J. ECHEVARRÍA¹, F. DIEGO², M. TAPIA¹, and R. COSTERO¹ ¹ Instituto de Astronomía, Universidad Nacional Autónoma de

México, Ensenada, México

² Department of Physics and Astronomy, University College London, London, U.K.

ABSTRACT. High dispersion time-resolved spectrograms of the dwarf nova SS Cygni, obtained with the Echelle-Mepsicron system, show double peaked emission lines with a complex profile. The intensity of the HB line appears to be modulated by the orbital period. Radial velocity measurements of the wings of $H\beta$ and of the absorption line system of the late-type star yield semiamplitude values of $K_{\rm em}$ = 101 \pm 6 km s^{-1} and $K_{ab} = 151 \pm 7 \text{ km s}^{-1}$, respectively. Radial velocity measurements of the blue and red peaks and of the central absorption of $H\beta$ reveal a synchronous movement with the broad wings, although there is some evidence of a narrow component probably associated with a hot spot in the disk or a chromospheric emission line from the secondary star. The $H\beta$ modulation, the double profile and recently discovered UBV light variations support an inclination angle i \sim 50°. The masses of the primary and secondary stars using this angle and the observed semiamplitudes are $M_D = 0.60 M_{\Theta}$ and $M_S = 0.40 M_{\Theta}$, respectively. A detailed analysis of the absorption lines reveals a spectral type of K2V.

Paper presented at the IAU Colloquium No. 93 on 'Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments', held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16-19 June, 1986.

Astrophysics and Space Science 130 (1987) 111. © 1987 by D. Reidel Publishing Company.