to Horus. Their

architectures began diverging only after our research group elected to switch over to

Ensemble entirely. As Ensemble matured, we began to question the need to maintain
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two versions of the system, and eventually Ensemble became the production as well

as reference implementation. The primary cause for this change of thinking was

the realization that a reimplementation in ML could achieve the same or better

performance as Horus in C. This was a surprise to us. The structural changes we

made in Ensemble enabled a sequence of optimizations not possible in the original

Horus system. These optimizations make Ensemble the lowest latency reliable group

communication system currently available. The use of ML facilitated the discovery

and implementation of these optimizations, which are described by Hayden and van

Renesse (1997) and formalized by Kreitz (1997) and Hayden (1998).

The other major factors that led us to adopt Ensemble were related to its cleaner

architecture and increased flexibility. We find that Ensemble better exposes real

structure in the system and that this has repeatedly revealed new approaches for

design improvements, while also making it easier to experiment with these new

approaches. An example of the improvements aided by Ensemble’s architecture is

the decomposition of protocol layers in Ensemble and Horus. Both systems divide

high-level protocols into small, composable protocol layers. In Ensemble, protocol

stacks tend to have nearly twice as many protocols as Horus, with comparable

protocol layers being around an order of magnitude smaller. The decrease in the

size of the protocol layers is very important because the protocols are the most

complex part of the system. Having more layers each of which are much smaller

has meant that there is an increase in modularity and code reuse, and an overall

decrease in code size over the version in C. Both the improved decomposition of the

layers and the decrease in size are important when experimenting with new design

approaches because they provide increased modularity and flexibility.

1.2 Impact of ML

Though our focus is on our work using ML, we believe many of our experiences

would have been similar had we chosen to use another programming language with

similar features such as strong static type checking, automatic marshalling, automatic

memory management, higher-order functions, polymorphism, and exceptions. One

of the major reasons for initially choosing ML was that we wished to investigate

the use of theorem provers for verifying layered protocol architectures. A subset of

ML is straightforward to import into NuPRL (Constable et al. , 1986), a theorem

prover developed at Cornell that we are using for verification, and this led us to

use ML (Kreitz, 1997). In this paper, we do not discuss our work with NuPRL, but

focus on the other effects of ML.

ML constructs and common implementation mechanisms such as exceptions,

garbage collection, and higher-order functions are useful but typically have a cost

to performance in the language implementation. Ensemble extensively uses these

features, but in a restricted fashion. To avoid performance costs, we carefully coded

Ensemble so that the features are only used in ways that are easy to optimize or do

not affect performance.

In the case of memory management, automatic garbage collection was initially

used for all data structures. This greatly improved program development time and
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correctness. However, it later became necessary to introduce explicit management for

payloads of messages because the garbage collector caused memory fragmentation

and high processing overhead. Having implemented several similar previous systems,

we can point out that the need to specially manage message buffers is not particular

to Ensemble. In both Horus and ISIS, careful treatment of message buffers was

crucial to performance, and both systems developed complex, highly optimized

subsystems for managing them. The difference between the three systems is that all

data structures are explicitly managed in Horus and ISIS, whereas in Ensemble only

buffers are.

The use of formal module systems has been suggested as an important reason

for using ML in layered communication systems (Biagioni, 1994). Ensemble uses

modules for separate compilation and this speeds development. However, we do not

make use of module composition (functors) for protocol layer composition because

Ensemble composes protocols at run time. Functors are second class objects in ML

and must be composed at compile time, which is incompatible with the needs of

Ensemble.

1.3 Related work

Related work has been done in the Fox project (Biagioni et al., 1994) which demon-

strated the use of ML for systems programming. They developed a complete TCP

protocol stack in ML1 that interfaces very closely with the network. However, Fox

and Ensemble differ significantly. First, the Fox project implements TCP, which is

a standard protocol, and so is constrained in many ways that Ensemble is not.

For instance, TCP has fixed header formats that Fox TCP must adhere to, whereas

Ensemble is free to set its own header formats and to change them as the system

evolves (this issue is discussed at length in section 5.1). In addition, the Fox design

is deliberately very similar to TCP implementations in C because the developers

wished to show that systems can be built in ML in a fashion similar to C. Ensemble,

on the other hand, was not restricted in this fashion. One result of these differences

was that Ensemble was able to achieve better performance than the implementa-

tion of Horus written in C, whereas the Fox TCP implementation is slower than

implementations of TCP in C.

Other related work has been done with Erlang (Armstrong et al., 1996; Hausman,

1994; Marlow and Wadler, 1997). Erlang, a product of Ericsson, is a functional

language designed to support distributed telephone switching software. A number

of impressive telecommunications products have been built using Erlang and they

have found many of same advantages of using functional languages for distributed

communication that we have. Erlang does not support static type checking, although

there are several efforts underway to add this to the language. The approach with

Erlang was to design a new language with support for distribution, whereas our

approach has been to build libraries in an existing language.

1 Fox uses Standard ML of NJ, whereas the implementation of ML we use is Objective Caml.
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1.4 Contents

The rest of this paper proceeds as follows. Section 2 describes Objective Caml, the

implementation of ML we use. Section 3 gives an overview of group communication

and the architectures of Horus and Ensemble. Section 4 compares the implemen-

tations of Horus and Ensemble. Section 5 describes how messages are represented

in Ensemble. Section 6 addresses issues with message buffers, which we needed to

manage explicitly. Section 7 shows how inlining allows systems style applications to

make extensive use of abstraction barriers with very little cost. We then conclude

with a summary of our lessons and a list of features that we feel are missing from

implementations of ML.

2 Objective Caml

We use the Objective Caml (Ocaml) system (Leroy, 1997) which implements its

own sub-dialect of the CAML (Weis andLeroy, 1993) dialect of ML. Although

this paper attempts to be general, it is important to distinguish between the ML

family of programming languages and the particular implementation that we use.

For instance, Standard ML is a language, Standard ML of NJ and Harlequin ML

Works are implementations, and Ocaml is both a language and an implementation.

The languages and implementations differ widely in number of ways. In this section,

we briefly describe the Ocaml system, some features particular to Ocaml, and our

experiences with it, both positive and negative.

2.1 Portability

The Ocaml system is actually two compilers. The first is a bytecode code compiler

that provides rapid compilation, platform-independent bytecode, and good perfor-

mance. The second is a native code compiler that gives slower compilation but

generates higher-performance code. The compilers are interchangeable and run on a

large number of platforms, including Windows NT, Windows 95, and most variants

of UNIX. Porting Ensemble to new platforms has usually not involved modifying

ML code, but revolved around issues outside of the control of the compiler (such

as incompatibilities in the ‘make’ program). The native code compiler provides very

good performance. It gives efficient support for curried functions and support for

inlining within and across module boundaries. We give a detailed example of the

optimizations in section 7. Other notable features of the system are a large library

of UNIX system calls, support for automated marshalling of data structures, and

features for object-oriented programming (although Ensemble does not use Ocaml’s

object-oriented features).

2.2 Performance considerations

In designing Ensemble, we were careful to restrict the use of certain features that can

hurt performance. As an example, consider higher-order functions. They have the

https://doi.org/10.1017/S0956796899003275 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003275


96 M. Hayden

problem that their use often requires allocation of closures (closures are dynamically

generated function objects). Higher-order functions are used extensively in Ensemble,

but only so that closures are not allocated in the normal case. Two techniques were

used to achieve this. The first was a phased approach where closures are created

when protocol stacks are initialized, but not during their normal execution. This

technique is similar to one described by Biagioni et al. (1994). The second way was

to use higher-order iterators for data structures such as list and array iterators.

These are efficient because inlining of the iterator can eliminate closure allocation.

However, the Ocaml compiler currently does not do this so we currently hand-inline

such iterators for the 20 or so occurrences in the common Ensemble execution paths,

so closures are only created outside common execution paths and do not affect the

performance of Ensemble.

2.3 Memory management

Ocaml supports garbage-collected memory management. Although some ML imple-

mentations are perceived to require large amounts of memory (MacQueen, 1993),

the Ocaml system is known for its efficient use of memory and this has not been a

problem for us. Ocaml uses a generational garbage collector with a stop-and-copy

minor heap and an incremental mark-and-sweep major heap. Our experiences with

the garbage collector have been positive, with two exceptions. The first is that

there is no support for compacting the major heap, which means that long-running

programs never release memory from the major heap. This causes problems with

highly available server applications that run for weeks at a time (and longer)2. The

other exception is that the major heap does not do a good job of managing large

objects and tends to fragment over time. This problem was observed with the mes-

sage buffers that Ensemble uses and eventually caused us to manage them through

explicit reference counting (see section 5.2 for more details). In summary, we found

the Ocaml garbage collector extremely useful for almost all our data structures, but

for some we had to take over and manage them ourselves.

2.4 Interoperability

Ocaml provides support for easily interfacing with C programs. ML programs can

issue cross-language calls to C functions and vice-versa. In both cases, exceptions

are handled correctly across any number of calls into and out of C. ML objects can

incorporate pointers to C objects outside the heap and C code can declare references

to ML objects in the heap. With this support, we implemented a C interface to the

Ensemble system. This required writing a set of C stub routines for calling into

Ocaml code. In addition, at our prodding, the Ocaml implementors added the

capability to generate C libraries from ML programs. This allows Ensemble to be

built as a normal C library and linked with C programs. The Ensemble library can

2 The next version of Ocaml, which has been released since writing this, now supports compaction. This
was also added in part because of the problems we reported.
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then be treated as a black box from C code which does not need to know that ML

was used.

Although it is not difficult to link ML and C programs in this manner, we have

noticed that memory errors in C programs can easily corrupt the ML heap (for

instance by modifying dangling pointers that happen to point into the ML heap),

which then usually causes an entire process to crash. C programs by chance may not

access their own corrupted data structures, but the ML heap is regularly traversed

by the garbage collector, so corruption of the heap is likely to result in a process

failure. From the point of view of a C developer, even though the bugs in such

cases are in the C code, the use of ML makes the entire program more ‘fragile’

and makes tracking down problems in the C portion more difficult. This problem is

compounded by the fact that many C debugging tools (such as Purify) are unable to

handle the ML heap. In the case of Ensemble, we avoid this problem by providing

two versions of the C interface that appear identical to the application. The first, the

‘inboard’ version, includes Ensemble and the ML run-time system in the C process.

This version provides the best performance, but exhibits fragile behavior when the

C program is buggy. With the second, the ‘outboard’ version, the C program and

Ensemble execute in separate processes which communicate via UNIX pipes. This

version is used while debugging applications because it isolates the ML heap from

application errors.

2.5 Debugging and profiling

Until recently, Ocaml did not provide a debugger, which occasionally made debug-

ging difficult. However, we found many of the hardest problems to debug in C, such

as memory errors, are prevented by the ML type checker, and so the impact of a

missing debugger was somewhat reduced. A continuing problem, however, is the

difficulty of profiling memory behavior of Ocaml programs (normal C tools can be

used for standard execution profiling). While predicting the operations that cause

memory allocation is usually easy in Ocaml programs, it is much more difficult to

get a good picture of the overall memory allocation patterns in programs. Other

systems, such as Harlequin’s Standard ML environment (Harlequin, 1996), provide

support for profiling memory usage, so this kind of support is certainly possible.

2.6 Summary

Our experience with Ocaml has been generally positive. It has provided a stable

platform for us, and when there have been bugs in the system, the implementors

have been quick to respond with fixes. Our success with ML is due in no small part

to the excellent job of the Ocaml developers.

3 Group communication and layering protocols

In order to compare Horus and Ensemble, it is useful to give brief overviews of group

communication and their architectures. Group communication is a generalization
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Leave

Broadcast

Join
Group

Fig. 1. Groups support operations for endpoints to join and leave. In addition, processes

broadcast messages to a group.

of point-to-point protocols (such as TCP/IP) from communication among a pair

of endpoints to communication among groups of them. Communication is always

done in the context of groups, and there are operations for endpoints to join groups,

to leave them, to send point-to-point messages to other members, and to broadcast

messages to the entire group (see Figure 1).

Protocols such as TCP are useful largely because of the properties provided to

applications. In the case of TCP, these properties include point-to-point, reliable,

FIFO delivery of messages, flow control, and failure detection. With secure sockets

(Atkinson, 1995), applications also get security properties. Similarly, group commu-

nication protocols provide a variety of properties. In fact, the properties that can

be provided for groups are much richer than for pairs of processes because group-

based applications have more structure. For instance, there are ordering properties

on broadcasts (FIFO, Causal, Total), state transfer, network partitioning detection

and healing, and client-server management. See Table 1 for a list of many of the

properties supported by Ensemble. In addition, there are many different protocols

that satisfy these properties (Birman, 1996).

One of the goals of Ensemble is to provide flexible support for a large collection of

properties. To achieve this goal, Ensemble uses a layered architecture, in which small

protocol layers are composed to create protocol stacks (Hayden and van Renesse,

1997). This architecture is similar to the one developed for Horus. An application

requests a set of high-level properties and Ensemble constructs an appropriate stack

of protocol layers from its growing library of more than 50 protocols. See figure 2 for

the protocol stack generated from the default Ensemble properties. Unlike Horus,

Ensemble determines the order in which to stack layers. Also, an application can

change the desired properties on the fly and Ensemble will automatically switch to

a protocol stack that meets the new demands.

Group communication is often used to build fault-tolerant applications through

a set of properties called virtual synchrony (Birman and Joseph, 1987). Virtual
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Table 1. Some of the properties currently supported by Ensemblea

Property Description

Agree agreed (safe) delivery

Auth authentication

Causal causally ordered broadcast

Cltsvr client-server management

Debug adds debugging layers

Evs extended virtual synchrony

Flow flow control

Frag fragmentation-reassembly

Gmp group membership properties

Heal partition healing

Migrate process migration

Privacy encryption of application data

Rekey support for rekeying the group

Scale scalability

Suspect failure detection

Switch protocol switching

Sync group view synchronization

Total totally ordered broadcast

Xfer state transfer

aThese draw from a large background of research on group communication.

Top
Heal
Switch
Migrate

Inter
Intra
Elect
Merge
Slander
Sync
Suspect
Stable
Appl
Frag
Pt2ptw
Mflow
Pt2pt
Mnak
Bottom

Leave

top-most protocol layer
partition healing
protocol arbitration and switching
process migration
reliable leave
multi-partition view change
single partition view change
leader election
reliable merge protocol
failure suspicion sharing
view change synchronization
failure detector
broadcast stability detection
application representative
fragmentation-reassembly
point-to-point window flow control
multicast flow control
reliable, FIFO point-to-point
multicast NAK protocol
bottom-most protocol

Fig. 2. Sample protocol stack. This is the protocol stack created when using the default

Ensemble properties {Gmp, Sync, Heal, Migrate, Switch, Frag, Suspect, Flow}. Ensemble

provides a facility for translating from abstract properties to concrete protocol stacks.

https://doi.org/10.1017/S0956796899003275 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003275


100 M. Hayden

synchrony guarantees that all members in a group see the same progression of mem-

bership changes or views. When failures are suspected (usually through timeouts),

the remaining members of the group mark the members as faulty and install a new

view that does not contain the suspected failed members. Virtual synchrony also

guarantees that all messages are delivered in the same view in which they were sent,

and all endpoints that see the same two consecutive views deliver the same set of

broadcasts between the views. When used with a totally ordered broadcast protocol

(Ensemble has several such protocols in its library), virtual synchrony can be used

to build fault-tolerant objects through the state-machine approach to replication

(Birman, 1996; Schneider, 1990). Consider a replicated database in which the pro-

cesses of a group form a set of distributed servers. The state is replicated across

all the members in the group, and deterministic updates are disseminated to the

group through total-ordered broadcasts. If all replicas begin in the same state and

receive the same updates in the same order, then they all progress through the same

set of states. Such an approach exploits many of the properties of Ensemble and

substantially simplifies the development of distributed, fault tolerant applications.

4 Comparing C and ML implementations

The similarities of Horus and Ensemble allows us to draw a variety of comparisons

between the systems in order to better understand the impact of ML. We begin

by discussing why it is reasonable to compare the two systems, and then present a

variety of comparisons, from more to less concrete. Throughout these comparisons,

keep in mind that for all their similarities, Ensemble and Horus are different in

many ways. Ensemble supports almost all the functionality that Horus does and

many things Horus does not, but the functionality of Ensemble is still neither a

superset nor a subset of Horus. The design of Ensemble embodies many lessons we

learned from Horus. Were we to rewrite Ensemble in C, we would probably arrive at

a system closer to Ensemble than Horus, even with differences in the programming

languages. Also note that both Horus and Ensemble are highly modular systems and

each have many different configurations. In comparing them, we have attempted to

match comparable configurations where possible.

4.1 Development times

Both Ensemble and Horus were developed primarily by single (though different)

programmers and contributions from the research group were primarily made in the

form of additional protocol layers or interfaces to support additional programming

languages. Horus was actively developed for two years. At the time of writing,

Ensemble has been under development for 1.5 years.

4.2 Language interfaces

Both Ensemble and Horus are intended to be able to fit a variety of interfaces and

to be used from many programming languages, so a consideration in our switching
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to use ML was the question of how accessible the system would be to programs

written in C. As described above in section 2, Ocaml provides adequate support for

interfacing with C. In addition to C, C++, Tcl/Tk, and CORBA (Maffeis, 1995),

which are supported by Horus, Ensemble also supports Smalltalk, Ada, and (of

course) ML.

4.3 Supported platforms

Both Ensemble and Horus seek to be largely platform-independent. Horus is sup-

ported on a variety of UNIX platforms and a smattering of other operating systems

such as Chorus and Mach. Supporting new platforms for Horus requires writing

some low-level system calls to access platform-specific thread and messaging opera-

tions. Ensemble runs on all platforms supported by Ocaml, including practically all

UNIX platforms and Windows 95 and Windows NT. The use of ML has meant for

us that porting issues are largely left to the ML compiler. For instance, there are

some platforms (IBM AIX and Hewlett Packard HPUX) that were too bothersome

to support for Horus that are supported by Ensemble because it is no trouble to do

so.

The Ensemble software distribution includes a pre-compiled ML bytecode library

that can be used on all supported platforms. A user downloading Ensemble on any

platform merely compiles the demonstration programs (or their own programs) and

links with the platform-independent bytecode libraries we provide. The platform-

dependent, native-code libraries are only compiled if bytecode execution provides

insufficient performance. Our common practice is to use bytecode except when

running performance tests or when installing heavily used Ensemble executables.

4.4 Multi-threading

Horus is a heavily threaded system. Every message received from the network causes

a new thread to be created to handle it. In addition, every time a message is

passed up in a protocol stack a new thread is also forked to handle that. However,

optimizations are made so that in many cases the previous thread is recycled instead

of forking an entirely new thread.

The issues related to threads in Ensemble are somewhat more subtle because its

architecture is more flexible than Horus’. Although Ensemble is single threaded,

there are a number of ways to introduce threads to the system. For instance, the

C interface to Ensemble introduces C threads for the application, while Ensemble

executes on in a single thread. In addition, each Ensemble protocol stack can

optionally be configured to use a threaded implementation of the layering model

(similar to Horus’) instead of the default, unthreaded implementation which uses

event queues.

However, one issue that has caused difficulty is that multi-threaded programs that

mix ML and C are not as well supported as single-threaded ones. In the absence

of threads, C code can call into ML code and vice-versa. With threads, these inter-
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language interactions have to be more carefully managed because, in general, C

code cannot call into ML code.

4.5 Sizes of executables

Ensemble and Horus executable binaries are approximately 880K and 400K bytes,

respectively. These numbers are of course dependent on the platform, compiler, and

level of optimization. These are the sizes of the stripped (i.e., without debugging

symbol information) binaries for the default optimization level of the systems on

SPARCStations running Solaris 2.5. From each system we eliminated a number of

modules that provide functionality not present in the other system. For Ensemble,

we give the size of the native code binaries. The bytecode binaries are 700K bytes.

We believe the reason bytecode is not much smaller than native code is that Ocaml

uses a 32-bit bytecodes.

4.6 Memory requirements

Ensemble and Horus have roughly similar memory requirements. At initialization,

Ensemble processes with no protocol stacks use 91K bytes on the ML heap. In a

similar configuration, Horus begins with 73K bytes on its heap. Each group joined

by a process adds 7.8K bytes with Ensemble and 11K bytes with Horus. When

the stacks become active (for a non-intensive application), the heap may grow to

around 0.5M bytes for Ensemble and 1.5M bytes for Horus. The resident set sizes

for these processes (again for a non-intensive application) are around 1.5M bytes

for Ensemble and 2.5M bytes for Horus. We believe the additional space used for

Horus is caused by the use of preallocated thread stacks.

4.7 Performance

Both Ensemble and Horus have very good performance. When transmitting 1K

messages on SPARCstation 20’s, both Ensemble and Horus are easily able to use

the available bandwidth of a 10M bit Ethernet. In order to compare the efficiency of

the common code paths in both systems, a good measurement is the application to

application latency. This measurement is the average time to send and receive one

message using Horus or Ensemble for the default protocol stacks. Note that while

the ‘abstract’ protocols for the two systems are roughly similar (in both cases exactly

one message is sent on the network), the protocol operations and header bytes are

different. The bytes that are sent on the network by the two systems are different.

On SPARCstation 20’s, Ensemble (compiled as native code) achieves a one-way

latency of 595µs and in a similar configuration Horus has 700µs. In this configuration,

the overhead of the network is 355µs, so the latency induced by Horus is 345µs

and that of the Ensemble is 240µs. Garbage collection has a minimal impact on

performance because Ensemble allocates very little memory on the heap in the

normal cases for sending and receiving messages.

We believe the performance increase in Ensemble is primarily due to architectural
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improvements. For instance, Ensemble compresses many of the headers that do not

change between group reconfigurations. Another cause is that Ensemble protocol

stacks are single-threaded by default, whereas Horus stacks are multi-threaded:

profiling of Horus stacks has shown that as much as 20% of the execution time is

spent in synchronization operations.

With the optimizations described by Hayden and van Renesse (1997), the overhead

for Ensemble drops to 41µs and the normal case protocol headers are further

compressed down to 8 bytes. These same optimizations could be applied to Horus

to achieve a similar speedup. However, many of the architectural improvements made

to Ensemble would have to be replicated in Horus first, which would necessitate

extensive rewriting.

4.8 Line counts

Line counts are another useful characteristic for comparison even though compar-

isons of sizes of source code depend a large amount on factors such as the coding

style of the programmers. See Table 2 for a number of different line count compar-

isons. All line counts are raw (comments have not been stripped) and include both

implementation and interface files (i.e., .c and .h files for C, respectively).

• Total lines is the total number of lines in each system, including demonstration

programs. This gives a sense of the overall sizes, but otherwise contains little

information for useful comparison. Ensemble has considerably more demon-

stration programs than Horus. The bulk of the C code listed for Ensemble

is for C and C++ interfaces, associated testing code, and an interface to the

Electra CORBA-based replicated object system (Maffeis, 1995). No C code is

actually needed to run Ensemble because the Ocaml UNIX library provides

stubs for all needed system calls. However, Ensemble comes with its own set

of UNIX stubs that can optionally be used to improve performance. These

stubs amount to about 1000 lines of C code.

• Core lines is an estimate of the size of the core components in a stripped

down system. This is what is needed to get standard configurations of each

system running. Only minimal sets of protocol layers and none of the external

language interfaces are included. For Horus, we only include the machine

dependent code for a standard UNIX system. This measurement gives a more

focussed picture of the code sizes of both systems.

• Protocol lines is the total number of lines of protocol layers. Both systems have

around 55 layers. This measurement is very important because the protocol

layers are the most complex parts of each system, and smaller layers tend to

be easier to develop, debug, comprehend, verify, and maintain. The sizes of

our protocol layers coded in ML are significantly smaller than those coded in

C. This is discussed in more detail below.

• Platform-dependent lines is a count of lines of code used on a subset of the

supported platforms. For Horus, this consists primarily of code for access-

ing system-dependent threads and messaging operations. Ensemble, which is
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Table 2. Comparison of lines of source code in Ensemble and Horus. See text for

explanation.

measurement Ensemble (ML) Horus (C)

total lines 45873 ( + 11000 C) 140000

core lines ≈ 17000 ≈ 35000

protocol lines 10692 79000

average lines per protocol 198 1519

platform-dependent lines 0 27020

Table 3. Size comparisons of comparable Horus and Ensemble protocols.

C-layer ML-layer(s) C-lines ML-lines factor

Frag Frag 900 176 5.1

Problem Suspect 1389 128 10.8

Stable Stable 1639 318 5.2

Credit Credit 2367 435 5.4

Mbrshp Inter:Intra:Leave:Merge:Elect 5134 911 5.6

unthreaded by default, has effectively no such code (there is a little to work

around idiosyncrasies of Windows 95 and NT), whereas Horus has a large

amount. This is significant because platform-dependent code often creates

software maintenance problems.

4.9 Sizes of protocol layers

While the Horus and Ensemble infrastructures have diverged a good deal, they

retain the same basic layered architecture. Many layers or collections of layers have

direct analogues in both systems, thus allowing useful comparison of their number

of lines. In general, the ‘important’ protocol layers in Ensemble are about a factor

of 5 times smaller in lines than those in Horus. See Table 3 for a table of sizes of

source code of comparable layers (or sets of layers) from both systems. Some of the

differences in size can be attributed to differences in the language used, but some also

to an overhaul in Ensemble of the general layering structure in Horus. For instance,

Horus layers interact directly with thread and synchronization operations, whereas

in Ensemble the infrastructure handles synchronization for all layers. If Ensemble

were to be recoded in C, the sizes of the resulting layers would be significantly

smaller than the Horus layers.

This said, we believe that the decrease in code size is also due in part to the use of

ML as a programming language. There are several ways in which the programming
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language has had an impact. The first is that almost all data structures in Ensemble

are managed automatically by ML. The explicit management of memory in Horus

requires a large amount of code. The second is the better set of facilities in ML for

abstraction, which encourages structural changes that result in decreased code size.

Examples of this include the use of polymorphic abstract data types and higher order

functions. The third is the ability to manipulate messages with standard language

facilities such as pattern matching. Most communication systems use a special set of

operators for manipulating messages because the contents must be linearized (mar-

shalled) before transmission. Instead of treating messages as sequences of bytes, En-

semble uses ML data structures for all headers and linearizes them with an automatic

marshalling facility provided by Ocaml. Not surprisingly, raising the abstraction level

for Ensemble’s core data type, messages, leads to significant reductions in code size.

4.10 Bugs

The way we use ML prevents many kinds of bugs from occurring. For instance,

when programmers add fields to the headers of protocol layers in Horus, they

have to go through the protocols looking for all cases where a change needs to be

made. In Ensemble, the headers are normal ML data structures, and this allows the

compiler to detect and signal inconsistencies through its type checker. In addition,

the ML marshaller handles converting headers into byte sequences for transmission

on the network, so incompatibilities in byte ordering and word size are transparent

to protocol layers in Ensemble. A user recently compiled and ran Ensemble on a

machine with a 64-bit word size for the first time we are aware and encountered

no problems. These kinds of problems were a constant concern in Horus. Bugs in

Ensemble are generally bugs in the protocol logic and not memory management or

message formatting errors.

4.11 Evolution

Even though difficult to quantify, an important system characteristic is the ability to

evolve. Both Horus and Ensemble are research systems that were intended in part

to be toolkits to facilitate research in new protocol architectures. Our experience

with Horus was that it did evolve a great deal for some time . However, it became

increasingly difficult to make changes to the system. We believe this is because

Horus became over-engineered generating a web of interdependencies. Often, these

dependencies had to do with details of memory management or other issues that

do not arise in ML programs. Ensemble has continued to evolve, often in dramatic

ways. A detailed description of the evolution of one part is in section 6, but there

are many other similar examples.

5 Messages

As a communication system, Ensemble’s core data structures are messages. Most of

the source code is involved with managing messages; most of the memory allocated
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is for messages; and most of the performance profile is involved in manipulating

messages. Both architecturally and in terms of performance, communication systems

are heavily dependent on the implementation of messages.

At the levels of the network and the application, messages take the form of

flat sequences of bytes. This is because networks only transmit sequences of bytes,

and because we wish to support application programs written in languages such

as C, where messages are typically represented as sequences of bytes. Between the

application and the network, protocols add information to messages in the form

of headers. Headers are added at the sender by each layer and removed at the

destination. For instance, headers are used to attach sequence numbers to messages

in order to implement FIFO ordering protocols.

The approach we have taken in Ensemble is to use a low-level byte representation

for the message payload and to use normal data structures for protocol headers.

Thus, messages have two parts: payload and headers. The payload consists of a

sequence of bytes, but the headers are regular data structures. The use of normal

data structures for headers is an important design feature of Ensemble and a

departure from many previous communication systems. This design means that

the payloads (which most affect performance but which protocols typically do not

access) have an efficient implementation, while the protocol headers (which protocol

layers manipulate a great deal) benefit from extensive language support.

Our approach with header formats takes a somewhat non-standard view of how

to format messages. In contrast with many other systems (Peterson et al., 1993;

Postel, 1981), the formats of headers for individual layers are not defined at the byte

level. In addition, the headers of a stack of protocol layers is not the concatenation

of the headers of the individual layers. Instead, the system is free to format protocol

headers any way so long as all endpoints in a group use the same format. This

gives Ensemble a great amount of flexibility in how headers are represented and in

the methods for optimizing them. But it also raises questions about the drawbacks

of this approach. The main drawback is that there are no simple, static formats

to which programs must adhere with to communicate with an Ensemble processes.

However, this would be difficult to achieve anyway because Ensemble embodies a

more dynamic view of the world than most protocol architectures. Whereas the TCP

protocol and its headers are not expected to change over the lifetime of a process,

the Ensemble protocol stacks that an application uses do change dynamically. At

any time, an application can request a protocol change that results in the process

group switching to an entirely different set of protocols and headers. In addition,

new protocols can be dynamically linked into Ensemble at run time. All of these

forms of dynamicism argue against fixed header formats.

5.1 Protocol headers

Many layered communication systems, such as Horus, view headers as extensions

to the low-level representation of messages. In such systems, messages can be

viewed as a ‘stack’ of bytes and the application and protocols use operations to

push and pop bytes onto and off of messages. This design originated with the
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/* total.c Message Headers */
struct to_header {

uint8_t type;
uint8_t flags;
uint16_t dest;
uint32_t token;

};

enum to_message_type {
TO_TOKEN_REQUEST,
TO_TOKEN,
TO_DATA,
TO_UNORDERED

};

/* Send a message. */
...
msg = horus_message_alloc(to_memory,

"TO_TOKEN_REQUEST");
horus_message_add(msg, 0, sizeof(*hdr),

(void **) &hdr);
hdr->type = TO_TOKEN_REQUEST;
hdr->flags = 0;
hdr->dest = 0;
hdr->token = htonl(group->seqno);
err = horus_cast(group->below, 0, msg);
...

/* Receive a message. */
void handler(event *ev, horus_message *msg) {

enum to_message_type type ;
unsigned seqno ;
...
switch (event.type) {
case HORUS_CAST:

err = horus_message_read_byte(msg,&type) ;
if (!horus_err_ok(err)) ...
switch (type) {

case TO_TOKEN_REQUEST:
err = horus_message_read_nlong(msg,&seqno) ;
if (!horus_err_ok(err)) ...
...
break ;
...

}
...

}
...

}

Fig. 3. Example of pushing and popping headers onto and off of a message in Horus.

X-Kernel (Peterson et al., 1993), although UNIX STREAMS has a similar feature.

There are a variety of reasons for this approach, such as the need to adhere to

strict, standardized header formats and the expectation that low-level operations are

needed to achieve high performance. Unfortunately, such designs have costs. These

include the programming costs for having protocols directly handle byte ordering

and word size incompatibilities between hosts. In addition, the use of low-level

operations typically prevents a variety of high-level optimizations from being made

to headers.
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(* total.ml Message Headers *)
type header =
| TokenRequest of int
| Token of (int * int)
| Data of int
| Unordered

(* Sending a message. *)
...
down (castEv name) (TokenRequest token) ;
...

(* Receiving a message. *)
let up_handler event msg = match (getType event), msg with
| Cast, TokenRequest token ->

...
| Cast, Unordered ->

...
| ...

Fig. 4. Example of headers in Ensemble.

In Ensemble, each protocol layer has a data type for the headers it puts on

messages. A layer pushes a header onto a message by tupling its header with the

headers of the layers above it. At the destination, the headers are unmarshalled from

the messages and passed to the layers. Each layer in turn extracts its header from

a tuple and passes the remaining headers up to the layer above. At the application,

the last header is removed and all that remains is the message body, which is then

passed to the application.

This still leaves the question of how the header object is linearized into a sequence

of bytes at the bottom of the protocol stack so that it can be transmitted over

the network along with the payload. Ensemble uses the Ocaml marshaller for this

purpose. A marshaller is a function that takes a concrete data structure (embedded

functions are not allowed) and linearizes it into a sequence of bytes from which a

corresponding function can reconstruct a copy of the object. Marshallers typically

transparently handle incompatibilities in byte ordering and word size. There are

numerous standard marshalling formats such as XDR and ASN.1 (X.208, 1987).

Ensemble uses the general-purpose marshaller in Ocaml, although it can easily

support other marshallers.

By representing headers as regular data structures, protocols can leverage the

same powerful language features, such as pattern matching and type checking,

that are used for other data structures. This greatly simplifies the construction

of protocols and eliminates a large number of programming errors. Not only

does the programmer not have to handle complications from low-level details

such as incompatible machine byte ordering and word sizes, but compilers can

detect problems such as mismatched header types and cases where not all header

combinations are handled. Using normal data structures gives the protocols a higher

level of abstraction because many implementation details are hidden.

The use of a marshaller has the potential to add significant overheads to message

size and processing which do not exist in an architecture where protocol headers
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are added using low-level operations. When using a marshaller, the headers are first

constructed as data objects and are later linearized. The first step can be eliminated

when writing the headers directly to the message.

However, we use a form of representation analysis to eliminate the use of the

marshaller in the normal cases. The basic idea is to have protocol layers identify their

normal-case headers to Ensemble. Ensemble uses this information to identify normal-

case messages and to bypass the general-purpose marshaller with one that has been

optimized for simple cases. The optimized version effectively eliminates the latency

and message-size overhead of the general-purpose marshaller. This optimization is

transparent to the protocols and requires no modification of the layers other than to

identify their normal case headers during initialization (see Hayden and van Renesse

(1997) for further details). As with automatic garbage collection, marshalling was

useful because it let us focus on just the critical cases by automating the rest.

5.1.1 Special purpose marshallers

Although Ensemble currently uses the Ocaml general-purpose marshaller, we are

experimenting with using special purpose marshallers compiled from type infor-

mation provided by the Ocaml compiler. The normal Ocaml marshaller takes an

arbitrary ML data structure and uses tags in the data representation to marshal it.

A marshaller specialized to the actual data type of a message can achieve a more

compact representation and smaller marshalling/unmarshalling times than the gen-

eral purpose marshaller, but the main benefit is that it would be better able to detect

malformed messages. This is important for security in settings where an intruder

may attempt to crash other processes by sending so-called poison-pill messages that

are designed to violate the typing expectations of the protocols and cause run-time

type errors (which usually crash the process).

5.2 Message payloads

Whereas protocol headers provide many opportunities to make use of features of

ML, the application payload portion of messages raises a series of issues. This is

largely because the nature of message payloads requires that they be represented

as low-level sequences of bytes. One normally thinks of ML as a language best

suited for manipulating high-level objects, and sequences of bytes fall outside of the

domain where many features of ML can help. For instance, sequences of bytes in

the payload often represent some high-level object, but type checkers are usually not

able to capture this structure in useful ways. Thus, the question arises of whether

ML is a good language for doing systems development where low-level objects often

occur and where language support for them is important. Indeed, a major reason

Ensemble benefits from the use of ML is that we have succeeded in abstracting much

of the system at a high enough level that features of ML pay off. It is primarily in

message payloads that Ensemble confronts issues associated with low-level objects.

However, we feel that it is typical of many domains that most of the problem can

be abstracted above low-level issues.
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A message payload implementation must support a variety of operations, includ-

ing allocation, release, subset (creating a new message from a subsequence of the

bytes in another) and catenation. The subset and catenation operations are needed

mostly for fragmentation-reassembly and message packing protocols. For instance,

a fragmentation-reassembly protocol needs to be able to break a large message into

smaller messages that fit the maximum message size supported by the network and

reassemble it at the destination. All these operations should be efficient for messages

of sizes ranging from 0 bytes to at least 10K bytes. They should not cause additional

allocation for the body of the message nor should they copy the contents.

Message payloads in Ensemble are represented as arrays of records called iovecs

(based on the UNIX data structure of this name). An iovec contains a pointer to a

string, an integer offset, and an integer length. The offset specifies where the iovec’s

body begins in the string and the length gives the number of bytes of data. Both the

string and the other fields of the iovec are treated as read-only. Iovecs are exported

to the rest of the system as an opaque, abstract data type. A subset of an iovec is

created by allocating a new iovec record with the same string as the original but

with different offset and length. Catenation is done by catenating arrays of iovecs.

Thus, neither subset nor catenation copy the contents.

Some recent work has focused on introducing support in ML implementations for

low-level data structures such as untagged word arrays (Tarditi et al., 1996). Such

support is justified in part by the claim that it is needed in order to do real low-level

systems work in ML. While this may be true for programs that interface directly with

device drivers (for instance), Ensemble interacts with the network through system

call stubs written in C, and it has not suffered from the absence of untagged word

arrays. It would have been nice to have been able to implement Ensemble entirely

in ML without these stubs, but the addition of less than 1000 lines of simple C code

is a relatively insignificant portion of the system. Our experience with Ensemble has

shown that the string core data type wrapped in iovecs with support from C system

call stubs is sufficient at least for the needs of communication systems development.

This not to say that untagged word arrays would not improve performance and/or

memory usage, only that they are not a prerequisite to doing high-performance

systems work.

6 Buffer management

Although ML strings wrapped with iovec records are sufficient for efficiently manip-

ulating message payloads, a variety of memory management issues arise regarding

how iovec strings are allocated and managed. The exact issues are involved with

details of the Ocaml garbage collector, but the general lesson we learned was that

garbage collectors may not be the best mechanism for managing data structures

with a major impact on performance, such as messages. Some garbage collection

strategies can cause unnecessary copying of data, bad fragmentation of memory, and

slow recovery of memory. In the end, these problems drove us to explicitly manage

message buffers, even though the rest of the system still benefits from automatic

memory management.
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6.1 First implementation

In our initial design, Ensemble allocated a new string prior to receiving a message

from the network. This caused a variety of problems. First, because the length of a

message received from the network is not known in advance, a string of the maximum

transmission length had be allocated. For instance, the recv() system call in the UNIX

BSD socket interface must be passed a buffer with sufficient space to contain the

largest expected message size. This size can be up to 64K bytes, but for a number of

reasons Ensemble typically uses messages of at most 10K bytes. Allocating a 10K

byte block every time a message is received wastes a great deal of memory when the

actual size turns out to be much smaller. In the case of a 100 byte message, 99% of the

10K byte space is wasted from internal fragmentation. Internal fragmentation refers

to unused memory space allocated within an object and can result in a large waste of

memory, as in our case. There are a variety of potential solutions to this problem. One

option is to copy the message out of the buffer into a new string of the appropriate

size. However, this causes a copy for each message, and external fragmentation

(unused space outside of objects) is still a problem because the Ocaml garbage

collector (as with many non-copying collectors) does a poor job of preventing

fragmentation when there are large blocks of varying sizes (Wilson et al., 1995).

6.2 Using large message buffers

Both sorts of fragmentation are avoided in Ensemble by using very large strings

for allocating iovecs. These strings are called segments and are typically 256K bytes

long. Segments are managed by msgbufs, which consist of a current segment and

offset. Allocation from msgbufs is done by creating an iovec record with the msgbuf’s

segment and offset, and the desired length. The offset of the msgbuf is then advanced.

If there is no longer enough space left to allocate the maximum size block from

the msgbuf, a new segment is allocated and the offset is reset to zero. Allocation

and release of iovecs from msgbufs are inexpensive operations. Allocation usually

consists of just advancing the msgbuf offset. Deallocation is done by the garbage

collector once for each segment when there are no more references to a segment.

The use of large segments has the potential drawback that a segment can only be

released after the release of the last message using it. However, practice has found

that this is not a problem as messages tend to have similar expected lifetimes.

The problem that arises with this design is that under even moderate loads much

of the execution time (more than 25%) is used by the garbage collector in order to

recover segments. Because we do a good job of avoiding other allocation, there is very

little dead data to collect other than the (albeit large) segments, so these collections

are inefficient in terms of the number of objects release per collection. The cost is

not from the actual allocation or deallocation operations on the segments (and the

collector does not copy the segments), but from the garbage collector scanning all

live objects in the heap in order to deallocate the relatively small number of free

segments. Ocaml could be configured to wait longer between garbage collections,

but this causes a lot of memory to be wasted. So we changed our approach again.
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6.3 Reference counted management

We decided to add explicit reference counting to buffers. Each segment has an

associated reference count that keeps track of the number of references to the

buffer. When the reference count drops to zero, the segment is returned to a free list

maintained by Ensemble. This form of reference counting is simple to implement

because the objects being managed do not contain references to other objects. It

eliminates our problems with the garbage collector because memory allocated for

message payloads is rapidly recovered without requiring a garbage collection. The

Ocaml garbage collector is only triggered by allocation on its heap, so when the

apparent allocation rate decreases, the rate of garbage collections does also.

The use of reference counting adds some programming cost because protocols

must correctly update the reference counts. We found that this was easy to do

because the reference count operations are only needed when a protocol layer

releases or buffers a message, and these operations are simple to recognize. The

computational overhead of maintaining the reference counts is quite small because

the compiler inlines the reference count operations at the call-site (we describe this

in detail in section 7). In addition, operations for managing the segment free list

are efficient because the cost for each segment is amortized over all of the messages

allocated from it.

The average time to allocate messages is graphed in figure 5 for message sizes

ranging from 4 bytes to 8K . The measurements were taken on a 200 Mhz Intel

Pentium Pro processor and were made by first growing the heap to a typical size for

Ensemble and then allocating and releasing 50000 objects. The x-axis denotes the size

of messages being allocated. The y-axis denotes the average time (in microseconds)

to allocate and release one message. We do not include the time for the system

call to receive the message. Note that both axis have logarithmic scales. The four

lines correspond to: (a) allocating 10K byte strings for every message, (b) using

a fixed 10K byte string to receive the message and then copying into a string

of the correct size, (c) msgbufs without reference counts, and (d) msgbufs with

reference counts. Option (a) is almost uniformly the worst. For 20 byte or smaller

messages, option (b) performs best. For larger sized messages, (c) begins to perform

better than (b) because the cost of copying starts to dominate the cost of garbage

collection. (b) climbs significantly at 1024 bytes because this is the lower threshold

for allocating objects on the major heap (allocation/freeing on the Ocaml major

heap is significantly more expensive than the minor heap). (c) also climbs with

message size because the msgbufs are filled up more rapidly, which in turn increases

the rate of major garbage collections. Option (d), however, is always close to the

others and maintains low latencies throughout the range of message sizes (although

in this test (b) has better performance than (d) for messages of less than 20 bytes,

in the actual use in Ensemble (b) and (d) exhibit equivalent performance for these

message sizes). This is because the garbage collector is rarely being activated.

Reference counts introduce the concern that they can cause both memory faults

and memory leaks due to programmer errors. However, these problems can be

prevented in Ensemble by enabling an option prior to compiling that causes segment
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Fig. 5. Comparison of the performance of management mechanisms used for iovecs. See text

for an explanation.

reference counts to be checked before accessing the segment. This slows execution

somewhat, but prevents memory errors. The opposite problem, memory leakage, can

occur if reference counts are occasionally not decremented to zero, causing segments

to never be released. We addressed this problem by using weak pointers (Hayes,

1992) to detect when the reference count object (which wraps the segment) has no

further references. When an object with non-positive reference count is accessed or

when an object’s reference count is not decremented to zero when the weak pointer

is released, the problem is signaled to the user (and in the latter case the segment is

recovered to prevent a memory leak: see figure 6).

Both ISIS and Horus had similar problems. Messages are no less crucial data

structures there than they are in Ensemble. The use of the system-provided memory

allocation and release operations (malloc() and free(), respectively) were insufficient

for managing messages, and both ISIS and Horus ended up developing their own

sub-systems for managing memory associated with messages. These message sub-

systems involved complex, multi-level, reference-counted data structures with special-

purpose free lists containing preallocated and pre-formatted objects. The result was

that message management was both more complex than in Ensemble and had worse

performance.

In summary, the memory management facilities for Ocaml turned out to be

insufficient for Ensemble and we had to add our own support to the system. It is

important to be careful in how one views this. One could say that this is a failure of

a garbage collected language because the garbage collector was not powerful enough
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Iovec

Length = 432

RBuf

Contents

Count = 10

Buffer Refcount
String Buffer

Actual

WeakPtr

Live Buffers
Buffer Pool

Free Buffers

432

Offset = 10232
Offset 10232

Protcol Layer

Fig. 6. Depiction of the revised iovec structure. A protocol layer is given a pointer to an iovec

record. The iovec contains a pointer to a refcount record. The refcount contains a reference

count and a pointer to the string buffer. The iovec record contains the integer offset and length

of data in the Refcount string. The buffer pool contains a weak reference to the Refcount

record and a pointer to the string buffer.

to handle everything. However, it is a characteristic of systems style work that there

are often a small set of data structures which require very careful management to

achieve high performance. This was the case in Horus and ISIS, and it turns out

that Ensemble is not any different in this respect. Ensemble’s special management

of messages highlights the usefulness of automatic garbage collection: the garbage

collector handles the vast majority of memory management, allowing us to focus on

the cases where specialized management is required. Whereas all data structures are

explicitly managed in Horus and ISIS, in Ensemble only one is treated in this manner.

7 Inlining

Communications systems and other programs with a strong systems flavor often

have multiple levels of abstraction barriers that must be crossed to manipulate data

structures, even though the abstraction barriers often hide relatively small pieces of

code. Ensemble exhibits this structure because of its layering and extensive use of

modules. The abstraction barriers are useful because they increase modularity. The

problem, of course, is that when there are lots of abstraction barriers to be crossed in

doing inexpensive manipulations, the cost of the abstraction barriers (in the form of

function call overhead) can be larger than the cost of the manipulations themselves.
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Programmers in other languages such as C are familiar with this problem. They

solve it by using macros or an inlining mechanism provided by the compiler.

However, this often requires that the programmer annotate which functions are to

be inlined. Ocaml also provides inlining support that eliminates the cost of these

abstraction barriers, but without requiring annotation by the programmer. Inlining

involves copying the body of a function to the sites at which the function is called,

thereby eliminating the overhead of a function call. This is done at the potential

cost of causing growth in the size of the compiled code, but we have not had any

problems from the size exploding because the Ocaml compiler has a variety of

heuristics to prevent excessive growth.

To see how all of this works, we present an operation in Ensemble, that of

releasing the contents of an Ensemble Event data structure (done at least twice for

every message), and show how inlining eliminates the potentially costly abstraction

barriers. In addition to the call site, there are four modules in this example. The

call to the function Event.free results in turn to calls to Iovec array.free, Iovec.free,

and Refcount.decr. Each step adds one small part to the overall operation, such as

dereferencing a record’s field and calling another function on that field.

Through all the modules, string arguments are passed for use in debugging. These

arguments are called debug and the string passed in this example is ”FIFO”. With

this debugging information, all of the modules described here can be compiled to

emit detailed traces. However, these debugging arguments are ignored in the normal

code for the modules presented below.

(* call site *)
...
Event.free "FIFO" ev
...

(* Event module *)

type t = {
ty : typ ;
origin : rank ;
ranks : rank list ;
ack : acknowledgement ;
iov : Iovec_array.t ;
extend : field list

}

(* Call the Iovec_array.free function on the iov
* field. Pass on the debug string unchanged.
*)

let free debug ev =
Iovec_array.free debug ev.iov

(* Iovec_array module *)

type t = Iovec.t array

(* Call the Iovec.free function on each entry in
* the array. Pass on the debug string unchanged.
*)

let free debug ia =
for i = 0 to pred (Array.length ia) do

Iovec.free debug ia.(i)
done
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(* Iovec module *)

type t = {
rbuf : rbuf ;
ofs : ofs ;
len : len

}

(* Call the Refcount.decr function on the rbuf
* field of the record. Pass on the debug string
* unchanged.
*)

let free debug i =
Refcount.decr debug i.rbuf

(* Refcount module *)

type ’a t = {
mutable count : int ;
obj : ’a ;
mutable debug : (string * string) list

}

(* Decrement the reference count. This version
* ignores the debug argument.
*)

let decr debug r =
r.count <- r.count - 1

When compiled, all four levels of function calls are inlined at the caller. This

happens even though all the module interfaces export abstract data types. The cost

of crossing all of the abstraction barriers has been eliminated by inlining across

modules. The call to Event.free is inlined by Ocaml like this:

let iova = ev.iov in
let lo = 0 in
let len = Array.length iova in
let hi = len - 1 in
for i = lo to hi do

let iov = iova.(i) in
let refcount = iov.rbuf in
refcount.count <- refcount.count - 1

done

Note that because of abstract module interfaces, it is not possible for a program-

mer to write code that directly accesses the data structures as in the code generated

after the inlining. Also, there was no cost at run time for passing debugging strings

to the functions: the inlining exposed to the compiler the fact that the debugging

string was not being used in the modules and so it was eliminated. This is the

resulting assembly code (for the Intel 386 instruction set) that is generated for the

original call to Event.free (annotated with the corresponding ML code from above):

movl 16(%eax), %ecx # let iova = ev.iova
movl $1, %eax # let lo = 0
movl -4(%ecx), %ebx # let len = Array.length iova in
shrl $9, %ebx # contd.
orl $1, %ebx # contd.
addl $-2, %ebx # let hi = len - 1 in

.L105:
cmpl %ebx, %eax # for-loop termination
jg .L104 # escape if done
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movl -2(%ecx, %eax, 2), %edi # let iov = iova.(i) in
movl %edx, %esi # contd.
movl (%edi), %esi # let rc = iov.rbuf in
addl $-2, (%esi) # rc.count <- rc.count - 1
addl $2, %eax # i <- i + 1
jmp .L105

There is some room for further minor optimizations in the resulting code (mainly

restructuring to eliminate one of the branch instructions in the loop), but the

compiler has done a very good job of eliminating the abstraction barriers from the

resulting code. Achieving similarly optimized code in C while maintaining opaque

abstraction barriers would not be easy; in Ocaml it takes no additional work on the

programmer’s part.

8 Conclusion

Our experience in developing Ensemble with Ocaml was very good. Strong static

type checking was extremely useful. Most of the other language features had a set

of benefits in development along with drawbacks to performance. Because of this it

was important to make careful use of features in order to maintain efficiency in the

final implementation.

Throughout this paper, we have attempted to draw general conclusions where

possible in order to try to answer the question of when it makes sense to use

an advanced language such as ML for developing systems-style software. Perhaps

the first consideration is the willingness of a group of people to work with a new

programming language. In particular, ML has a number of aspects, such as type

checking, that many programmers find discomforting at the start. Acquiring enough

inertia to move beyond these sorts of issues can be difficult, even in open-minded

research settings.

Many of the problems that existed in earlier implementations of ML have been

overcome in newer systems, leaving a number of advantages to building systems

in ML. Strong static type checking, polymorphic functions, formal module systems,

and automatic garbage collection are some of these. For communication systems,

automated marshalling is also very useful. However, a number of improvements

could be made to Ocaml and other ML implementations to better support systems

programming.

• More general forms of memory management, including mixing different mech-

anisms (for instance, mark-and-sweep and reference-counting), and also giving

the programmer more control when needed. We are not aware of ML imple-

mentations that provide such support (although there are some for C (Wilson

et al., 1995)). Instead of adding more powerful general-purpose memory man-

agement, it may be sufficient to provide ML libraries for efficient buffer

management, combined with support for file and network operations.

• Compacting the memory heap for mark-and-sweep garbage collection. This is

necessary for efficient memory usage in long-running processes (but of course

is not an issue with copying garbage collection).
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• Although we did not need untagged data structures in order to achieve high

levels of performance, such support would likely improve performance and

simplify the use of external modules written in languages such as C.

• Interfacing well with C-based threading libraries. In interfacing Ensemble with

multi-threaded applications in C, we ran into difficulties because C-threads

were not supported by Ocaml3. This meant that Ensemble had to run as a

separate thread which communicates with the application threads via shared

message queues. All of these threading issues had to be handled in C. We are

not aware of ML implementations that support C threads.

• Better inlining. While doing a good job with inlining, the Ocaml compiler

does not inline higher order iterators for arrays and lists, and this causes

unnecessary memory allocation for closures.

• Support for protecting the garbage-collected heap from buggy C libraries to

make debugging of hybrid systems easier.

It is important to be aware that ML/Ocaml is not a panacea. There are places

where the support provided by the language may be inadequate, and in such cases

it is necessary to regain control from the language, as we did with the management

of message buffers in Ensemble. Other kinds of operations, such as interfacing to

hardware or low-level device drivers, may also require writing some stub code in C.

Such stubs are often not difficult to write, but they are a consideration if a system

requires a large number of them.

For systems style work in an advanced programming language, the challenge is

often to leverage the advantages of the language. The low-level details that appear in

systems work tend to eat away at these advantages. Thus it is crucial that the system

be designed to keep as much as possible at a high level of abstraction. Support for

inlining and other features can help in achieving this by eliminating much of the

cost of abstraction barriers. If the low-level details can be limited to small parts of

the system then there are many reasons to expect benefits from the use of advanced

languages.
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