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1. Introduction. The class of developable topological spaces, which 
includes the metrizable spaces, has been fundamentally involved in investiga
tions in point set topology. One example is the remarkable edifice of theorems 
relating to these spaces constructed by R. L. Moore (13). Another is the role 
played by the developable property in several metrization theorems, including 
Alexandroff and Urysohn's original solution of the general metrization 
problem (1). 

This paper presents an anslysis of the concept of developable space in 
terms of certain more extensive classes of spaces satisfying the first axiom 
of countability : spaces with a base of countable order and those having what 
is here called a 0-base. The analysis is given in the characterizations of Theorems 
3 and 4 below. 

Arhangel'skiï introduced bases of countable order in a significant metrization 
theorem (4). He proved that a T2 paracompact space is metrizable if and only 
if it has a base of countable order. This generalizes the theorem that a 2^2 

paracompact developable space is metrizable, which, as Ponomarev (15) 
among others observed, is a restatement of the original Alexandroff-Urysohn 
theorem. Theorem 3 connects the concepts of developability and base of 
countable order. It may be viewed as an analogue, for developable spaces, of 
the metrization results mentioned above, in which paracompactness is replaced 
by a generalization called 0-refinability. Theorem 4 gives a characterization 
in terms of a 0-base. This concept generalizes the notions of (7-discrete base 
and a locally finite base, which were used by Bing (6) and Nagata and Smirnov 
(14, 16), respectively, to obtain metrization theorems different in character 
from those mentioned above. Theorem 4 is analogous to these theorems and 
another theorem of Arhangel'skiï (given as Theorem D in Section 5 below). 

The concepts involved here have forerunners in some that are used in 
metrization theorems; certain of the techniques of proof have not. A technical 
difficulty not met in analysing paracompact ZYspaces—namely, that it is 
not true even for all metacompact regular 7\-spaces that for every collection 
H of open sets covering space there exists a countable family F of collections 
of discrete refinements of H such that the sum of the elements of F covers 
space—is overcome in the proof of Theorem 3 with the use of a well-ordering 
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technique and Konig's Lemma (10) or (13, p. 47). A related difficulty is 
overcome in the proof of Theorem 4 by a technique similar to one that 
Arhangel'skiï uses in (4, proof of Theorem 1 ). It is here that we use the require
ment that every closed point set be an inner limiting set (Gô-set). 

Prior to characterizing developability, we shall prove two theorems con
cerning bases of countable order. Theorem 1 states a remarkable property 
associated with this concept. Theorem 2, closely related in method of proof 
to Theorem 1, gives an alternative way of describing essentially TYspaces 
with a base of countable order that is similar in form to the definition of 
development. Theorem 2 is used in proving Theorem 3 ; these theorems provide 
information about the relation of developable spaces to those with a base of 
countable order. 

We conclude the paper with applications to the metrization problem. 
Since developability is involved in the Alexandroff-Urysohn metrization 
theorem, our characterization theorems 3 and 4 yield two metrization theorems. 
We use the Alexandroff-Urysohn theorem and a result of Bing (6) on the 
paracompactness of collectionwise normal developable spaces to state and 
prove Theorems 5 and 6 below. The latter imply certain well-known metriza
tion theorems, as is shown in the final section. 

Definitions and Notation. For concepts not defined below, we refer the 
reader to (9) or (11). Rather than speaking of a topological space (5, r) 
we shall speak of a topological space S (or just of space) and understand 
that a certain topology r for 5 underlies the discussion. Where it is contextually 
clear, we use the conventions that point means element of S and open set means 
element of r. Recall that a monotonie collection of sets is a collection such that 
for every two of its elements one is a subset of the other (13). A collection of 
sets will be called perfectly decreasing if and only if it contains a proper subset 
of each of its elements. Recall that a development for S is a sequence Gi, G2, . . . 
of collections of open sets covering 5 such that for each point P of any open 
set D there exists an integer n such that all elements of Gn which contain P 
are subsets of D(6). Also recall that a developable space is defined to be a space 
with a development (6). The statement that a space is essentially 7\ means 
that for any points P and Q either {P} = {Q} or {P} does not intersect {Q}. 
The sum of all elements of a collection H of sets will be denoted by H*. 

2. Bases of countable order. By a base of countable order (4) for a topo
logical space 5 is meant a base B for S such that if T is a perfectly decreasing 
subcollection of B, and P is a point common to all elements of T, then T is 
a base for S at P. 

THEOREM 1. If for every point P of a topological space S some open subset of S 
contains P and has a base of countable order, then every subspace of S has a base 
of countable order (in the relative topology). 
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Proof. I t will first be shown t h a t 5 has a base of countable order. Suppose 
for every point P there exists a collection BP of open sets such t h a t BP* 
contains P and BP is a base of countable order for BF*. There exists a well-
ordered collection Q such t h a t (1) for some P in S, B P is the first element of 
Q, (2) if a is a proper initial segment of Q there exists a point P belonging to 
no element of a* such t h a t BP is the first element of Q following every element 
of o-, and (3) Q* covers S. (We leave this and similar constructions, which 
involve the relatively straightforward use of well-ordering and transfinite 
induction, to the reader.) 

For each q in Q let Wq denote the collection to which X belongs if and only 
if X belongs to q and contains a point belonging to no element of Q* contained 
in a predecessor of q. Let V denote the sum of all Wq. If F is a point of an open 
set D, there is a first q in Q such t h a t ç* contains F. Some subset R of D contains 
F and belongs to q and therefore R belongs to Wq. So F is a base for S. 

Suppose T is a perfectly decreasing monotonie subcollection of F, and P 
is a point common to every element of T. There is a first q in Q intersecting T. 
If t belongs to q- T there exists a proper subset t' of t t h a t belongs to T. There 
is an element q' of Q such t h a t Wq> contains t'. Bu t qf does not follow q; for if 
it did, then t' would contain a point not in q*. Since qr does not precede q, qf = q. 
T h u s q-T'is perfectly decreasing. Since g is a base of countable order for q*, q- T 
is a base for S a t P. So F is a base of countable order for S. 

Now suppose t h a t S' is a subspace of 5 . There exists a sequence Hi, H2, . . . 
of well-ordered subcollections of F covering S' and satisfying these condit ions: 
(1) For each n and h in Hn there exists a point Pnjh belonging to h-S' such 
t h a t no element of Hn precedes h and contains Pn,h. (2) If n < k, the first 
element h of Hk containing the point P of Sr is a subset of the first element 
In! of iTw doing so, and if some proper open subset of h' contains P , then h is a 
proper subset of A'. Let B denote the collection to which an element belongs 
if and only if it is the common pa r t of S' and some element of Hi + H2 + . . . . 

I. Suppose t h a t R = D-S', where D is open in 5 and P is a point of R. 
For each n let hn denote the first element of Hn t h a t contains P. F rom condition 
(2) above it follows t h a t each hn+i is a subset of hn and t h a t if some hn = hn+u 

then hn'S' is a subset of R. If there exists no n such t h a t hn = hn+i, then the 
collection of all sets hn is a perfectly decreasing monotonie subcollection of V 
each element of which contains P. Since F is a base of countable order for S, 
some hn is a subset of D. Hence hn-S' is a subset of R, and 2? is a base for 5 r . 

I I . Suppose t h a t J1 is a perfectly decreasing monotonie subcollection of B 
and t h a t P belongs to every element of T. If TV is a finite set of integers such 
t h a t for each n in N, Hn has a first element hn for which hn-S' belongs to T, 
then there exists some k in N such t h a t hk-S

f is a subset of all the sets hn-S'. 
For some i and h in Hu h-S' belongs to T and is a proper subset of hk-S'. 
Hi belongs to N} then either h is hi or hi precedes h. If ht precedes h, then ht 

does not contain the point Piih of h-S'', and since 2" is monotonie, / ^ - S ' is a 
subset of /&•£'. Thus , in either case, hk-S' is a subset of h-S'. Since this involves 
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a contradiction, i does not belong to N. From these considerations and 
condition (2) it follows that for each n there is a first element hn of Hn that 
includes an element of T. Moreover, if n < k, there exists some i > k and some 
h in Hi such that h-S' is an element of T which is a proper subset of hn-S' and 
hk-S

f. By condition (2), h is a subset of the first h! in Hn to contain Pith. Since 
/&n is the first element of Hn to include an element of T and Pith is in &w, h' = hn. 
It follows that h is a proper subset of Aw. Similarly, Afc is the first element of 
Hk to contain Pith. Condition (2) implies that hk is a proper subset of hn. 
So the collection of all sets hn is a perfectly decreasing monotonie subcollection 
of V all elements of which contain P. If R = D-S' where D is open in S and R 
contains P , it follows that some hn is a subset of Z>. Hence a subset of &n belong
ing to T is a subset of P . Thus B is a base of countable order for Sf. 

THEOREM 2. An essentially 7\ topological space S has a base of countable order 
if and only if there exists a sequence Gi, G2, • • • of bases for S such that if P is a 
point and gi, g2, • • • is a sequence such that for each n, gn belongs to Gw, gn contains 
P, and gn+i is a subset of gn, then the collection of all gn's is a base for S at P. 

Proof. Suppose 5 has a base V of countable order. Let Hi, H2, . . . be as in 
the above proof, where S = Sf. For each n, let 

Gn = Hn + Hn+i + . . . . 

Clearly each Gn is a base for S. If P and gi, g2, . . . are as above, then for each 
n there is a first hn in Hn that includes a term of gi, g2, • • • • For every n, there 
exists i > n + 1 and & in Ht such that ^ is a term of glf g2} . . . that is a subset 
of hn and ^w+i. The first elements of Hn and Hn+i to contain P i i f t are hn and 
An+i, respectively. It follows from condition (2) that hn includes hn+\. If 
hn = hn+i there exists no proper open subset of hn containing Pi>h. Since S 
is essentially 7\, and P belongs to hn, hn = {Pi,h} = {P}- So hn is a subset 
of every open set containing P. If no hn = hn+ll the collection of all hn

ys is a 
base for 5 at P. Since each hn includes a term of gi, g2, . . . , the collection of 
these terms is a base for 5 at P. 

Suppose Gi, G2, . . . is a sequence as in the statement of Theorem 2. There 
exists a sequence Hu H2, . . . of well-ordered collections covering 5 such that 
(1) each Hn is a subcollection of Gn, (2) each element h of Hn contains a point 
belonging to no predecessor of h in Hny and (3) if n < k the first element of Hh 

containing the point P is a subset of the first element of Hn doing so. Clearly, 
Hi + H2 + . . . is a base for S. If T is a perfectly decreasing monotonie sub-
collection of Hi + H2 + . . . and P belongs to each element of T, then, by an 
argument similar to that of II in the proof of Theorem 1, for each n there is a 
first element hn of Hn that includes an element of T and each hn+i is a subset 
of hn. Since each hn belongs to Gn and contains P , the collection of all hn's is a 
base for S at P , and so T is also such a base. 

Remarks. 1. The conditions on Gi, G2, . . . in Theorem 2 are closely related 
to some considered by Aronszajn (5). 

https://doi.org/10.4153/CJM-1965-080-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-080-3


824 J. M. WORRELL, JR. AND H. H. WICKE 

2. T h e above proof shows t h a t in the s t a t ement of Theorem 2 one m a y 
require t h a t for each n, Gn+\ is a subset of Gn. We shall refer to this result as 
Theorem 2''. 

3. T h e existence of a sequence d , G2, . . . as in Theorem 2, with the stipula
tion t h a t gn+i is a subset of gn removed, is a necessary and sufficient condition 
for a topological space to be developable. 

3. T h e c o n c e p t s of 6-base a n d O-refinability. In this section we define 
the basic concepts used in the character izat ions of Section 4. T h e notion of 
0-base generalizes those of a locally finite and a point-finite base. T h e concept 
of 0-refinability is a generalization of bo th paracompactness and metacom-
pactness. T o say t h a t a collection W of point sets is finite at a point P will 
mean t h a t P is in W* and only a finite number of elements of W contain P. 

D E F I N I T I O N 1. A collection W of point sets is a-distributively point-finite if and 
only if there exists a countable family C of sub collection s of W such that C* is W 
and for every point P of W* there exists an F in C which is finite at P. 

D E F I N I T I O N 2. A topological space S is d-refinable if and only if for every 
covering H of S whose elements are open, there is a countable family C such that 
each F in C is a collection of open sets which is a refinement of H covering S and 
for every point P of S there exists an F in C which is finite at P. 

By a ^-refinement of a collection H of open sets covering S is mean t a collection 
C* such t h a t C and H have the propert ies indicated in Definition 2. Note t h a t 
a ^-refinement C* of H is a cr-distributively point-finite refinement of H in 
which each e lement of the countable family C covers space. 

Remark. T h e following equivalence is useful in proving Theorem 3 : 

A topological space S is 6-refinable if and only if for every collection H of open 
sets covering S there exists a countable collection K of closed point sets such that 
K* = S, and for each M in K there exists a refinement V of H such that V is a 
collection of open sets covering S which is finite at each point of M. A proof of 
necessity m a y be given using the fact t h a t if F is a collection of open sets 
covering S and there is a point P contained in k b u t no t in k + 1 elements of 
F, then the set of all points contained in not more than k e lements of F is 
closed. 

D E F I N I T I O N 3. A 6-base for S is a base for S which is the sum of a countable 
family C of collections of open sets such that if D is an open set and P is a point 
of D, there is an F in C such that the collection of all elements of F containing P 
is finite and contains a subset of D. 

T h e following theorems are s ta ted to make more precise the sense in which 
0-refinability generalizes metacompactness . 

T H E O R E M (i). In a T\ 6-refinable topological space, a closed point set is bicompact 
(2) if and only if it is compact (8). 
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THEOREM (ii). If H is a collection of open sets covering a d-refinable topological 
space S, there exists a a-distributively point-finite refinement of H that is a collection 
of open sets covering S minimally. 

THEOREM (iii). Every T\ collectionwise normal d-refinable space is a para-
compact T2-space. 

(The references cited immediately below contain proofs which can be modified 
so as to obtain these theorems.) 

There is a technical unity to these theorems revolving around the a point-
finite conditions involved in their hypotheses so that, roughly speaking, there 
are proofs for each of them which are almost proofs for the other two. Theorems 
(i) and (ii) generalize results of Arens and Dugundji (3) for metacompact 
spaces; Theorem (iii) extends a result of Michael (12) on metacompact spaces. 
It is this technical unity as regards method of proof which, from our viewpoint, 
gives Theorem (i) a natural place in the above sequence of theorems, for the 
following more general theorem holds true. 

THEOREM (iv). If S is a Ti-space and F is a countable family of collections of 
open sets such that every point P belongs to an element of a member of F that does 
not have an uncountable number of elements containing P, then every closed and 
compact subset of S is covered by a finite subcollection of F*. 

The countability of certain coverings at certain points may be used in obtain
ing a proof of this theorem. 

4. Developable spaces. The characterizations of developable spaces are 
given here. 

THEOREM 3. A topological space is developable if and only if it is essentially 
Ti, d-refinable, and has a base of countable order. 

Proof. Suppose S is essentially Tu 0-refinable, and has a base of countable 
order. Let Gu G2l . . . be a sequence satisfying the conditions of Theorem 2' ; 
see Remark 2 following Theorem 2. With the use of the remark following 
Definition 2, it may be shown that there exists a sequence Hi, H2j . . . and, for 
every positive integer n, sequences Vni, Vn2, . . . and Mni, Mn2, . . . such that 
for each n: 

(1) Hn is a subcollection of Gn covering S. 
(2) The sum of the collection of the Fw/s is a ^-refinement of Hn. 
(3) Mni, Mn2, . . . is a sequence of closed point sets such that 

S = Mnl + Mn2 + . . . . 

(4) For each i, Vni is finite at every point of Mni. 
(5) Each element h of Hn contains a point Pn>h such that if i < n and 

j < n, then if Pn,h belongs to Mih h is a subset of every element of Vtj that 
contains Pn,h and if Pn,h does not belong to Mijf then h does not intersect Mtj. 

https://doi.org/10.4153/CJM-1965-080-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-080-3


826 J. M. WORRELL, JR. AND H. H. WICKE 

If Hi, H2, . . . is not a development of S, there exists an open set D containing 
a point P such t h a t each Hn has an element containing P t h a t is not a subset 
of D. There exists a sequence fix, n<i, . . . of positive integers such t h a t (1) 
U\ = 1 and (2) if i > 1, ni is the first positive integer such t h a t if k denotes 
J^)Z\njy then Mk,ni contains P. For each i, let wt denote Yl]=inj- If ^ > 1 
and h is an element of Hwi containing P, then h intersects Mwi_1>ni. Moreover 
Wi-i < Wi and nt < wt. So Pwi,h belongs to MWi_liTli. Hence h is a subset of 
every element of VWi_uni t h a t contains Pwi,n. I t follows t h a t there is a finite 
collection <2z_i to which an element belongs if and only if i t belongs to VWi_uni, 
contains P , and is not a subset of D. For each i > 1 there exists a finite sub-
collection Ki-i of HWi_1 such t h a t every element of Kt_i contains an element 
of Qi-i and every element of Qi-\ is a subset of some element of Kt-i. For each 
i > 1, if k belongs to Ku then k is a subset of an element of Qz-i and is therefore 
a subset of an element of Kt-i. So by Kônig 's Lemma there exists a sequence 
ku k2, . . . such t h a t for each i > 1, kt-i belongs to i£*_i and kt is a subset of 
&i_i. Since each &̂  belongs to Gwi, since wt ^ i, and since Gw+i is a subset of Gn 

for each w, it follows t h a t each kt belongs to G^. B u t this involves a contradict ion, 
for the collection of all kfS is a base for S a t P. T h u s the conditions s ta ted are 
sufficient for the space to be developable. 

T h e reader m a y easily verify t h a t every developable space is essentially 
T\. If a topological space S has the proper ty t h a t for every open covering H oî S 
there exists a countable family F of discrete collections of closed point sets 
such t h a t i7* covers S and refines H, then 5 is 0-refinable. Every developable 
space has this p roper ty (6) . T h a t every developable space has a base of count
able order is a corollary of Theorem 2. 

Remark. T h a t a developable space 5 has a base of countable order also 
follows easily from the fact t h a t every collection of open sets covering 5 has a 
refinement which is a collection of open sets covering 5 minimally. Theorem (ii) 
implies this. 

L E M M A . Let S be a topological space. Suppose (1) M is a closed subset of S, 
(2) H is a collection of open sets covering M, (3) k is a positive integer such that 
some point P of M belongs to k, but not to k + 1, elements of H, and J is the set 
of all such points P , and (4) every closed point set is an inner limiting set. Then 
there exists a countable family F of discrete collections of closed point sets such 
that (1) J is the sum of the sets belonging to members of F and (2) if b belongs to a 
member of P , then 5 is included in an open set that is a subset of every element of H 
that intersects b. 

Outline of proof. For each P in M let MP denote the set of all points P' of M 
such t h a t P and P' lie in the same sets of H. Le t Q denote the collection of all 
sets MP, for points P belonging to / . 

I. Suppose every point P of M is in a t least k elements of H. Then if P 
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belongs to / , MP is closed, and if P and P ' are points of / , MP> = MP or MP> 
does not intersect MP. If P is not in M, it is in an open set that does not inter
sect an element of Q. If P is a point of M, there is an open set D containing P 
that is a subset of k elements of H if P belongs to J and that is a subset of k + 1 
elements of H if P does not belong to / . Thus if P belongs to / , MP is the only 
element of Q that intersects D and if P does not belong to / , no element of Q 
intersects D. So Q is a discrete collection. It may be seen that {Q} is a family F 
as above. 

II . Suppose that for some point P of M, there are not k elements of H 
containing P , and let C denote the set of all these P's . There exists a sequence 
Di, D2, . . . of open sets having C as their common part such that Di+1 is a 
subset of Dt and does not include / . For each n let An denote the collection to 
which <5 belongs if and only if for some q in Q not a subset of Dnt ô is the set 
of all points of q not in Dn. For reasons similar to some involved in I above, 
each An is a discrete collection of closed subsets of / such that each ô in An is 
contained in an open set that is a subset of every element of H that intersects ô. 
Moreover, J = Ai + A2 + . . . . So the collection of all Aw's is a family F as 
above. 

THEOREM 4. A topological space S is developable if and only if S has a 6-base 
and every closed subset of S is an inner limiting set. 

Proof. Suppose that S has a 0-base B and that every closed set is an inner 
limiting set. Let Vi, V2, . . . denote the elements of a countable family which 
determines B according to Definition 3. We may assume that each Vn is finite 
at some point. By the above lemma, there exist a sequence Ai, A2, . . . and a 
collection 12 of ordered pairs of positive integers such that (1) if (w, n) belongs 
to 12, then An is a refinement of Vm that is a discrete collection of closed point 
sets such that each Ô in An is included in an open set that is a subset of every 
element of Vm that intersects 5, (2) every positive integer is the second term 
of some element of 12, and (3) if Vm is finite at P , there exists n such that(w, n) 
belongs to 12 and P belongs to an element of An. For each (w, n) in 12 there 
exists a collection Hm>n to which h belongs if and only if (i) for some ô in An, h is 
an open subset of every element of Vm that intersects 8 and h intersects no 
element of An except ô or (ii) h is an open set that intersects no element of An. 

By condition (1) above, each Hm>n covers S. Moreover, if P is a point of an 
open set D, there exists some m such that Vm is finite at P and some element v 
of Vm contains P and is a subset of D. By condition (3) above there exists some 
n such that (w, n) belongs to 12 and P belongs to an element ô of An. If h 
belongs to HmfTl and contains P , then, by definition of Hm>n, h is a subset of every 
element of Vm that intersects ô and is therefore a subset of v. Hence h is a 
subset of D. There exists a sequence Gi, G2, . . . such that every term of this 
sequence is one of the collections Hm,n and every collection Hmy7l is a term of this 
sequence. It follows that Gi, G2, . . . is a development of S. 
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From considerations similar to some involved in the proof of Theorem 2 it 
may be seen that every developable topological space has a 0-base. Closed point 
sets are inner limiting sets in developable spaces. 

5. Applications to the metrization problem. In this section we state 
and prove two metrization theorems. The proofs will be based on the character
ization theorems 3 and 4 above and the original theorem of Alexandroff and 
Urysohn, who based their proof on a result of Chittenden (7). A statement of 
their theorem is included here for completeness; we note that it is given in 
terms of a condition on a development. 

THEOREM A (Alexandroff-Urysohn). A Ti-space is metrizable if and only if 
it has a development Giy G2, . . . such that, for each n, the sum of any two elements 
of Gw+i having a point in common is included in a member of Gn (1). 

We state the following theorem of Bing for use in the proofs of our theorems. 

THEOREM B (Bing). A 7\ regular developable space {equivalently, a Moore 
space) is metrizable if and only if it is collectionwise normal (6). 

Proof. This follows from the restatement of the Alexandroff-Urysohn 
theorem given in the Introduction and the theorem of Bing that a developable 
collectionwise normal space is paracompact. 

THEOREM 5. A collectionwise normal Tyspace is metrizable if and only if it 
is d-refinable and has a base of countable order. 

Proof of sufficiency. Theorem 3 implies that the space is developable; an 
application of Theorem B completes the proof. 

THEOREM 6. A collectionwise normal T0-space is metrizable if and only if it 
has a 6-base and every closed subset of the space is an inner limiting set. 

Proof of sufficiency. Theorem 4 implies that the space is developable, and a 
To essentially TVspace is 7\. Theorem B, again, may be used to complete the 
proof. 

These theorems generalize, in turn, Theorems C and D below of Arhangel'skiï 
(4). 

THEOREM C. A paracompact Hausdorff space is metrizable if and only if it 
has a base of countable order. 

THEOREM D. A Ti-space with a a point-finite base is metrizable if and only if it 
is perfectly normal and collectionwise normal. 

Since a paracompact Hausdorff space is collectionwise normal, 7\, and 6-
refinable, Theorem C follows from Theorem 5. A a point-finite base is a 0-base 
and, by definition, every perfectly normal space has the property that every 
closed point set is an inner limiting set. Thus Theorem D is a consequence of 
Theorem 6. 
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We now state four well-known theorems and indicate how they follow from 
Theorems 5 and 6. 

THEOREM E (Bing). A regular Ti~space is metrizable if it has a a-discrete 
base (6). 

THEOREM F (Nagata-Smirnov). A regular Ti-space is metrizable if it has a 
a locally finite base (14, 16). 

THEOREM G (Urysohn). A regular Ti-space is metrizable if it has a countable 
base (17; 9, p. 125). 

THEOREM H (Smirnov). A paracompact T2-space is metrizable if it is locally 
metrizable (16). 

The hypotheses of Theorems E, F, and G all clearly imply that the spaces 
have a locally finite bases and, therefore, 0-bases. Regular spaces with a 
locally finite bases are collectionwise normal as may be seen by an argument 
modelled on the proof that such spaces are normal (9, p. 127). These spaces 
clearly have the property that closed point sets are inner limiting sets. Thus 
the hypothesis of Theorem 6 is satisfied and the theorems follow. 

The requirement of local metrizability in Theorem H implies that the space 
has a local base of countable order at each point. By Theorem 1, the space has a 
base of countable order. The result now follows from Theorem 5. 
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