
Applications of artificial intelligence in dementia
research

Kelvin K. F. Tsoi1,2, Pingping Jia1 , N. Maritza Dowling3,4, Jodi R. Titiner5,

Maude Wagner6, Ana W. Capuano6 and Michael C. Donohue7

1JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Sha Tin, Hong Kong; 2Stanley Ho
BigData Decision Analytics Research Centre, The Chinese University of HongKong, Sha Tin, Hong Kong; 3Department of
Acute and Chronic tableCare, School of Nursing, The George Washington University, Washington, DC, USA;
4Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, The George Washington
University, Washington, DC, USA; 5Alzheimer’s Association, Chicago, USA; 6Department of Neurological Sciences,
Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA and 7Alzheimer’s Therapeutic
Research Institute (ATRI), University of Southern California, Los Angeles, CA, USA

Abstract

More than 50 million older people worldwide are suffering from dementia, and this number is
estimated to increase to 150million by 2050. Greater caregiver burdens and financial impacts on
the healthcare system are expected as we wait for an effective treatment for dementia.
Researchers are constantly exploring new therapies and screening approaches for the early
detection of dementia. Artificial intelligence (AI) is widely applied in dementia research,
including machine learning and deep learning methods for dementia diagnosis and progression
detection. Computerized apps are also convenient tools for patients and caregivers to monitor
cognitive function changes. Furthermore, social robots can potentially provide daily life support
or guidance for the elderly who live alone. This review aims to provide an overview of AI
applications in dementia research.We divided the applications into three categories according to
different stages of cognitive impairment: (1) cognitive screening and training, (2) diagnosis and
prognosis for dementia, and (3) dementia care and interventions. There are numerous studies on
AI applications for dementia research. However, one challenge that remains is comparing the
effectiveness of different AI methods in real clinical settings.

Impact statement

Artificial intelligence becomes popular for dementia research. Supervised and unsupervised
machine learning models can be applied for cognitive screening, diagnosis, prognosis, and
potentially for dementia care and treatment development.

Introduction

Dementia is a syndrome characterized by deterioration of cognitive function and behavior
beyond what might be expected from the usual consequences of biological aging (Ernst and
Hay, 1994; Bouchard, 2007). The prevalence rate among those aged ≥60 years in different world
regions is approximately 5%–7% (Prince et al., 2013), and the total number of dementia cases is
expected to increase from 57.4 million in 2019 to approximately 150 million by 2050 (Nichols
et al., 2022). The etiological subtypes of dementia include Alzheimer’s disease (AD), vascular
dementia, frontotemporal dementia (FTD), frontotemporal lobar dementia, Huntington’s dis-
ease, Lewy bodies, and Parkinson’s disease (Bouchard, 2007). Mild cognitive impairment (MCI)
is also regarded as an early stage of dementia (Petersen, 2004; Morris, 2006). AD accounts for
approximately 60%–70% of diagnosed dementia cases and attracts the most attention from
researchers. Early detection and timely diagnosis are challenging as the diagnoses of dementia are
based on a comprehensive procedure of semi-structured interviews, cognitive tests, and medical
examinations, which are time-consuming, costly, and sometimes even invasive. AD occurs
mainly in the elderly, and it is difficult to distinguish between a degenerative condition and
the general impact of aging. Approximately 29%–76% of individuals with dementia are unrec-
ognized in clinical practice (Valcour et al., 2000; Knopman et al., 2003; Chodosh et al., 2004).

Researchers employed artificial intelligence (AI) in clinical decision support systems, new
therapy discovery, and genomics research by using different biomarkers of dementia (Miao et al.,
2017; Zhu et al., 2020; Anastasio, 2021). Those biomarkers are measurable indicators of a
biological state for dementia or cognitive decline, including neuroimaging, retinal imaging,
language information, cerebrospinal and blood biomarkers, and gene information. AI has led
to great breakthroughs in image processing (Krizhevsky et al., 2012) and natural language
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processing (NLP), such as the development of speech-to-speech
translation engines and spoken dialogue systems (Hirschberg and
Manning, 2006) that allow for more complicated and fast analysis
of neuroimaging and speech data. For complex data sources such as
magnetic resonance imaging (MRI), position emission tomography
(PET) neuroimaging, and cerebrospinal fluid (CSF) biomarkers
(Suk et al., 2016; Ebrahimighahnavieh et al., 2020), deep learning
methods (e.g., neural network-related methods) can be applied to
build diagnostic classifiers or applied in feature extraction steps
(e.g., Auto-Encoder; Ebrahimighahnavieh et al., 2020). The support
vector machine (SVM) algorithm is the most widely used machine
learning method to classify diseases like Alzheimer’s, Epilepsy, and
Parkinson’s (Deepa et al., 2017). The neural network-based
methods are also popular, includingmultilayer perception and deep
learningmethods such as the convolutional neural network (CNN).
An upsurge in chemical data availability makes AI viable for virtual
screening (VS) of drug discovery (Vamathevan et al., 2019). The
global popularity of smartphones makes it possible to deploy a
variety of mobile apps for cognitive training and screening, includ-
ing traditional cognitive tests and unconventional new methods
(Thabtah et al., 2020; Chelberg et al., 2021). Social robots were
developed to assist dementia patients in performing basic instru-
mental activities of daily living (Schroeter et al., 2013; Law et al.,
2019; Ghafurian et al., 2021).

This review summarizes AI in dementia research and its appli-
cation to (i) dementia diagnosis and prognosis, (ii) cognitive
screening and training, and (iii) care and treatment. The paper
search was conducted on Ovid Embase, MEDLINE, Web of Sci-
ence, IEEE Xplore, and ScienceDirect with the following keywords:
artificial intelligence or machine learning or deep learning or
support vector machine or decision tree and dementia or cognitive
or Alzheimer. Papers that applied machine learning technology on
dementia were included whether they were original study or
reviews.

Basic concepts of artificial intelligence

AI is a general term that means imitating intelligent human behav-
ior using a computer with minimal human intervention. Research
intoAI applications began shortly after the official naming ofAI at a
Dartmouth College meeting in 1956 (Mishra and Li, 2020).
Machine learning is a subfield of AI that works by examining and
learning patterns of input datasets to buildmodels for classification,
regression, and clustering. Deep learning, reinforcement learning,
and transfer learning are more specific subsets of machine learning.
As reported in Table 1, machine learning methods include SVM,
random forest (RF), k-nearest neighbor (k-NN), and so on. Deep
learning methods are neural network-based methods, such as CNN
and artificial neural network (ANN). It has only recently become a
trend with the onset of the “Big Data” era, although it has existed
since the 1950s.

Machine learning can be divided into three types: supervised,
unsupervised, and semi-supervised learning, according to whether
the input data are labeled (Kumar et al., 2021). Supervised learning
means training a model on a dataset annotated with labels applied
in classification and regression tasks, such as linear regression
(LR) and SVM. In comparison, unsupervised models learn from
unlabeled data by extracting features and patterns in solving clus-
tering problems, such as k-NN and principal component analysis.
Finally, the semi-supervised method builds a model on a training
dataset with labels in one part and no labels in the other. A specific

algorithm does not necessarily belong to only one of the three types.
For example, semi-supervised SVM is a good solution when the
datasets contain unlabeled data, whereas the standard SVM cannot
perform well in this situation (Ding et al., 2017).

Applications in dementia diagnosis and prognosis

The complex process of dementia diagnosis involves a combination
of medical examinations and professional clinicians. The Diagnos-
tic and StatisticalManual ofMental Disorders (DSM) is widely used
as a general diagnostic criterion for dementia, and themost updated
version is DSM-5 (Bouchard, 2007; American Psychiatric Associ-
ation, 2013). However, it does not represent all the clinical profiles
of some subtypes of dementia, such as vascular and FTD, where
memory impairment is not necessarily the first requirement.
Currently, there are also other different diagnostic criteria
which are used in clinical settings, and dementia research (e.g.,
NINCDS-ADRDA10 criteria and 10th revision of the International
Classification of Diseases; McKhann et al., 1984; World Health
Organization, 1992; Bouchard, 2007). Cognitive deficits might
appear in many other diseases, but only those diseases whose core
features are cognitive disorders and decline are included as neuro-
cognitive disorders. Diagnosis involves cognitive function, lan-
guage, praxis, gnosis, executive function, and other medical tests.
Overall, there are no perfect criteria, and the diagnostic process is
complicated. A large number of patients remain undiagnosed due
to costly and time-consuming procedures (Prince et al., 2016). The
disease progresses, before symptoms appear clearly, while patients
experience mild-to-moderate cognitive impairment.

Machine learning methods are widely applied in high-
dimensional clinical data for dementia prediction (Spooner et al.,
2020). The Alzheimer’s Disease Prediction of Longitudinal Evolu-
tion Challenge was held in 2017, which aims to identify the most
effective features and approaches that predict clinical diagnosis of
AD, Alzheimer’s Disease Assessment Scale Cognitive Subdomain
(ADAS-Cog13), and total volume of the ventricles (Marinescu
et al., 2021). The challenge compared the performance of 92 algo-
rithms and found that those algorithms perform differently on
three outcomes, and CSF samples and diffusion tensor imaging
were associated with better diagnosis performance (Marinescu
et al., 2021). With the number of publications increasing drastically
since 2017 (Ebrahimighahnavieh et al., 2020), deep learning has
begun to gain considerable attention in research for AD detection.
The data sources applied in AI models are beyond the traditional
data format, such as age, gender, and comorbidity. New forms of
cognitive data include neuroimaging, speech and language, genetic
research, CSF and blood biomarkers, and electroencephalogram
(EEG) and retinal imaging (Figure 1).

Neuroimaging

Specific changes in brain structure and other metabolite responses
in the brain can be measured by modern techniques, such as PET
andMRI.Machine learningmethods have been developed to detect
disease via neuroimaging with improved medical imaging and
greater availability of neuroimaging data (Pellegrini et al., 2018).
Due to the complexity of imaging data, feature extraction for
neuroimaging data is still a challenge for data scientists. Feature
extraction of imaging data can be generally grouped into four
categories: voxel-based, slice-based, patch-based, and regions-of-
interest (ROIs)-based features (Ebrahimighahnavieh et al., 2020).
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ROI-based and patch-based methods were reported to be better
pre-processing methods as they can exclusively include AD-related
features in neuroimaging (Ebrahimighahnavieh et al., 2020).

The advanced processing power of Graphics Processing Units
makes it possible to apply deep learning methods in neuroimaging,
particularly for CNNs, showing good performance in detecting
disease by medical imaging (Ebrahimighahnavieh et al., 2020).
Pellegrini et al. (2018) reviewed studies from 2006 to 2016 and
eventually included 111 studies of machine learning of neuroima-
ging on dementia detection. More than half of those studies applied
SVM, and other methods, such as adaptive boosting (AdaBoost),
linear discriminant analysis, and RF, were also involved. In the
recent decade, deep learning has been a trend in the neuroimaging
data processing. It imitates the working of the human brain and can
merge complicated feature extraction and classification in solving
complex problems. A review focused on deep learning and neuroi-
maging included more than 100 papers, all of which were con-
ducted after 2013 and most (80%) after 2017 (Ebrahimighahnavieh
et al., 2020). Hidden Markov Model, one of the reinforcement
learning methods, is especially suitable for detecting the progres-
sion of dementia by analyzing sequence neuroimaging data, and it
has been applied by different research groups (Chen and Pham,
2013; Williams et al., 2019). Most studies pay closer attention to
technical details, but have less of a clinical focus (Pellegrini et al.,
2018). A clinical-based framework is, therefore, needed to improve
the application of the AI models.

Speech and language

Recent studies have suggested that language dysfunction is one of
the earliest signs of cognitive disorders and a possible biomarker for
the early detection of dementia (Ahmed et al., 2013; Mueller et al.,
2017; Beltrami et al., 2018; Garcia et al., 2020). Speech and language
have long been used as important clinical information for dementia
diagnosis, such as the Boston naming test studied and reported
since 1986 (Knesevich et al., 1986). It can be obtained through
content-based (specific tasks) (Rodriguez-Aranda et al., 2016; Ven-
neri et al., 2018) or content-free approaches (spontaneous conver-
sation) (Huff, 1986; Becker et al., 1994). The dysfunction includes
word retrieval difficulties (e.g., verbal naming, accurate meaning
communication, and pulsation) and a tendency to repeat words or
sentences. NLP plays an essential role in speech and text data
analysis to extract prosodic, acoustic, or other features in dementia
analysis (Jaffe and Feldstein, 1970; Forbes et al., 2002; Weiner et al.,
2017; Luz et al., 2018). Researchers widely transformed NLP in the
1990s to build models over large quantities of empirical language
data (Hirschberg and Manning, 2006). Traditional text feature
extraction includes filtration, fusion, mapping, and clustering,
which result in a lengthy process. Deep learning can be used to
quickly acquire effective characteristics from training data, and
CNN and recurrent neural networks (RNN) are two popular
models (Liang et al., 2017). Early NLP on the text-based dialogue
has expanded to include spoken dialogue with the development of
spoken dialogue systems and automatic speech recognition, which
allows a more effective speech feature extraction (Weiner et al.,
2017).

Although many studies were conducted in building diagnostic
models with a series of machine learning methods, such as SVM,
decision tree, and RF, the expansion of those models is limited due
to the small sample size and incomparable datasets. In 2020, the
Alzheimer’s Dementia Recognition through Spontaneous Speech
Challenge at INTERSPEECH 2020 provided an opportunity to use
all available audio and textual data from a benchmark speech
dataset. The challenge defined shared tasks and provided a stand-
ardized dataset based on spontaneous speech and allowed different

Table 1. Abbreviation for machine learning methods*

Abbreviation Methods

SVM

SVM Support vector machine

RBF-SVM Radial basis function

Discriminant analysis

LDA Linear discriminant analysis

QDA Quadratic discriminant analysis algorithm

Tree model

DT Decision tree

RF Random forest

AdaBoost Adaptive boosting

XGBoost Extreme gradient boosting

Bayes model

NB Naïve Bayes

GNB Gaussian naïve Bayes

Regression

LR Logistic regression

MLR Multiple linear regression

LASSO Least absolute shrinkage and selection operator

PLSR Polynomial least squares regression

Neural network-based

MLP Multilayer perception

RBM Restricted Boltzmann machine

AE Autoencoder

ANN Artificial neural network

DNN Deep neural network

DPN Deep polynomial network

CNN Convolutional neural network

RNN Recurrent neural network

RBF-NN Radial basis function network

DBN Deep belief network

Other

SRC Sparse representation classification

GC Gaussian classifier

k-NN k-nearest neighbor

Factor analysis Factor analysis

OPLS Orthogonal projections to latent structures

– Hierarchical clustering

– Bayesian network

– Ensemble neural network

ICA Independent component analysis

*The list only shows machine learning methods reported in this study.
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research groups to test the performance of their existing or novel
methods (Luz et al., 2020).

Genetics

Approximately 58%–79% of the risk of late-onset Alzheimer’s is
heritable (Gatz et al., 2006; Sims et al., 2020). Studies suggest that
patients with FTD (Greaves and Rohrer, 2019) or Lewy bodies
dementia (Guerreiro et al., 2019) have a high proportion of positive
family history in as many as 60% of cases (Mackenzie et al., 2014).
High-dimensional genetic-related data have been generated with
the evolution of genomics. AI methods, such as SVM, have shown
good performance on gene identification and pathway analysis, and
RF is well suited for microarray data (Miao et al., 2017). Xu et al.
(2018) applied the SVM model to predict AD by using protein
sequence, and the accuracy rate was 85.7%, where RF, naïve Bayes,
AdaBoost, and Bayes network were also applied and compared with
the result of SVM. Varatharajah et al. (2019) integrated genetic
data, multimodal neuroimaging, CSF biomarkers, genetic factors,
and measures of cognitive resilience data to build an SVMmodel to
predict the progress of MCI to AD within 3 years with an accuracy
rate up to 93%. Machine learning methods can also be applied in
detecting significant genetic variants, gene expression, and gene–
gene interaction (Mishra and Li, 2020).

Cerebrospinal fluid and blood biomarkers

Measuring Amyloid-Beta, total tau (T-tau), and hyperphosphory-
lated tau (p-tau) in CSF proteins has proved accurate in diagnosing
AD (Ritchie et al., 2017; Zetterberg, 2019). However, these bio-
markers are expensive and relatively invasive. In addition to

invasive methods, imaging technology can reflect the level of CSF
biomarkers (e.g., tau PET). With the recent advent of highly sen-
sitive and specific immune and mass spectrometry-based assays,
CSF biomarkers can also be detected through blood (Varma et al.,
2018). Other blood biomarkers include N-methyl-D-aspartate
receptor-mediated biomarkers and metabolites biomarkers. The
first d-glutamate-based study that applied machine learning
models to detect MCI and AD in healthy people was published in
2021 (Chang et al., 2021). A total of 133 AD patients, 21 MCI
patients, and 31 healthy controls were recruited, and four machine
learning algorithms (SVM, LR, RF, and Naïve Bayes) were
employed to build predictive models to distinguish MCI or AD
patients from healthy controls, with sex, age, and d-glutamate as
predictors. The Naïve model and the RF model showed the best
performance with area under the curve (AUC) of 0.82 and 0.79
(Chang et al., 2021). Stamate et al. (2019) applied deep learning,
extreme gradient boosting, and RF on plasma metabolites data to
differentiate healthy people and patients with AD. They also
showed better AUC than the results from amyloid, p-tau, and
t-tau. Although the AUC seems good, which is usually more than
0.80, most studies lack external validation. Further studies are
needed to assess the performance of combinations of CSF, blood
biomarkers, and lifestyle factors.

Electroencephalogram and retinal imaging

An EEG is a test, administered by hospital equipment and wearable
devices, that detects abnormalities in brain waves or in the electrical
activity of the brain. In the recent decade, researchers have set their
sights onAD diagnosis and progression based on EEG data ((Malek
et al., 2017; Stancin et al., 2021). Due to the complexity of EEG data,

Figure 1. Applications of AI on Dementia Diagnosis and Prognosis
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feature extraction is a crucial step, including time-domain and
frequency-domain features, nonlinear features, entropies, spatio-
temporal features, and complex networks (Stancin et al., 2021).
Each feature contains a series of the index and is explored by many
studies (Deepa et al., 2017; Jaya Shree and Venkateshwarlu, 2021).
SVM is widely used for binary classification (Staudinger and Poli-
kar, 2011; Jaya Shree and Venkateshwarlu, 2021; Tzimourta et al.,
2021). Sharma et al. (2021) conducted a multiclass SVM in 2021
with a diagnostic accuracy of 87.6%, in which they initially
extracted 12 EEG features and then selected five of them through
analysis of variance. Deep learning methods, such as RNN and
ANN, are rapidly increasing in EEG studies. Ieracitano et al. (2020)
proposed a multimodal machine learning that integrated Multi-
layer Perceptron, LR, and SVM to classify MCI and dementia using
EEG data.

Retinal imaging is a cost-effective replacement for neuroima-
ging as retinal changes can reflect the pathology of the brain. The
quantitative analysis of vessel calibers, tortuosity, and network
complexity in retinal imaging data provide diagnostic value for
dementia. Tian et al. (2021) proposed a multistage pipeline that
involved SVM and CNN and achieved an average diagnostic accur-
acy of 82.4% for AD.

Applications in cognitive screening and training

Several mobile apps have been developed to screen normal indi-
viduals’ cognitive function before they suffer fromMCI or demen-
tia (Thabtah et al., 2020). Most mobile apps assist individuals
diagnosed with MCI or dementia in brain training. In addition to
apps, machine learning can also contribute to building new
assessments for MCI or dementia. Chiu et al. (2019) applied
information gain, which is a feature selection method in RF, in
developing a brief questionnaire to help clinicians in dementia
diagnosis. With advances in wearable technologies, plenty of data
collected from wearable sensors can also be applied in machine
learning models and thus improve the performance (Iaboni et al.,
2022).

Computerized cognitive screening

Dementia screening aims to identify those in the prodromal phase
of dementia by using neuropsychological tests (Panegyres et al.,
2016). The tests include the Abbreviated Mental Test, the Mon-
treal Cognitive Assessment (MoCA), the Mini-Mental State
Examination (MMSE), and others. Several dementia screening
methods are now available on mobile apps, making them more
accessible to patients, caregivers, and medical staff. Those screen-
ing tools could be divided into three categories (Thabtah et al.,
2020): (1) apps based on a single medical assessment method
(such as MMSE and MoCA), (2) apps based on multiple medical
assessment methods (e.g., DementiaTest, which integrated six-
item cognitive impairment and the structured clinical interview;
Thabtah et al., 2019), and (3) apps based on nonconventional
methods. Cognity is one of the eligible apps, which applied AI
technology to screen for AD by combining analysis of a clock
photo drawing by the user and the Mental Status Examination
(Thabtah et al., 2020).

A systematic review in 2020 evaluated mobile apps of dementia
screening available on Android and Apple platforms (Thabtah
et al., 2020). The evaluated criteria were based onDSM-5, including
six domains of cognitive function. They initially found 275 apps in

the English language, and only 20 apps were eligible. Most excluded
apps were games and informative apps to assist individuals in their
cognitive functions and skills (Thabtah et al., 2020). Another
systematic review performed by Chan et al. (2021) evaluated the
diagnostic performance of digital tests, finding a few validation
studies for all digital tests, and the eligible apps had a sensitivity and
specificity of more than 0.8.

Computerized cognitive training

Cognitive training via digital devices is a promising strategy for
maintaining the cognitive function of healthy elderly and MCI
patients (Zhang et al., 2019). The main advantages are the active
accessibility and timely feedback (Irazoki et al., 2020). In addition to
providing cognitive training for normal people or MCI patients,
most training apps focus on caregivers or familymembers of demen-
tia patients to assist them in caring for dementia patients. A review
performed by Chelberg et al. (2021) included 75 Australian-based
apps, focusing on cognitive training and addressing care needs. The
majority of themwere free to download, and their primary audience
were caregivers, with approximately 40% of them focusing on MCI
or dementia patients (Chelberg et al., 2021).

Others

In addition to those digital games, serious games were designed and
developed for cognitive screening. Users were motivated and
engaged to regularly perform screening tasks by playing serious
games (Cha et al., 2019). Karapapas and Goumopoulos (2021)
applied machine learning methods using demographic character-
istics and data collected from serious games, which showed a high
detection performance. The flexibility of wearable platforms has
also provided a variety of data to detect cognitive status (Iaboni
et al., 2022).

Applications in dementia care and treatment

Socially assistive robots

Given the complexity of dementia care and that the aging popula-
tion requires more care from a decreasing number of caregivers,
researchers have been exploring ways to utilize advanced robotic
technology to assist elderly care (Hung et al., 2019; Koutentakis
et al., 2020). PARO is one of themost popular interactive pet robots
for older adults. It has the appearance of a baby harp seal and
provides companionship and emotional interaction to users (Hung
et al., 2019). Other socially interactive robots provide support in
daily engagement for thosewho haveMCI or are at the early stage of
dementia (Law et al., 2019). CompanionAble is a robot that helps
MCI or dementia patients live at home by linking to a smart home
environment (Schroeter et al., 2013). This robot focuses on cogni-
tive and social support, such as daily activity reminders, suggesting
activities, video calling, and cognitive training, which were tested
with five couples in their homes over 2 days and potentially reduced
the burden for caregivers (Schroeter et al., 2013). RobuLAB10 is a
robot to monitor emotions, help in health emergencies, make calls,
and provide cognitive training and other support for daily activities
(Pino et al., 2015). These social robots are tested in research with
limited participants followed during a short period and are not
widely adopted in the real world.
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Drug discovery

New drug discovery is a long process, including preclinical pro-
cesses and clinical trials. The preclinical process before in vitro tests
includes target identification and validation, compound screening,
and lead discovery (Stamate et al., 2019). AI techniques could be
applied in all aspects of this process to accelerate new drug devel-
opment, among which VS and target discovery are the most com-
mon application scenarios (Stamate et al., 2019). Figure 2 shows the
common AI application of dementia drug discovery.

Target discovery aims to confirm a causal association between
target and disease, which involves protein structure and chemical–
protein interaction predictions (Fang et al., 2015). Recent studies
indicated that AD shares intermediate endophenotypes and under-
lying mechanisms with other diseases, which means there would be
multiple targets for AD (Fang et al., 2020). Fang et al. applied naïve
Bayesian and recursive partitioning algorithms to predict active
compounds bound to as many targets as possible (e.g., the Amyloid
Precursor Protein). The methods were evaluated with internally
fivefold cross-validation and an external test dataset with an aver-
age AUC of 0.965 (Fang et al., 2015). His team also proposed a
network-based AI framework to identify potential drug targets by
integratingmultiomics data, human protein–protein networks, and
other related data (Fang et al., 2021).

VS is extremely computationally intensive and likely to take an
incredible amount of time in silico searches over millions of com-
pounds, ultimately increasing yields of potential drug lead
(Carpenter and Huang, 2018). Machine learning methods are
conducted to speed this process up by building predictive models
using active and inactive molecules. SVM is generally among the
top performers in machine learning for VS studies (Carpenter and
Huang, 2018). It applied the “kernel” function to map the database
molecules into high-dimensional representations. Yang et al.
(2010) performed SVM and RF to predict γ-secretase inhibitors
and noninhibitors related to AD prevention and treatment.

Deep learning is reported to perform better than machine
learning methods (Carpenter and Huang, 2018), among which
ANN and CNN are the most widely used methods (Anastasio,
2021; Fang et al., 2022; Wang et al., 2022).Rodriguez et al. (2021)
proposed amachine learning framework to nominate drugs that the

FDA had already approved. They explored the potential associ-
ations betweenAD andmolecularmechanisms described by a list of
genes, which integrated LR, SVM, RF, and two-layer CNN. Wang
et al. (2022) applied graph-based deep learning for drug–target
interaction prediction, which performed better than naïve Bayes,
logistic regression, and RF classifiers.

Conclusions and future challenges

AI technology can be applied to the field of dementia research to
contribute to fast and accurate diagnosis, providing accessible
cognition training tools and reducing care burden. AI can also
monitor the progression from MCI to dementia so that those at
high risk receive timely interventions. Deep learning has become
more popular, particularly in image processing, due to its ability to
process complex data. However, one the one hand, the complexity
algorithms and black box of explanation restrict its access to
clinical researchers. On the other hand,most of the studies explored
the performance of the proposed algorithms on datasets with
different sample sizes and data features, whichmakes it challenging
to compare different methods. Online datasets, such as ADNI,
AIBL, and MIRIAD, have contributed to dementia research
(Ebrahimighahnavieh et al., 2020). However, even in the same
datasets, different studies may still be incomparable as they can
apply different parts of those data for different features. For
example, applying single biomarkers or merging various data
sources, such as demographic and clinical information, performs
differently. Thus, further exploration of benchmarking datasets and
standard frameworks in different types of dementia is a necessary
challenge. In addition, the increasing usage of smart wearable
devices that generate complexity big data has provided a new
avenue for detecting cognitive impairment (Chen et al., 2019). This
kind of digital biomarker has enormous potential power in demen-
tia research in the future.
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