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LETTERS TO THE EDITOR

ON VARIATION IN BIRTH PROCESSES

M. J. FADDY,* University of Otago

Abstract

Birth processes with piecewise linear birth rates are -analysed, and
numerical results suggest that, relative to the linear case, convex birth rates
increase variability and concave birth rates decrease variability.

NON-LINEAR BIRTH RATE; RELATIVE VARIATION

1. Introduction

A general Markov birth process {X(t), t=0} may be defined in terms of infinitesimal
transition probabilities:

1.1) P{X(t+6t)=n+1|X(@)=n}=An) é¢,

where A(n) is a function of the population size. Non-linear forms for A(n) can arise when the
population size is bounded, as in the case of the simple stochastic epidemic (Bailey (1975),
Chapter 5). Although explicit expressions for the probability distribution of the population
size at varying times may be determined, they are analytically and computationally awkward,
and do not reveal much about the qualitative behaviour of the process. Variation is an
essential feature of any stochastic process: non-linear processes can be linearised into
approximating processes which have the same deterministic solution (see, for example, Faddy
(1977)), but their stochastic variation could be quite different (Morgan and Hinde (1976)).
Here a class of piecewise linear forms for A(n) is considered, where computationally
convenient expressions for the moments can be established.

2. Model formulation and results

Consider A(n) given by:
@.1) An) = {

An, n=s
a+An, n=s

with (A, — A,)s = a, for some s = n,+ 1 where n, (Z1) is the initial population size. It will be
assumed that A(n) 20, so that if A, <0 it will be necessary for A(n) =0 for some n, making
this value an upper bound on the population size. From (1.1) and (2.1) the process
{X(¢), t = 0} behaves initially as a simple linear birth process so that the state probabilities
will be negative binomial (Cox and Miller (1965), Chapter 4); i.e., for n =no, no+1,...,s:

(n—1)!
(no — 1)! (n — ny)!
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22 P{X(®)=n}= (exp (—A:1))"(1 — exp (=A,))" ™.
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Let the random time taken for the population size to reach the level s be T, then
P(T, > 1) = 5;2,, P{X(t) = n} and so the probability density function of T, is:

s—1 d
== ZPXO=n} =46 -DP{X(0)=s-1}
n=nqg
_M(s — D) (exp (=A:0))"(1 — exp (A, 1)) 17"
(no—= D! (s =1~ no)!
After reaching this size s, the population behaves as an immigration—birth process ((1.1) and
(2.1)) with conditional probabilities p,(t)=P{X(t)=n|X@)=s}, for n=s, s+1,...,
forming another negative binomial distribution (cf. exercise 8 on p. 200 of Cox and Miller
(1965)):
(a/Ay+n—1)!
2.4 R(2) =
24 P = T+ s =Dl (n —35)!

Thus for n =5, s +1, ..., the state probabilities P{X (t) = n} will be given by:

@25 J: P{X()=n|X(7) =s}f(v)dr = L'pn(t - Of(7) dr,

since the population size must have reached s at some time.
Equations (2.5), (2.4) and (2.3) together with (2.2) thus make up the probability
distribution of the population size, from which moments follow.

E(X()} = noexp (hut) 2( °Tk'f) (exp (— M) (1 exp (~Mi))*
(a/Ay+5) exp (A,t)(s — 1)!

(no— D! (s —ne—1)!

a/Ay (s —1)! RO ee1g1 _ vio-t
_(no—l)!(s—no—l)!J; yr Ay dy.

The sum and integrals on the right-hand side of (2.6) can all be expressed in terms of the
incomplete beta function (Abramowitz and Stegun (1972) §26.5), I(a, b):

(@a+b-1) Joot b1 (a+k n . «
[ty ta-yay = 3 Sy
so that (2.6) becomes:

E{X()} = noexp (Ait)lexp-2,0(No+ 1, 5 — o)

(S 1)! (no + Az/ll - 1)!
@7 @/ +s)exp (Aat) o s ¥ A, — 1)!
X 1y _exp (-2,0(S — Mo, N0 + AalAy)
= &/ Aol _exp (- 1,0(S — No, No)-

(2.3)

(exp (—A,1)) (1 — exp (—A,8))" .

1—exp (—Aqf)
(2.6) f ys—no-l(l —- y)n0+lz/ll—1 dy
0

Also:
E{X@)(X(t) + 1)} = no(no+ 1) exp (A t)Mexp (~2,0(no + 2, s — 1)
(s = 1) (no+24,/A,—1)!

+ (/A +5)(a/A, + s + 1) exp (2A,1) (ta— 1)1 (s + 22,/A, — 1)

X Il—exp(—l.ll)(s — Ny, o+ 212/11)

(s — D! (ng+ A /A, — 1)
(ng—1)! (s +A,/A, = 1)!
X1 _exp (—A,t)(s — ng, no + Ax/1)

+ &/ A/ Ay — D _exp (—1,0(S — o, o)

(2.8)

—2a/ A (A, + s) exp (At)
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Figure 1. Relative variation

from which the variance of the population size may be determined.

Now had the birth process {X(¢), t=0} been linear, the negative binomial distribution
(2.2) would have held over all population sizes Zn, = X(0), in which case (Cox and Miller
(1965), Chapter 4) Var {X ()} = E{X()}[E{X(t)}/n,— 1]; so

Var {X(#)}
E{XO}NE{X(0)}/X(0)-1]

seems a natural measure of relative variation for birth processes. Shown in Figure 1 are some
numerical calculations of this quantity (2.9) from (2.7) and (2.8) for some typical birth rates
A(n) from (2.1): (a) convex A(n) (A;<A,) and (b) concave A(n) (A,>A;). There is more
relative (to the linear case) variation for convex A(n) and less for concave A(n), with a similar
pattern being observed for other numerical choices of 4, and A,: it is tempting to conjecture
that this is generally true, and not just for the specific form (2.1) of A(n).

The opposite result for non-linear death processes was conjectured by Faddy (1985) and
subsequently proved by Ball and Donnelly (1987). Their proof rested not on general
expressions for the mean and variance of the population size, but on expressing a similar
relative variation in terms of correlations between pairs of individuals initially present in the
population. For birth processes, (2.9) must exemplify some interaction between individuals in
the population; just how is not at all clear, and a proof remains elusive!

(2.9)
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