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ON THE THETA DIVISOR OF SU(r, 1)

SONIA BRIVIO anp ALESSANDRO VERRA

Abstract. Let SU(r,1) be the moduli space of stable vector bundles, on a
smooth curve C of genus g > 2, with rank r > 3 and determinant Oc¢(p),
p € C; let £ be the generalized theta divisor on SU(r,1). In this paper we
prove that the map ¢, defined by L, is a morphism and has degree 1.

§0. Introduction

Let C be a smooth, irreducible, complex, projective curve, of genus
g > 2. Let SU(r,d) denotes the moduli space of semistable vector bundles
with rank r and fixed determinant L € Pic?(C). SU(r,d) is an irreducible
projective variety of dimension (r? — 1)(g — 1), (see [S] and [N-R]), its
Picard variety is free cyclic, see [D-N], the ample generator L is called the
generalized theta divisor of SU(r,d). Let ¢.: SU(r,d) — |£|* be the map
associated to the theta divisor: if r = 2, then ¢, is an embedding, see
[Bel], [L],[B-V1], [vG-I] for d even, [D-R], [Be2] and [B-V2] for d odd. In
this paper, we will assume r > 3 and we will consider SU(r,1), where
L = O¢(p) and p is a given point of C, our first result is the following:

THEOREM 0.0.1. For any curve C' of genus g > 2: deg(¢r) = 1, the
linear system |L| on SU(r,1) is base points free, i.e. the map ¢r is a
morphism.

As a second result we prove the following:

THEOREM 0.0.2. For any curve C' of genus g > 2, we have deg(¢r) =

The paper is organized as follows. The first section is devoted to prov-
ing theorem (0.0.1). In section 2, we study rank r-bundles with r + 1
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sections extending the rank 2 case dealed in [B-V2]. Fix a line bundle
[ € Pic?(C): we can identify the spaces SU(r,1) and SU(r,Oc(p+rl)), let
E € SU(r,Oc(p + rl)), assume that h°(E) = r + 1 and the natural map
wg: ATHO(E) — H%(det E) is injective, then Im wg is a (r + 1)-dimensional
subspace of H(O¢(p + rl)). This allow us to define a map

qi: SU(T7 OC(p + ’I”l)) - Gl(r + 1,H0(00(p + ’I”l)):

we prove that g; is a birational map and it is defined by a linear system
in |£]. In section 3, we prove theorem (0.0.2). Actually, we perform a
non empty open subset ¢ C SU(r,1) such that the restriction ¢z, is an
embedding. U is naturally defined as the set of bundles ¢ for which exists
l € Pic9(C), s.t. g; is biregular at the point £ = £(I). If r = 2, in [B-V2]
we proved that actually & = SU(2,1), which allows us to conclude that £
is very ample. If r > 3, actually U can be a proper subset of SU(r, 1), (see
lemma (3.2.1)), this unable us to extend completely the result of rank 2.

Finally, we would like to remember that rank 2 vector bundles with 3
sections were useful also in proving that ¢, is an embedding at singular
points of SU(2), see [I-vG].

0.1. Notations.

We reserve the notation £ for points of SU(r,1); with some abuse, the
same notation will be used for the vector bundle corresponding to £. For
a vector bundle ¢ of degree d and rank r we denote by u:= g the slope
of £&. We say that £ is semistable iff for every proper subbundle n C £ we
have p(n) < p(), it is stable iff the inequality is strict. Given two vector
bundles &, n on C, they are said complementary if x({ ® n) = 0.

We recall that there exists a Poincaré family on SU(r, 1), see [N-R], i.e.
a vector bundle U on SU(r, 1) x C such that Uj¢, o = &, for any £ € SU(r, 1).
Let as usual m; denote the natural projections of SU(r,1) x C onto factors.
Note that if U is a Poincaré bundle, then for any A € Pic(SU(r, 1)), U®n[A
is a Poincaré bundle too. Actually there exists a unique Poincaré bundle U
on SU(r,1) x C with the further following property, (see [Ra]):

det Usu(r,1)x {2} = L,

where L is the theta divisor of SU(r,1). Following [Ra], we will call such a
bundle U the universal bundle.
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8§1. On the base points of the theta divisor

1.0.

Let 0 be an effective divisor of degree g — 1 on C, 6 defines a natural
isomorphism
(1) Jor SU(r, 1) — SU(r,r(g — 1) - 1)

sending & to £°(0). Let (§,n) € SU(r,1) x SU(r,r(g — 1) — 1) we have

(2) x(§®@n) =0,

hence the subset

(3) Og={neSU(rr(g—1) 1) /h(E®n) >0}
is either SU(r,r(9 — 1) — 1) or a theta divisor of SU(r,r(g — 1) — 1), see
[D-N].

LEMMA 1.0.1. Let U C (:)5 be the locus of points n such that each non
zero morphism w:n* — £ is a monomorphism. Then Ug is a non empty
open subset.

Proof. Let F be a family of stable vector bundles on SxC| let U: F* —
m2*¢ be a non zero morphism of vector bundles. It is enough to show that
the locus A of points s € S such that U is not a monomorphism is closed.
This is immediate because A is the projection of the degeneracy locus of
U. The non emptyness follows from the exact sequence

(4) 0—=8(-0) 26— 008 —0

where n* = {(—6). U
LEMMA 1.0.2. We have: dimUg < (r* —1)(g — 1) — 1.
Proof. Let n € Ug: then there exists an exact sequence as follows

(5) 0—n"—&—0p—0,

where D is a divisor in the linear system | det(§) ® det(n)|, that is |rf|. Let’s
consider the natural rational map

(6) Vp:Hom(¢,0p) — SU(r,r(g—1) — 1)
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which associates to any epimorphism v:¢§ — Op the sheaf (kerv)*. Then
any 7 € U belongs to the image of the above map Vp. The group of au-
tomorphisms Aut(Op) naturally acts on Hom(§, Op); the action is faithful
on points v which are epimorphisms, moreover Aut(Op) contains the torus
C*48 P GSince Hom(¢,0p) ~ £* ® Op, it follows that the dimension of the
image of the previous map at Vp is bounded by

(r—1)degD = (r? = 1)(g— 1) — (r — 1)(g — 1).

On the other hand, if r > 3 we have dim|D| = (r — 1)(¢g — 1) — 1. Let
D C C x |D| be the universal divisor, then U is contained in the image of
the natural map

(7) T2, ((m"€) ® Op) — SU(r,r(g — 1) = 1).

By the previous count the dimension of this image is at most (r? — 1)(g —

1) — 1. O
Let € € SU(r, 1), with the above notations, we define
(8) O¢: = fo" O

PropoOSITION 1.0.1. For any § € SU(r,1), O¢ is actually a theta di-
visor on SU(r,1).

Proof. 1t is enough to prove the assertion for @5. Note that @5 is
either a theta divisor on SU(r,r(g — 1) — 1) or it is SU(r,r(g — 1) — 1).
Let’s assume that (:)5 = SU(r,r(g — 1) — 1), then by the preceding lemma
Ug is an open subset of SU(r,7(g — 1) — 1): but this is impossible because
dim Ug < dim SU(r,7(g — 1) — 1). This implies the claim. U

1.1.
Fix § € C9=1 the previous remarks allow us to define a map

(9) 64:SU(r, 1) — |£] =~ P"

just sending £ to the divisor ©¢. From the previous proposition follows
immediately that ¢g is a morphism.

LEMMA 1.1.1. We have: ¢g"Opn(1) = L.
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Proof. Let & € SU(r,1) be a point wich is not a point of ramificaton
of ¢y, set m:= fo(&) = &*(0). Let H be the hyperplane of P" consisting
of divisors passing through &;. We have:

¢o"H = {¢ € SU(r,1):n € O} = {¢ € SU(r, 1): (¢ @) > O};

and set theoretically this is a divisor in the linear system |L£|. Actually,
&0 € 9™ H and since it is not a point of ramification , we have ¢p*H = L.

O

As an immediate consequence we have

ProrosiTION 1.1.1. The map associated to the theta divisor ¢r:
SU(r,1) — |L|" is a morphism.

§2. Bundles with r + 1 sections

2.1. Definition
Let (&,1) € SU(r, 1) x Picd(C'). We say that (&,1) satisfies condition (*)
if the following three properties hold:

(1) (1) =7 +1,
(i) £(1) is globally generated,
(iii) the determinant map we; : A"H?(£(1)) — H°(det £(1)) is injective.

We will set
(10) Xi:={£ e SU(r,1)/(&,1) satisfies (x)}.

2.2. Remark

Assume that a pair (§,1) € SU(r,1)xPic?(C) satisfies properties (i) and
(ii), then it satisfies (iii) too. First of all, note that since h(£(1)) = r + 1,
every vector of A"H?(£(1)) is indecomposable. So assume that v # 0 is in
the kernel of the map we;, then v = s1 A sy A ... A sy, with s; € HY(£(1)),
i = 1..r. Then the sections s, ...s, would generate a subbundle n C &(1)
with the following properties: 7kn = s < r — 1, h°(n) > r, and 7 is globally
generated too. This implies rkn = r — 1, h%(n) = r and the following
commutative diagram

0——  (detn)™ —— H()©Oc —— 1 0
o) | | |
0— Oc(p+rl)~" —— H(£(1)) ® O¢ £(0) 0,
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which implies degn > 1 + rg, which contradicts the stability of £(1).
We will show later that actually for any [ € Pic/(C'), X; is a non empty
open subset of SU(r,1).

2.3. Definition
Let [ € Pic?(C), we will consider the Grassmannian

(12) G =G(r+1,H(Oc(p + 1))

of (7 + 1) dimensional subspaces of HY(Oc(p + rl)). If (&,1) satisfies as-
sumptions (i) and (74i) then the image of the determinant map we; is a
(r + 1) dimensional subspace of H°(O¢(p + rl)), let’s denote it by

W:=Imwg;.
This defines a map
(13) qi: SU(r,1) — Gy(r + 1, H(Oc(p + 11)))

by sending £ to the point of the Grassmannian corresponding to the sub-
space W — H°(Oc(p +rl)).

Note that there is a canonical isomorphism A"H?(¢(1)) ~ HO(¢(1))*,
which induces an inclusion

(14) we: HO(E(W)" — H*(Oc(p + 1)),

whose image is again W. Assume now that £(1) is globally generated too,
then we have an exact sequence

(15) 0— Oc(p+rl)~" — H(£(1) @ Oc — &(1) — 0,
and its dual

(16) 0— &) — HY(E(1)* ® Oc — Oc(p +rl) — 0;
passing to cohomology we have

(17) 0— HO(E()") — H(E()* = H(Oc(p + 1)) — ...y

since £(1) is stable, then HY(£(1)*) = 0, so we can conclude that 7 is in-
jective. We claim that Im 7 = W, so that we can identify the maps 7 and
/
W
3
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2.4.

Let W € Gi(r + 1, H*(O¢(p + rl)), assume that |[W| is base point free.
Then we can consider the evaluation map e: W ® Oc — O¢(p + rl), which
is surjective, so its kernel is a rank r vector bundle, let’s define

(18) Ew:= (Kere)".

We have det Eyy = O¢(p + rl), moreover we have the following exact se-
quence
(19) 0— Oc(p+rl)™ = W*®Oc — Bw — 0,

so we can conclude that Eyy is generated by (r+1) global sections spanning
the subspace Im(W* < H?(Ey)). Passing to cohomology, we have

(20) 0 — W* — H(Bw) — H'(Oc(p+rl)™ ) — W* @ H'(O¢) — ..;

note that h°(Ew) = r + 1 if and only HY(Ew ) ~ W*, that is the following
multiplication map is an isomorphism

(21) pw: W @ H(we) — H(we @ Oc(p + rl)).
We have the following results:

LEMMA 2.4.1. Let E be a rank r vector bundle with h°(E) = x(E) =
r 4+ 1, which s globally generated , then E is stable.

Proof. By Riemann Roch theorem we have deg(E) = 1 + rg, and
wkE) =g+ % Assume there exists a destabilizying subbundle F' C E with
rk(F) = s < r—1and p(F) > g+ L. This implies deg(F) > 1+ sg
and x(F) > s+ 1. Since E is generated by r + 1 global sections spanning
HO(E), then h°(F) = s+ 1 and F is globally generated too. So we have a
commutative diagramm

0—— (det F)™' —— HYF)® O¢ ——— F 0
@ | | |
0—— det B! —  HYE)®Oc —— E 0,

from the inclusion (det F) ™' < det E~' we have sg + 1 > rg + 1, which is
impossible. This concludes the proof.
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Assume that for a subspace W the map pp is an isomorphism, then by
preceding lemma Eyy is stable, so that Ey (—1) = & € SU(r,1). Moreover,
(&,1) satisfies conditions (i),(ii) so that the map g; is defined at the point £
and we actually have g;(¢) = W. We would remark that the exact sequence

(23) 0—=&)" = W®0c — Oc(p+rl) —0

is just the pull-back of the Euler sequence

(24) 0— Qpr-1(1) > W ® Opr—1 = Opr-1(1) = 0

under the morphism f:C' — P"~! = P(W*) defined by |W|. Hence it turns
out that

(25) (1) ~ f*Tpri(—1).

Let’s define the following subsets of Gj:
(26) B;:={W € G;:|W| has base points }
and D; as the set of W such that the multiplication map
(27) pw: W @ HY(we) — H(we ® Oc(p + 1))

is not surjective. Note that VI, we have B; C D;. Moreover, we have the
following fact:

LEMMA 2.4.2. For anyl € Picd(C), D; is a Cartier divisor on Gj.

Proof. For more details see also [B], th.(0.0.1).

There exists a homomorphism between vector bundles pu: G — F such
that at the point W € Gj is actually the multiplication map

(28) pw: W @ H(we) — H(we @ Oc(p + 1l));

so that Dj is actually the degeneracy locus of p. From Thom-Porteous’s
formula it is either a Cartier divisor or D; = ;. Actually we show that
there exists W ¢ D;.
Claim: let » > 1, for any line bundle L of degree rg+1, base points free
and non special, there exists a subspace W C H?(L) s.t. uy is surjective.
We will prove the claim by recurrence on r. Note that if r =1, and L
is a non special base points free line bundle of degree g + 1, the assertion

https://doi.org/10.1017/50027763000008205 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000008205

ON THE THETA DIVISOR OF SU(r, 1) 187

follows from the base points free pencil trick, see [A-C-G-H]. Assume that
the claim is true for degree 1+ (r —1)g. Let L be any line bundle of degree
1 +rg: choose x1,...,24 € C with the following properties:

i) z1 + ... + x4 is non special,

ii) L(—x1 — ... — x4) is base points free and non special.

By the induction hypothesys there exists an r dimensional subspace
W C H°(L(—x1 — ... — z,)) for which py is surjective. Choose a global
section s € H(L), such that s(x;) # 0, for i = 1,...g, and define the
subspace

W= (W,s).

By i), we can find indipendent global sections wi, wa,... ,wy such that
wi(xj) # 0 if and only if j = 4; let f; = pw (s ® w;), then it is easy to see
that fi,..., f; are indipendent global sections of H°(L ® w¢). This implies
the following commutative diagramm

_ 1%
W ® H(we) —— HO(L(~21 — .. — 24) ® we))
Hw
(29) W@ H(we) ——s HYL ® we)
< s> @H we) —s < frrnfy>

Since both py5, and s are surjective, we can conclude that pyy is surjective
too.

As an immediate consequence of the lemma we have that X; is a non empty
open subset of SU(r,1): in fact if W is a point in G; — Dy, then by the
previous arguments Ey (—1) = £ € X;. Moreover the map h;: G; — D; — X
sending W to Eyw (—[) is actually the inverse map of g;.

2.5.
Let’s consider the Pluecker embedding of the grassmannian Gj:

(30)  pi:Gi(r + 1, H(Oc(p+ 1)) — P = P(NLH(Oc (p + 1))
and look at the composition map
(31) pi-gi:SU(r, 1) — PV,

we have the following result:
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PROPOSITION 2.5.1. Letl € Pic?(C),

(1) gi:SU(r,1) — Gi(r + 1, H*(Oc(p + rl)) is a birational map, the re-
striction qix,: X; — G; — Dy is biregular;

(2) the rational map p;-g;: SU(r,1) — PV is defined by N +1 indipendent
global sections of H°(L), where L is the generalized theta divisor on
SU(r,1).

Proof. (1) Let | € PicY(C), note that we can identify the two moduli
spaces SU(r,1) and SU(r,Oc(p+rl)) via the natural isomorphism sending
& — &(1). Let U be the universal bundle on SU(r,Oc(p + rl)) x C, let as
usual m;, with ¢ = 1,2, denote the natural projections. We recall that

(32) det Uy |su(r,0c(p+rl)) xa = L
moreover detUj¢q)xc = Oc(p + rl), so that we can conclude that
(33) detUj ~ 7T2*Oc(p+7“l) Qm*L.

We will consider, on SU(r,Oc(p + rl)), the torsion free sheaf m,.U;, whose
fibre at the point & is HY(£(1)). Let’consider the following open subset of
SU(r,O¢(p +rl))

(34) Vie={€(D): k(&) = 7 + 1},

then Wl*UlWZ is a vector bundle of rank r + 1. There is a natural map
between sheaves on SU(r, Oc(p + 1)) x C, see [H],

(35) By (m.y) — Uy,

let’s consider the map A"F

(36) N E:m1" (N'm ) — AU = det Uy,
and tensor this map with m;*£~!, so we have

(37) (N (mlh) © L71) — 12" Oc(p + rl).

Finally let’s push down this map on SU(r,O¢(p + rl)), by using the pro-
jecting formula and recalling that 71,05y (r.00(p+r1))xC = OsU(r,00(p+r1))>
we will have the following map

(38) G: N (m ) @ L78 — 71,m* O (p + 1l).
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Note that 71, m2*Oc(p + rl) is the trivial bundle on SU(r, O¢/(p+ rl)) with
fibre H%(Oc(p + 7)), moreover at the point £(I) G is actually the determi-
nant map

(39) we: A"HO(E(1)) — H(Oc(p + 11)).

If g;(€) is defined, then (Im G)g(l) = ¢;(£) and this shows that g; is a rational
map. Moreover, let U; C SU(r, Oc(p + rl)) the set of points () satisfying
properties (i) and (iii), then X; C U; and the restriction G|y, is an injection
of vector bundle, and codim U; > 2.

Since dim SU(r,1) = dimG; = (r?2 — 1)(g — 1), and moreover both
SU(r,1) and G; are smooth and irreducible, then by Zariski’s main theo-
rem it is enough to show that g;y, is injective, but this follows from the
preceding section.

(2) Since A"(mly) ~ mU* @ det(m.ly), Gy, gives the following
injection

(40)  (mphy)* @ det(my,Uy) @ L7 — H°(Oc(p+11)) @ Osu 1),

which is actually the pull back of the universal subbundle W on Gj, via the
map gy|y,- Since the Pluecker map p; of G; is defined by the line bundle
det W*, we can conclude that

(41) (- 91)"(Opn (1)) = det(g"W™).

We will prove that actually ¢;*W* ~ w1, U; and det w1, = L.
Let’s consider again the natural map of sheaves

(42) E:m*(m.Uy) — Uy,

the restriction at £(I) x C' is actually the evaluation map: assume that
£(1) € Xy, then Ejgyxc is surjective and (ker E)j¢)xc = Oc(p+ )"
Let’s consider the set V' C SU(r,O¢(p + rl)) x C of pairs (£(1),z) with
£(1) € X;: we have

(43) (Ker B)|y = m*Oc(p+ 7))~ @ m*B,

with B € Pic(SU(r,Oc(p+rl))). Look at the following exact sequences on
V:

(44) 0 — ker E}y — m*(m*ul)lv — Uy — 0,

(45) 0— Uy — m*(m*ul)rv — (Ker E)‘*V — 0,
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by pushing down to SU(r,Oc(p + rl)) we obtain an injective map II:
(46) IT: (Wl*Ul)rV — 71, (Ker E)‘*V,

where m1,.(Ker E)*;, = m1.m2"Oc (p+rl) ® B. Note that by construction, II
turns out to be the restriction to V' of the above map GG, so we can conclude
that actually B = Ogy (04 (p+r1)) and det m,l = L, and this concludes
the proof. []

As an immediate consequence we have an alternative proof of the fol-
lowing well known result, see [N]:

PROPOSITION 2.5.2. SU(r,1) is a rational variety.

§3. The main result

Let ¢r:SU(r,1) — |£]" be the map associated to the theta divisor.
By prop. (2.5.1) there exist sg, ... , sy, indipendent global sections of
H°(L) which define the rational map p;-g;. Let V be the subspace spanned
by them, we have a natural inclusion V — HY(L), which induces a linear
projection
(47) L — P(V*) =P
such that g; = m;- ¢,. This allows us to prove that for any curve C of genus
g > 2, the map ¢.: SU(r, 1) — P™ has degree one.

3.1. Proof of theorem (0.0.2)

Actually, we will perform a non empty open subset U of SU(r, 1), such
that the restriction of ¢, to U is actually injective, moreover we will prove
that the tangent map d(¢.)¢ at a point £ of U is injective too.

Consider in SU(r,1) x PicY(C) the set X containing pairs (,1) satis-
fying property (x). We will denote by

(48) U:=p1(X),

then U is a non empty open subset of SU(r,1). First of all note that if
&€ € U the following set

(49) {l € PicY(C) (&, 1)satisfies (*)}

is a non empty open subset of Pic?(C'). Now let £; and & be any two points
of U: then there exists [ such that (§;,l) € U, for i = 1,2. For such an [,
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let g;: X1 — G be the rational map defined in (2.3), then by pr. (2.5.1)
the restriction g x, is biregular and both & and &> are in X;. Now assume

that ¢c(§1) = ¢c(€2). Since g = m - ¢, then we have g;(§1) = gi1(&2). But
gi|x, 1s injective, so we can conclude that & ~ .

Assume now that d(¢z)(v) = 0 for a point § € U and a tangent vector
v € Tsy(r1)e- Let | € Pic/(C) such that (£,1) € U: then consider the
rational map g;, the linear projection 7 is defined at ¢, (&), so we have

(50) (dm)@:(g) ) (dd)ﬁ)f = (dgl)g-

Since § € X; and gj|x, is biregular, then (dgl)g(v) = 0, hence v = 0, and
(dor) ¢ is injective. This concludes the proof.

3.2.

For r > 3, U may be a proper subset of SU(r,1), that is there exist
bundles & such that for any | € Pic/(C) we have £(I) € X;.

Let E be a semistable bundle on C of rank r, for any | € Pic/(C)
we have h°(E(l)) > max(0,x(E(l)); actually there exists an open subset
U C Picd(C) such that for I € U this value is constant, following Raynaud,
let’s denote it by h%(E(lgen)), (see [R]). If r < 2 or r = 3 and the curve is
general, then Raynaud proved that for any bundle we have h%(E(lgen)) =
max (0, x(E(l)); for r > 4 he showed the existence of bundles which do not
satisfy this property, we will call such bundles Raynaud bundles, see [R].

Let n € SU(r): for any non zero morphism A € Hom(n, C)) the sheaf
ker A is actually a vector bundle on C' with detker A = O¢(—p):

(51) 0—ker A —n 2 Cp— 0.

We claim that if 7 is stable then ker A is stable too. In fact, if « C ker A Cn
is a destabilizying subbundle of ker A, then u(a) = g > =l withs <r—1:
this implies d > 0 and contradicts the stability of 7. Let’s define

(52) &= ker \*,

we can conclude that £ € SU(r,Oc(p)), and fits into the exact sequence
(53) 0—n*—&5C,—0.

In the above notations, we can prove the following fact:

LEmMMA 3.2.1. Ifn* € SU(r) is a stable Raynaud bundle, then for any
l € Picd(C), we have £(1) € X;.
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Proof. Consider the exact sequence (53) and tensor with [ € Pic?(C),
(54) 0 — (1) = &) == Cp — 0,

passing to cohomology, we can consider the following commutative dia-
gramm

Since 7* is a Raynaud bundle, then h°(n*(1)) > r+1 for any | € Pic?(C), this
implies that either hY(£(1)) > 7 + 2 for any [ € Pic?(C), or h°(£(1)) =r + 1
for [ generic, and moreover 7; is the zero map. In this case, Ime, C Ker(vy;)
for any [, which implies that £(I) is not globally generated at p for any [. So
we can conclude that £ ¢ X; for any [ € Pic?(C), and U is a proper subset
of SU(r,O¢(p)). 0
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