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SUMMARY

Population seroprevalence can be estimated from serosurveys by classifying quantitative
measurements into positives (past infection/vaccinated) or negatives (susceptible) according to a
fixed assay cut-off. The choice of assay cut-offs has a direct impact on seroprevalence estimates.
A time-resolved fluorescence immunoassay (TRFIA) was used to test exposure to human
parvovirus 4 (HP4). Seroprevalence estimates were obtained after applying the diagnostic assay
cut-off under different scenarios using simulations. Alternative methods for estimating assay cut-
offs were proposed based on mixture modelling with component distributions for the past
infection/vaccinated and susceptible populations. Seroprevalence estimates were compared to
those obtained directly from the data using mixture models. Simulation results showed that when
there was good distinction between the underlying populations all methods gave seroprevalence
estimates close to the true one. For high overlap between the underlying components, the
diagnostic assay cut-off generally gave the most biased estimates. However, the mixture model
methods also gave biased estimates which were a result of poor model fit. In conclusion, fixed
cut-offs often produce biased estimates but they also have advantages compared to other
methods such as mixture models. The bias can be reduced by using assay cut-offs estimated
specifically for seroprevalence studies.
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INTRODUCTION

Seroepidemiology can be used to assess the burden of
infectious diseases and to optimize immunization
strategies for vaccine-preventable diseases. This can
be achieved by carrying out serological surveys
aimed at identifying susceptible cohorts that can

subsequently be targeted by public health interven-
tions. Estimating seroprevalence (i.e. the percentage
of population that shows markers of having the dis-
ease) as opposed to simply prevalence (based on clin-
ical symptoms) has the advantage of more accurate
definition of those infected that also includes those
vaccinated and with asymptomatic infections [1, 2].

Once serum samples have been collected they can
be tested to determine susceptibility to the infection.
The amount of antibody present in a sample can be
measured in the laboratory using a serological assay
that returns a quantitative measurement. Each sample
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is classified into positive (recent/past infections or vac-
cinated) or negative (susceptibles) according to a pre-
defined cut-off. Positive measurements close to the
cut-off are often further classified into equivocals
(low positives); however, for simplicity this will not
be considered here [2]. The proportion of positives
over the total number of samples included in the ser-
osurvey equals the seroprevalence estimate.

The method described above is used for routine
diagnostic testing but it is also used to classify serosur-
vey samples into susceptibles and non-susceptibles.
Therefore, the choice of assay cut-off is crucial since
it has a direct impact on seroprevalence estimation
[3, 4]. There are different methods for estimating
such cut-offs, and well-conducted seroepidemiological
studies are expected to include details of how these
were calculated [1]. However, regardless of the method
used, the optimum value for a cut-off depends on the
aims of the study as well as the seroprevalence and
type of the infection. For example, an assay used to
test prior history of chickenpox in pregnant women
needs to be highly specific to ensure that all true nega-
tives are classified as negatives whereas a test for
screening population for HIV needs to be highly sen-
sitive to make sure it flags all potential cases.
However, the seroprevalence of the disease is also im-
portant since for a given sensitivity and specificity, the
performance of the test varies for different propor-
tions of positives [i.e. the change in positive predictive
value (PPV) and negative predictive value (NPV)].
Finally, the type of the disease is also important,
e.g. an HIV assay needs to be highly sensitive to
make sure the true positives are tested as positive
but also specific (to avoid falsely informing indivi-
duals that are positives), whereas the latter might
not be so important for a bacterial infection [2].

An alternative method to fixed cut-offs for estimat-
ing population seroprevalence is mixture modelling.
Mixture models can be used to estimate seropreva-
lence directly from the quantitative serosurvey data,
rather than initially classifying individual samples
into positive or negative according to a pre-defined
cut-off. This can be achieved by fitting a mixture of
distributions and obtaining the proportion of samples
belonging to each underlying component [5]. Mixture
models have been used in the past to estimate popula-
tion seroprevalence of various infectious diseases [3,
5–7]. One of the assumptions required for the mixture
mode to work is to have reasonably high proportions
of data in each underlying component [2]. This was
not the case for the blood donor serosurvey presented

here where samples were tested for human parvovirus
4 (HP4) as that infection is particularly associated
with people who inject drugs (PWID). As an alterna-
tive, we propose using serological assay cut-offs to dis-
tinguish between HP4 positive and negative samples.

Estimating seroprevalence using assay cut-offs has
limitations compared to mixture models; however, it
is still widely used mainly because of convenience
(once the assay cut-off has been set, it can be used
in different serosurveys). The aim of this paper is to
compare existing and proposed cut-off estimates and
assess their impact on estimating seroprevalence.

METHODS

HP4 dataset

A time-resolved fluorescence immunoassay (TRFIA)
developed to test exposure to HP4 was used as an ex-
ample. In brief, a HP4 IgG TRFIA was developed
using a panel of 184 sera from PWID that ensured a
high number of positive samples. The aim was to esti-
mate an assay cut-off that could be subsequently ap-
plied to a serosurvey of 608 blood donors’ sera
collected in 1999 and 2009. More information about
how the individuals were selected and how samples
were tested is given elsewhere [8].

Mixture modelling

A simple mixture model was considered for the PWID
dataset. Assuming two underlying populations of
positive (past/current infections) and negative samples
(individuals with no past infection), a two-component
mixture model can be fitted of the type:

g x( ) = 1− p
( )

f− x; θ−( ) + pf+ x; θ+
( )

,

where f− and f+ are the density functions for the nega-
tive and positive components, respectively, and θ− and
θ+ are the parameters defining the shapes of the under-
lying distributions. For a simple model of this form,
the proportion of the sample in the positive underlying
component p̂ can be used as an estimate of seropreva-
lence whereas the proportion of susceptibles is given
by 1− p̂ [9].

Cut-off estimation

There are no definite rules for the choice of cut-off
point, and it must depend on the reason for perform-
ing the test. Reports from good serological studies
should always include an account of how the cut-off
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point was set [1]. A number of methods can be used
for setting an assay cut-off depending on the informa-
tion available when developing the assay. Assuming
that the true status of the samples can be estimated
by another method (e.g. by an established assay that
can serve as gold standard or by questionnaires
recording any past infections) then the quantitative
assay results can be plotted against the true status
using a receiver-operating characteristic (ROC)
curve. The optimal combination of sensitivity and spe-
cificity can then be chosen [10, 11].

Method 1

Often an estimate of the true status is not available.
Then a commonly used cut-off is the mean of the log-
transformed titres of a group of samples that are
known to be negative plus 2, 3 or 4 standard devia-
tions (S.D.) [2, 11–14]. This is the most commonly
used method by the assay manufacturers due to its
simplicity [14]. It produces tests with high specificity,
disregarding the effect this may have on sensitivity.
In terms of seroprevalence, this may lead to some
truly positive samples being classified as susceptible
[2, 3, 6]. In this paper, the mean of negative samples
+2 s.D. (giving assay specificity of 97·5% assuming a
normal distribution) will be examined as a commonly
used method for estimating the assay cut-off.

Alternatively, once a mixture model has been fitted
to the development panel results, a cut-off can be
estimated based on the model’s parameter estimates
[11, 13]. Three methods for cut-off estimation are
described here:

Method 2

Assume that from a mixture model, p̂ is the seropreva-
lence estimate and θ̂− and θ̂+ are the parameter esti-
mates for the negative and positive underlying
component distributions, respectively. For a given cut-
off C, the proportions of falsely classified positive
samples (false negatives) can be defined as
F+ C; θ̂+

( )
and the false positive as 1− F− C; θ̂−),

(

where f− and f+ are cumulative distributions of the
density functions f− and f+, respectively, as defined
above. One way is to estimate a cut-off that minimizes
the total misclassification, i.e. maximizes the following
fraction:

1

1− p̂
( )

1− F− C; θ̂−
( )( )+ p̂F+ C; θ̂+

( ) .

This is a method that has been proposed and used in
the past [13].

Method 3

An alternative cut-off proposed here is to set the num-
ber of false-negative samples to be equal to the num-
ber of false-positive samples. This occurs when

1− p̂
( )

1− F− C; θ̂−
( )( ) = p̂F+ C; θ̂+

( )
,

which can be obtained by solving:

1− p̂
( )

1− F− C; θ̂−)
( )− p̂F+ C; θ̂+)

( ∣∣ = 0.
(∣∣

This method’s cut-off should provide unbiased sero-
prevalence estimates for a population with the same
characteristics.

Method 4

Another cut-off proposed here is to set the number of
false-negative samples relative to the negative samples
correctly classified to be equal to the number of false
positives relative to the number of positive samples
correctly classified. This is given by:

1− p̂
( )

1− F− C; θ̂−
( )( )

1− p̂
( )

F− C; θ̂−
( ) = p̂F+ C; θ̂+

( )

p̂ 1− F+ C; θ̂+
( )( ) ,

which can be obtained by solving:

1− F− C; θ̂−
( )

F− C; θ̂−
( ) − F+ C; θ̂+

( )

1− F+ C; θ̂+
( )

∣∣∣∣∣

∣∣∣∣∣
= 0.

The cut-off estimate from method 4 has the advantage
of not being affected by the proportion of samples
belonging in each underlying component.

Comparison of the different methods using simulations

Simulations were generated aiming to compare sero-
prevalence estimates using the different methods.
This was done in two steps. The objective of the first
step was to estimate the cut-offs. For this, simulations
were generated from a dataset based on the PWID
data. The process was as follows:

(1) Location (mean μ– for the negative underlying
component and μ+ for the positive component),
dispersion (standard deviation σ– for the negative
component and σ+ for the positive component),
and seroprevalence (p) parameters were set to
define a mixture model that data can be simulated
from. Four scenarios were chosen with different
location parameters for the positive underlying
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component while all the other parameters in the
models remained fixed.

(2) One thousand simulated datasets (i = 1, . . ., 1000)
were generated from each of the four mixture
models using the following method. For each
simulation, 184p samples were assumed to have
been sampled from the positive (recent or past in-
fection/vaccinated) population and the rest 184
(1− p) samples from the susceptible population.
Samples assumed to belong to the positive popula-
tion were simulated from N(μ+, σ+) whereas sam-
ples belonging to the susceptible population were
simulated from N(μ−, σ−).

(3) Following each simulation a mixture model was
fitted. Substituting the estimates μ̂−i, σ̂−i, μ̂+i, σ̂+i

and p̂i, cut-offs Ĉhi (h denotes the four cut-off
estimates) were estimated using the methods
described above. The mean of the cut-off esti-
mates �Ch was calculated over the 1000 simulated
datasets. The 95% percentile intervals were given
as a measure of uncertainty.

The objective of the second step was to apply the esti-
mated cut-offs to the serosurvey, thus obtaining sero-
prevalence. Specifically, each cut-off was applied to a
simulated population of 608 samples (based on the
blood donor serosurvey) with varying proportions of
positive population. The simulation methodology for
this population is described below.

(1) The same location and dispersion parameters that
were used to generate the original datasets were
selected for the four scenarios. For each model
a number of seroprevalence parameters p were
chosen ranging from 5% to 50%. One thousand
simulations of 608 samples were generated for
each of the models and scenarios in the same
way as before.

(2) The estimated cut-offs �Ch were applied to the
simulated datasets and hence, a seroprevalence es-
timate was derived for each simulation by group-
ing the samples into positive and susceptible.
The mean of the seroprevalence estimates was cal-
culated over 1000 simulations. The 95% percentile
interval was given as a measure of uncertainty.

The analysis was carried out using Stata statistical
software release 12.1 (StataCorp, USA). For the cut-
off estimation, to find the root of the continuous
monotonic functions, the OPTIMIZE command was
used in R version 2.10.1 (R Foundation for Statistical
Computing, Vienna, Austria,).

RESULTS

Seroprevalence estimation for PWID and UK blood
donors

Following a log transformation, the distribution of
the assay development PWID sera and the fitted
line of the mixture model are given in Figure 1a.
The model estimates for the negative component
were μ̂− = 4.6, σ̂− = 0.3, and for the positive compo-
nent were μ̂+ = 6, σ̂+ = 0.2 and the seroprevalence
estimate for PWID was 20·6% (p̂ = 0.206). Based on
these model estimates, cut-offs were estimated using
different methods. After applying these cut-offs to
the UK blood donors’ sera resulted in the following
seroprevalence estimates: 6·9% [95% uncertainty inter-
val (UI) 5·0–9·2] for method 1, 2·5% (95% UI 1·4–4·0)
for method 2, 2·5% (95% UI 1·4–4·0) for method 3
and 2·8% (95% UI 1·6–4·4) for method 4.

Cut-off estimation for simulation scenarios

Based on the estimates derived from PWID sera, four
simulation scenarios were defined in Table 1. The
underlying components of the mixture distributions
together with the results of one simulation are dis-
played in Figure 2.

For each simulation, cut-offs were estimated using
the methods described above. The cut-off estimates
averaged over the number of simulations together
with their corresponding 95% UIs are given in
Table 2. The cut-off estimate using the mean of nega-
tive samples +2 s.D. (cut-off 5·2, 95% UI 5·1–5·3) did
not vary between the different scenarios. This is be-
cause it is solely based on the shape of the underlying
distribution of the susceptible individuals that remains
fixed across the different scenarios. The cut-off esti-
mates of the three other cut-off methods varied little
with the method 3 cut-off being slightly lower than
the others. As the location parameter of the positive
component was reduced between scenario 1 and scen-
ario 4 the cut-off estimates also became smaller.

Seroprevalence estimation for simulation scenarios

The estimated cut-offs were used to calculate sero-
prevalence from simulated datasets based on the sero-
survey of 608 blood donors. The distribution of the
blood donors’ serological results following a log10
transformation are given in Figure 1b. The estimated
seroprevalence together with the corresponding 95%
UI for each cut-off method and scenarios are given
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in Table 3 generated from models with true sero-
prevalence of 5%, 15% and 25%. In addition to the
estimates obtained by the cut-off methods, seropreva-
lence was estimated by directly fitting mixture models
(proportion of samples belonging to the positive
underlying component).

When the true seroprevalence was 15% or 25% (i.e.
close to the 20·6% estimated from the development
PWID serosurvey) all cut-off estimation methods
gave estimates close to the true one for scenarios
1–3. For higher overlap between the underlying com-
ponents (scenario 4) the estimates deviated from the
true value with method 1 giving the most biased esti-
mate. For true seroprevalence of 5%, all cut-off esti-
mation methods gave estimates close to the true one
for scenarios 1 and 2, whereas for scenario 3 method
4 gave the most biased estimate ( p̂= 11%, 95% UI
5–27). For scenario 4, all methods gave seropreva-
lence much higher than 5% except for method 1 (p̂=
4%, 95% UI 1–7). It should be noted that about 1%
of mixture models failed to converge for scenario 4
and were excluded from further analysis.
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Fig. 1. Distributions of HP4 Europium counts. (a) Sera collected from 184 people who inject drugs. (b) Sera collected
from 608 UK blood donors.

Table 1. Definition of four mixture model scenarios
based on people who inject drugs

Scenario μ− (σ− ) μ+ (σ+ ) P

1 4·6 (0·3) 6·0 (0·2) 0·206
2 4·6 (0·3) 5·7 (0·2) 0·206
3 4·6 (0·3) 5·4 (0·2) 0·206
4 4·6 (0·3) 5·1 (0·2) 0·206
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Fig. 2. Mixture model distributions by scenario based on the dataset of 184 people who inject drugs.

Table 2. Cut-off estimates and 95% uncertainty intervals following 1000 simulations

Scenario Method 1 Method 2 Method 3 Method 4

1 5·20 (5·12–5·29) 5·48 (5·48–5·48) 5·50 (5·38–5·61) 5·45 (5·32–5·57)
2 5·20 (5·11–5·29) 5·31 (5·30–5·32) 5·33 (5·19–5·46) 5·27 (5·13–5·40)
3 5·20 (5·12–5·28) 5·15 (5·09–5·22) 5·16 (4·86–5·36) 5·08 (4·82–5·28)
4 5·20 (5·12–5·28) 4·99 (4·65–5·32) 4·96 (4·50–5·40) 4·89 (4·50–5·30)

Table 3. Seroprevalence estimates and 95% uncertainty intervals following 1000 simulations for each scenario

Scenario Mixture model Method 1 Method 2 Method 3 Method 4

(a) Seroprevalence for P= 0·25
1 0·25 (0·25–0·26) 0·27 (0·25–0·29) 0·25 (0·25–0·25) 0·25 (0·24–0·25) 0·25 (0·25–0·26)
2 0·25 (0·24–0·26) 0·27 (0·25–0·28) 0·25 (0·24–0·26) 0·25 (0·22–0·27) 0·26 (0·23–0·28)
3 0·25 (0·20–0·31) 0·23 (0·18–0·27) 0·25 (0·21–0·28) 0·25 (0·14–0·39) 0·28 (0·19–0·42)
4 0·28 (0·07–0·69) 0·10 (0·05–0·15) 0·24 (0·00–0·57) 0·30 (0·02–0·74) 0·34 (0·05–0·73)

(b) Seroprevalence for P= 0·15
1 0·15 (0·15–0·15) 0·17 (0·16–0·19) 0·15 (0·15–0·15) 0·15 (0·15–0·16) 0·15 (0·15–0·16)
2 0·15 (0·14–0·16) 0·17 (0·15–0·19) 0·15 (0·14–0·16) 0·15 (0·13–0·17) 0·16 (0·14–0·19)
3 0·15 (0·11–0·22) 0·15 (0·11–0·18) 0·16 (0·13–0·19) 0·16 (0·08–0·31) 0·19 (0·12–0·34)
4 0·21 (0·02–0·79) 0·07 (0·03–0·11) 0·19 (0·00–0·52) 0·26 (0·01–0·70) 0·30 (0·03–0·69)

(c) Seroprevalence for P= 0·05
1 0·05 (0·05–0·05) 0·07 (0·06–0·09) 0·05 (0·05–0·05) 0·05 (0·05–0·06) 0·05 (0·05–0·06)
2 0·05 (0·04–0·07) 0·07 (0·05–0·09) 0·06 (0·05–0·06) 0·06 (0·04–0·07) 0·06 (0·05–0·09)
3 0·06 (0·02–0·25) 0·06 (0·04–0·09) 0·08 (0·05–0·10) 0·08 (0·03–0·23) 0·11 (0·05–0·27)
4 0·15 (0·00–0·90) 0·04 (0·01–0·07) 0·14 (0·00–0·46) 0·21 (0·01–0·66) 0·24 (0·02–0·65)
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The mixture model distributions are presented in
Figure 3 together with the distribution of one simu-
lated dataset of blood donor results. The cut-off esti-
mates by the four methods used are also displayed.
Figure 4 shows the seroprevalence estimates by each
scenario and method for a range of seroprevalences
(5–50%). All methods seem to work well for scenarios
1 and 2 where there is little overlapping between the
negative and positive components. For scenario 3
there are some deviations with the mixture model esti-
mates being closer to the true one followed by meth-
ods 2, 3, and 4.

DISCUSSION

Fixed cut-offs are often used in serological studies to
estimate seroprevalence [2]. This is preferred by
many scientists because it is easier to apply compared
to say, a mixture modelling approach. Moreover, once
the cut-offs have been estimated, they can be easily ap-
plied to samples tested at different times in different
centres although caution is advised in such cases to
avoid changes in assay testing techniques [15, 16].

An example where fixed cut-offs were used success-
fully is the European Seroepidemiology Network
(ESEN and ESEN2) that included serological samples
from eight antigens and 22 national laboratories [17].
Fixed cut-offs can also be applied to surveys where it
is difficult to fit a mixture model for a number of rea-
sons such as low proportion of samples belonging to
an underlying component. An additional benefit of
using a fixed cut-off is that it enables data to be char-
acterized at the individual level as positive/negative for
a specific antibody. This allows the possibility of
undertaking additional analyses that makes use of
other demographic information that may also be
available at the individual level. This is less straight-
forward to do using mixture models by applying the
probability of each sample ‘belonging to one of the
mixture model components’ [18, 19].

However, fixed cut-offs have limitations which can
question their appropriateness for seroepidemiological
studies. The main limitation is that cut-offs are often
defined by the assay manufacturer for diagnostic pur-
poses and therefore, are not appropriate for seroepide-
miology [7]. In this paper, the method for estimating
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Fig. 3. Distributions of simulated serosurveys of 608 samples and estimated cut-offs for different scenarios.
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the diagnostic assay cut-off was compared to alter-
native cut-offs specifically estimated for sero-
epidemiology. In the simulation scenarios used, the
seroprevalence based on the manufacturers’ approach
gave, in general, estimates further from the true value
compared to the other methods shown especially for
high overlap between susceptible and positive under-
lying populations. The other three cut-off estimation
methods presented gave very similar results. Given
that method 4 is not being affected by the proportion
of samples belonging to each underlying component,
this method may be preferred over the other two
methods.

One important assumption needs to hold for the
estimated cut-off to be applicable for seroprevalence
estimation. The development serosurvey where the
cut-off is estimated must have the same characteristics
as the serosurvey the cut-off is applied to. Given that
there is no change in assay method or testing techni-
ques this assumption should hold for the location
and dispersion parameters. However, the proportion
of samples attributed to each underlying component
can vary like the example given here with higher sero-
prevalence of HP4 in PWID compared to blood
donors. From the simulation examples when the sero-
prevalence in the development serosurvey is similar to

the serosurvey the cut-off is applied to, the final esti-
mates were closer to the true value.

Another limitation of fixed cut-offs is that they can-
not adjust for important confounders [3, 7]. This can
be taken into account by estimating separate cut-offs
for each level of the confounding variable (e.g. separ-
ate cut-offs by age group). Although age-specific cut-
offs are meaningless from a diagnostic point of view
they can be useful in seroepidemiology if they are
used as a vehicle for estimating seroprevalence. An ap-
plication of such age-specific cut-off has been shown
previously [2].

Often antibody prevalence data using serum sam-
ples reflecting populations who are either susceptible
or have experienced natural infection can be differen-
tiated into clearly distinguishable distributions. These
describe those previously infected who generally elicit
strong antibody responses that are clearly distinct
from those remaining susceptible where antibody is
absent. This greatly facilitates employing a fixed cut-
off with any potential resulting misclassification that
may occur of relatively limited impact. Such circum-
stances therefore greatly favour employing a fixed cut-
off. By contrast, however, this may not always be the
case and distributions may sometimes significantly
overlap where it can be much more difficult to visually
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distinguish those susceptible from those with evidence
of antibody. For example, such situations may be
encountered when considering highly vaccinated
populations where significant proportions may dem-
onstrate only lower antibody levels or when investigat-
ing infectious diseases where antibody levels wane
significantly over time. This can result in larger pro-
portions of samples with only low levels of antibody
which tend to aggregate around proposed fixed cut-off
points. Justifying any fixed cut-off point selected is
therefore much more challenging and less intuitive in
these instances, and may compromise the extent to
which antibody prevalence can ultimately be mean-
ingfully estimated. Such scenarios might therefore be
argued to favour a mixture modelling approach to es-
timate seroprevalence, stratifying by age/time [3].

Apart from serum samples oral fluid is another im-
portant type of sample with significant compliance
advantages that has often been employed for large
antibody prevalence studies. However, IgG is present
at much lower levels in oral fluids with large propor-
tions of data often aggregating in those regions
where a fixed cut-off is most likely to be placed.
This makes the choice of a fixed cut-off challenging
and therefore, a mixture modelling approach may be
more appropriate [20].

In conclusion, fixed cut-offs have certain advantages
compared to mixture modelling and provide valid sero-
prevalence estimates when there is little overlap between
the underlying positive and susceptible populations.
The bias can be reduced by using fixed cut-offs esti-
mated specifically for seroprevalence studies.
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