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11. In the first part of this paper [1] there was introduced
a hypothetical computing device, the Q-machine. It was derived
by abstracting from the process of calculating carried out by a
man on his fingers, assuming an adequate supply of hands and
the ability to grow fingers at will. The Q-machine was shown
to be equal in computing power to a universal Turing machine.
That is, the Q-machine could compute any number regarded as
computable by any theory of computability developed so far.
It may be recalled here that Turing machines were obtained
by Turing [2] by abstracting from the process of calculating
carried out by a man on some concrete ' symbol space' (tape,
piece of paper, blackboard) by means of fixed but arbitrary
symbols. Hence the contrast between the Q-machine and the
Turing machines is that between arithmetical manipulation of
counters and logical manipulation of symbols. In particular,
one might say, loosely, that in a Turing machine, as in
arithmetic, numbers are represented by signs whereas in the
Q-machine, as on a counting frame, numbers represent them-
selves.

The programs of the Q-machine were written in terms of
a ternary command scheme of the type

A A A
ab<:n
y
(1) AA‘/A A\'AA-
d e f g h'i’

when that is executed, the contents p, q, r of the locations

Aa’ Ab, Ac become respectively p-q sgn(p-q), q, r+q sgn(p-q).
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Here sgn x is defined to be 1 if x> 0, and to be 0 otherwise.

The following generalization suggests itself: let n be a
positive integer, n> 2, and let fi(x1, e ,xn), i=1,...,n,

be n integer-valued functions, each one defined for all non-
negative values of its integer arguments; now replace the
scheme (1) by

P, P,
(2) / ~

which is to be executed as follows: let c.,,...,c be the

contents of the locations A ,...,A , if
P1 P

c..,c )>0, i=1,...,n,

+f(c,
¢t &ley n' =

then the contents c¢,,...,c are changedto ¢, +f (c ,...,c ),
1 n 11 n

1
.., c + f (Ci’ ...,c ) respectively, and the next command to
n n n

be carried outis A ... A . If for some i, ¢, + f(c ,...,c )<0
1 9, i i1 n

then the contents Cprrveoc are left unchanged and the next
n

command to be carried outis A ... A . All previous con-
r'l rn
ventions regarding subscripted locations AA , program loops,
m
sub-programs, stops etc. remain in force. Any such machine
will be called a Q-machine (or a Qn-machine, or the machine

Qn(fi' ...,f)), n will be called its degree, and the functions
n
fi, ..., its transfer functions. Individual Q- machines will
n
be distinguished by superscripts; thus Q or Q3(f1 f2 f3)
i f H ? 9 1 b - ’
with 1(c1 c2 c3) f3(c1 c_,cC ) 2 f2 0, will be the old

Q-machine of the first part of thls paper. We make one final
proviso: in (2) the commands may contain the store symbol S
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once or more times, but not so as to involve the transfer of
infinitely many counters; also, no command should be such
that for any contents of the locations involved no counters get

0
transferred. Thus the Q3 commands SSAi or AiSA_
J

are excluded. When the first command in (2) is carried out,
the original contents Cyreeo ¢ are changed to
n

(3) ci+ fi(ci"“’cn) 51}1 sgn [cj+ fj(ci,...,cn)], i=1,...,n.

= d f=¢g,i=1,..., , t
When n1 n, an i gi i n1 hen the

Q-machines Q (f ,...,f) and Q (g,,...,g ) are identical.
n, 1 n n, 1 n
1 2
However, it may happen that the transfer functions of two
Q-machines of the same degree are not the same and yet their
effects with any initial location-contents and for any program

0 .
are the same; consider, for instance, Q3 and the machine

Qi(f‘,f',f') with f =f'1, f

371423 1 3
point is that here f.'2 differs from f2 only for c2>c

= f% and f'z = sgn (cz-c1-1). The
, S
1 0 1 °
that Q3 and Q3 are effectively the same.

Many questions may be raised now about the universality,
loop types, structure etc. of the Q-machines and some of them
will be considered here. The generalization from the old
Q-machine to the present Q-machines is natural if one wishes
to investigate the effect of allowing different basic operations

0
in computing. For instance, Q3 is essentially an adder while

0
i L R | ? i =f = 0) f b 3’ s ’
the machine QS(fi f5) with f2 3 1(c:1 C,1C31C, c5)

=- - - :f 3 ) ’ » = s
<, c3 czc3 4(c1 t:2 c3 c4 cs) c2+c3 and

fs(c1,c2, €y Cy c5) =c, c3, is essentially an adder-and-

multiplier.

12. A Q-machine is universal if it can compute any
computable number. In this section we describe the machine

0
QZ(fi’fZ) which has some claim to being the simplest of all
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universal computing devices; here the transfer functions are

f1(c1,c2) = - fz(c1,c2) =- 1. In words, there is a binary

command scheme

AaAb
VNS
AcAd AeAf

carried out by transferring one counter from the location Aa
to A, if Aa is not empty and proceeding to the command

b

Ac Ad, and leaving the contents of Aa and Ab unchanged

and then proceeding to the command Ae Af in case Aa is
It might be assumed that initially all the locations

empty.
... (s An)r

0
are empty since the QZ program (S Ai)p (S A2
transforms the initial contents 0,...,0,... top,q,...,r,0,..

We note first two simple sub-routines for QZ:

1) Transfer T(Ai’ AZ)

initial contents: p,q,0,...

rogram: A A
program 61 2
Y

final contents: 0, p+ q, O,...

This program needs no reserved locations. The special case

T(A, S) reads 'empty A'.
2) C c(Aa , , A
) Copy C( By 3)

initial contents: p, q, 0, 0,...
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program: A S

A
i
A1 S
7N
SA2 T(A3,A1)
SA3

final contents: p, p+q, 0, 0,...

Now we have the

0 0
3) Q3 - QZ equivalence program

initial contents: p, q, r, 0, 0, O,...

program: A1 S
vl
SA:l
A2 S
vl
SAZ
Cla,, AL A
C(AZ’ A4, A6)
Y/A4 S\
A S (A, Ay AY)
’ YT(A ) e
4’ T(AS, Ai)

final contents: p - q sgn (p-q), q, r+ q sgn (p-q), 0, 0, O0,...

This shows that the command A1 A2 A3 can be simulated as a
0
program on QZ. Clearly the converse is also true: the com-

0
mand A1 AZ of Q2 can be simulated as a Qg program consisting
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f inst ti A A,
of one instruction A1 348,

to 1. Therefore any Q3 program can be translated into its

with the contents of A3 equal

0
Qg equivalent and vice versa. Since Q3 has already been

shown to be universal, so is Q2 .

13. Consider the three already defined Q-machines

o

0 0
Q, Q3 and Qg. They form a hierarchy: Q2 can add 1,

o

0
Qg can add two integers, Q5 can add and multiply two

0
integers. Define A1 A2 0 A4 A_ to be the Q5 command

5

A1 AZ A3 A4 A5, subject to the condition that the location

A3 stays empty throughout. The effect of the command
A A2 0 A A_ on the locations Ai’ A_ and A4 is the same

1 4 5 0 2
as that of the Q3 command A1 A2 A4. This leads to a
generalization. Let A1 AZ .. An be the command of a

Q-machine and put

P(A LA ... A) = A" A" ... A",
1 n 1

2 2 n

where each A' is either A  itself or some fixed integer
i i

p. > 0. In the latter case the location A, retains its contents
1— 1

P, throughout the program. Leaving out all inactive indices

(referring to the locations to which fixed contents have been
pre-assigned) we have

PA A ...A)=A A ...A , 1<j <j. <...<j _<n.
12 . B, . < <
n iy 3 N 1 2 N
Now let m< N andleti, ,i ,...,i be an increasing sub-
- 1 2 m
sequence of the sequence ji’jZ' e ,jN. This induces a
Qm-—machine with the command A, A, ... A, which we
1 1 1
1 2 m

shall call a contraction of the original Q-machine; the latter

. ) 0
is called an extension of the former. We note that Q5 is an
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extension of Qg and of Qg and Qg is an extension of Qg,
since

= , = 0 0, = 1 .
A1A2A4 A1A20A40 A1A4 Aii A4 A1A4 A1 A4

One Q-machine may be an extension or a contraction of several
Q-machines. In fact, it is easy to show that any sequence

Qk (£, .,...,f£ ) (k=0,1,...) of Q-machines of bounded
k1 k.nk

"k
, < N, s s tensi Fr,...,F .
degrees n < N, possesses a common extension QN+1( " N+1)
For it may be assumed without loss of generality that
n,=mn, =... = N and then we have only to define

=0, Fc ,...,c.,k) =f (¢ ,...,c_),i=1,...,N
Frealy °Ni1) iy et B = Egley N !

N+1 N N
. k
to have the desired extension property for Q : A A_... A
n 1 2 N
= A_ ... k.
Ai 2 AN

The following propositions are easily demonstrated:
1) any extension of a universal machine is universal; 2) the
set of all Q-machines is uncountable and so is the set of all
universal Qn-machines for n> 3; 3) each finite or countably

infinite set of Q-machines of degrees < N has uncountably
many common extensions which are universal and are of degree

b b
N + 1; 4) the binary relation Qa <Q (Q 1is an extension of Qa)
is a partial but not a total order on the set of all Q-machines;

b b b
5) defining Q*<q by Q? <Q and Q 4 Qa, we have
1
uncountably many chains Q < Q < ... starting with any given

1
Q . In each case the uncountable multiplicity follows from the
sufficient freedom of choice of values of one or more transfer
functions.

14. The set of all Q-machines is inconveniently and

somewhat unnaturally large, and we should like to limit it
somehow. This limitation could be carried out in at least
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two essentially distinct ways. Proceeding 'internally', we
may define a number of 'atomic arithmetical operations',
such as the decision whether a finite set is empty or not,
transferring one member from a non-empty set to another
set, merging two finite sets, the decision whether one finite
set has more members than another one etc., and then we
may consider only those Q-machines whose commands are
executable in terms of these arithmetical operations. This
amounts to singling out certain basic functions and allowing
only those Q-machines whose transfer functions are (allowable)
compositions of the basic ones. The whole procedure may be
suitably formalized and one obtains then something similar to
the theory of recursive functions.

Proceeding 'externally', we choose a universal machine
and we limit ourselves only to those Q-machines whose com-
mands can be synthesized as programs of that universal machine.

0
We shall follow this course and we shall take QZ as the basic

universal machine. That is, in the remainder of this paper,
unless the contrary is explicitly stated, we consider only those

Q-machines with the command A1 A2 ... A, for whicha

0 n
QZ program P = P(Pi’ cee pM) exists, such that the command
A ... A of Q , with the initial contents p ,...,p.  ,0,...

1 n n 1 M

leads to the same final contents as the Q2 program P (with
the initial contents all empty). On the other hand, for ease of
description we can use instead of Qg either Qg or Q50 or any
other Q-machine which has been shown to be equivalent in the
above sense to Q(z)' The equivalence of Qg and Qg has been
shown, the equivalence of Q(S) and Qg will follow from it and
from the Qg— Q(3) equivalence program given below. Since Qg

is an extension of Q3, it suffices to show that the command of

0
Q5 is obtainable as a Q3 program.
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initial contents: p, q, r, s, t, 1, 0, 0, 0, O, ..

program: SA A

1 7
SAZAS
SA3A9
A8A6$
SN
SA9A10 A_A

Y 7 9L_/ 7 7
A_A s‘/ o A A_S
24 105 878
A€ s A S
A8 A9 B9
A
Ay A Ay L1080 S
A
Agfg By
A A A
979
A0 84085

. 0
final contents: the same as after the Q5 command

A1A2A3A4A5.

The set of all admissible Q-machines is now isomorphic
0 0 0
to a subset TZ of the set of all QZ programs. T 2 is

countable and an explicit enumeration can be given. Recalling
the conventions about the arrows, we can put every program
0
Pe I in the form of a string A A , A A ,..., A A
2 a b a b a b
1 1 2 2 N N
of N successive pairs of the type Aa Ab ; from each pair there
i i
issue two arrows marked 'y' and 'n' and leading to other pairs.

We put AO =S and we let in the last pair aN =bN =0 interpreting

S S as the command ' stop'. In each pair ai and bi are
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non-negative integers or they may be themselves locations.

Therefore each command in the string is uniquely determined

by an ordered 6-tuple of non-negative integers (pi, q., r,, si,
1 1

t., u,) in the following way: with A A we associate
i i i

(i, 0, j, 0, h, k), with AA,Aj’(i’ 1, j, 0, h, k), with Ai AAj,

i
(i, 0, j, 1, h, k), and with AA AA (i, 1, j, 4, h, k).

i

In each case the fifth member k of the 6-tuple shows that the
arrow marked 'y' leads to the k-th pair of the string and the
sixth member h shows that the arrow marked 'n' leads to
the h-th pair of the string. Now P becomes an ordered set

f ord d 6- S ,...,S ; let f: , , , , s
of ordered 6-tuples 1 N e (n1 n,n., o, n5

né) - n be a function mapping in a 1:1 fashion the set of all

ordered 6-tuples of non-negative integers onto the non-negative
integers themselves. With the program P = (Si’ ey SN) we
N £(S:)
now associate the number NP = P, 1%, where P, is the
i=1
i-th prime, starting with p1 =2. Of course, not every number

is the number of a program, and a program with the number
N1 may be completely equivalent in its effects on all locations
0

to a program with a different number N 2

: P,, P el
2 1 1 2
we define the composite program P1 P2 by juxtaposition,

with all the terminal arrows of P1 leading to the initial

command of PZ. Letting 1 stand for the empty program
0
which does nothing, the set TZ becomes a countable semi-

group with identity.

15. An interesting binary relation on the set of all
Q-machines is obtained by letting Q? < Qb if and only if the
command of Qa can be synthesized as a loopless program on
Q% Letalso 0% <Q” if 0*<Q” and @*3Q°. For
instance, we have Qg < Qg < Qg; the reason for this is that

the basic operations of these three machines (adding 1, adding
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two integers, adding and multiplying two integers) are on differ-
ent levels of a progressive hierarchy of the magnitude of the
computed number. We derive now some sufficient conditions

—

b
for two Q-machines, Qa =Qa(f ye..,f) and Q (g.,...,8 ),
n 1 n m 1 m

a b a
to ensure that Q < Q . A function F(x) dominates Q if
for every set of non-negative integer arguments (ci, ce.,C )
: n

Ic,+f_(c yeoo,rC )]<F(max(c yesosC ), i=1,...,n.
i i1 n 1 n

For a positive integer k let Fk(x) denote the k-th iterate of
F(x). We say that G(x) majorizes F(x) (and also that G(x)
majorizes Qa) if for every fixed k there is Xy such that
Fk(x) < G(x) provided that xo < x. It is well known that every

function F(x), no matter how fast its growth, possesses a
majorizing function G(x). For instance, we can take

0
G(x) = Z a, F/(x),

joq
where the sequence {a,} tends to 0 fast enough. Suppose
now that a) Qb is an extension of Qa, and b) the first transfer
function g1 of Qb is such that for suitable values CZ’ ve.,C

m
there occurs a transfer of at least G(Ci) counters to some
location, G(x) being any function majorizing Qa. Condition
b

a) implies Q? < Q. Observe next that any loop-free program
of Qa with a string of k consecutive commands, and with the
initial contents I JEEERE pN, results in final contents none of
which can exceed Fk(max (Pi’ ceey pN)). On the other hand,

a single command of Q can, with the same initial contents,
produce final contents which exceed Fk(max (pi, ooy PN))’ no

matter how large k may be. Therefore condition b) implies

b a a b a
Q i Q . It follows that Q <Q . Since Q was arbitrary,
we can carry on the process to obtain for any initial
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1_42 e . 1 2 3
Q =Q an infinite chain of the type Q <Q <Q <....

. n
By the construction of this chain, for any n the Q
. n+1
program equivalent to the command of Q contains at least
n n+2
one loop, the Q program equivalent to the command of Q

contains at least one loop-within-a-loop, and generally, the Qn

program equivalent to the command of Qn+k contains at least
one k-tuply imbedded loop. This shows that no matter which
machine is used for computing, there will be numbers computing
which calls for programs of arbitrarily high degree of loop
imbedding.

16. For the purpose of this section we modify the
definition of certain Q-machines so that they can handle
0
negative integers. Consider first Q3; its basic operations

are addition of non-negative integers, restricted subtraction
of integers ( = formation of the difference a - b when

a > b > 0) and the conditional transfer which depends on the
pl:_évigus operation. Suppose now that instead of a single row
of locations there is a double row

+
and let the contents of A Dbe the difference (contents of A )
n n
- (contents of A ). This amounts to the usual process of
n

regarding integers as pairs of non-negative integers with the
ordinary provision for pair equivalence: (a,b)=a - b and
(a,b) =(c,d) if a+d=b+ c. There is, as before, a single

0
store S. The Q3 command A1 A2 A3 is now interpreted

as the unbranched program
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Thus modified, Qg can handle negative integers. However,

the ability to perform conditional transfer vanishes, since now
subtraction is always possible. Here this ability can be easily

restored: replace
ALA, A,
n
Ay by By AgBgL40
by the program
s A: A’;
54 AZ
s A‘; A,
S A; A;
A‘; A,s
7 X
A‘; A’; A’; AZ A; s
A; A; A; A; A; S
A:A;A: AgAg A,
Ag Ay Aq
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— 0 .
Let Qg denote the above modification of Q3 to handle negative
integers. It is clear that with four rows of locations we can

further modify Qg so that it can handle Gaussian integers.

~ In this section there will be proved a theorem, formulated
in terms of the Q-machines, but having some independent
interest. It is given here as an example of some uses of our
theory. The question which led to it, was: what is the simplest
way of computing?

In the first part of this paper we considered the sequence

i = ey i > 0, >0 d
{pn/qn} of fractions, n =0, 1, ‘with P, 0 4, an
ith th ion f = 2q, = .
with the recursion formula pn+1 pn + qn qn+1 P + qn
. 1/2 0
One has then lim (pn/qn) =+ 2 , and an unbranched Q3

n—o0
program was given to compute each successive convergent
fraction from the previous one by means of four additions of
positive integers and no other operations. Since the addition
of integers is one of the simplest possible operations, this
raises the question: which (real) numbers can be computed
by means of iterative schemes with a bounded number of
additions of integers per iteration stage and no other operations?

The above formulation is not yet precise enough, and to
emend it we define a real number x to be 52 computable if

—0
there exists an unbranched Q3 program:
initial contents: a

program:

which is non-terminating and which results in accumulating

successively in certain two locations, say in A1 and AZ’
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of two sequences of integers, {p } and {q }, p and q

n n n n
being the contents after the n-th cycle, such that lim (p /q ) =x.

n n
The sequences {p } and {q } will be called admissible for
n n

x. Our question is now re-formulated: which numbers are
53 computable? A partial answer is given in the following
Theorem. Any real (—)g computable number is algebraic.

If x is a PV-number then any number of the form

(t1x+ tz)/(t3x+ t4), with the ti's all integers, is 62 computable.

Recall that the PV-numbers (Pisot-Vijayaraghavan
numbers) are real positive algebraic integers greater than 1,
all of whose other conjugates are less than 1 in absolute value.
For their properties see [4].

The idea of the proof is to show first that every computa-
tion method for a 62 computable number x is essentially
the same as the above special case of the sequences {pn} and
{qn} which are admissible for + 21/2: there is a linear system

of recurrence relations for a finite number of sequences
{p}, {a}, ..., {2z}, and x is the limit of a ratio, say
n n n

(p /a4 ). We observe first that since there are no subscripted
n n

locations AA , only a finite number of locations is ever
i
occupied throughout the program. It may be assumed therefore

that the locations A A stay empty throughout.

k+1’ T2’

let a, , i=1,...,k, be the contents of the i-th location
in

after the n-th cycle. Since each successive command of the
program results in location contents which are linear combina-
tions of the contents before the command, we have

(4)

a = ..a iven integers.
intl | ko & g
J
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The integers c,, are constants independent of n since there
1)

are no subscripted locations. Solution of the system (4) is
obtained by assuming that

k
(5 a, = T b, N, i=1,...,k n=0,1,...;

on substituting (5) into (4) and equating the coefficients of each
)\rsl one finds that )\1, C e, )\k are the eigenvalues of the
matrix (cij). Therefore the procedure is justified provided
that the eigenvalues )\1, e, )\k are all distinct. Otherwise

one has instead of (5)

M=

6) a. = B, (m A", i=41,...,k;n=0,4,...;
in S:i 1S S

here )\s is an eigenvalue of multiplicity n_ Bis(n) is a

polynomial in n of degree n_- 1 and = n_ =k. The
s=1
coefficients of the polynomials B's are obtained on substituting
i P n
s

(6) into (4) and equating the coefficients of n for each pair

P,s. In either case, whether the eigenvalues are simple or not,
the coefficients b,S or the coefficients of the polynomials B's
i i

are obtainable by algebraic processes from the integers cij and
2.4 and the eigenvalues )\i, which are algebraic numbers.

Therefore these coefficients are themselves algebraic. If x is

—0
a Q3 computable number then by definition x=1im (a, /a, ),
neeo B IR
so x 1is either some ratio b_S/b, or the ratio of the leading
i js

coefficients in certain two polynomials B's and B, . In either
i js
case x is algebraic.

—0
Suppose next that x is Q3 computable with the admis-

sible sequences {p } and {qn} .  Therefore, if the ti‘ s
n

198

https://doi.org/10.4153/CMB-1964-017-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1964-017-6

—0
are integers, the number (t1x+ tz)/(t3x+ t4) is also Q3

computable with the admissible sequences {t1p +t.q } and
n n

2
{t3pn +t,4 }. It remains to show that a PV-number is
n

Qg computable. The integers cij in (4) are arbitrary - let

them be chosen so that the given PV-number x is one of the
eigenvalues )\s of the matrix (c,j). Then a1l the other eigen-
i

values are less than x in absolute value, so that

k

n+1
=1i =1i z N
x = lim (a1 n+‘1/ a, lim [( bis . )/ (

n— oo n—>0 s=1 s=1

b, A7)
1s S

M =

and hence the sequences {a +1} and {a‘1 } are admissible
n

in
for x. Thus x is Q3 computable.

0
5
e . 0 . .

It is first necessary to modify Q5 to operate with negative

One can similarly consider the Q computable numbers.

0
numbers; this can be arranged without difficulty, as for Q3.

Since only unbranched programs will be considered, there is
no need to restore the conditional transfer (although this could

=0
be done easily). We define a real number to be Q5 computable

in the same way as before, replacing 6(3) by 5: Since 52
can add and multiply, instead of the linear combinations of (4)

we have now polynomial combinations

=P e e ey ,»y1=1,...,k;n=0,1,... ,
(7) ain+1 i(a1n ak.n) i=A1 k;n=0,1,

and the coefficients of the polynomials P, are constants
i

independent of n since there are no subscripted locations A
Ai
in the program. It follows that our 5(5) computable numbers
coincide with the rationally recursive numbers introduced and
investigated in [3]. Among other open questions posed in [3]
there are: 1) is every rationally recursive number computable?,
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and 2) can one exhibit a computable number which is not
rationally recursive (the existence of such is easy to prove)?

—0
From the equation 'rationally recursive' =' Q5 computable’

it follows at once that the answer to 1) is yes. Starting with the
remarks at the end of the previous section, it is not hard to

-0
exhibit a computable number which is not QS computable.

For instance, let

2 (x)
2(1)(x)=2x, 20n)® =2 @) gy =0 0 gy =10 T
and define
%
F(x) = nfi Z(n)(x) / (n! )(n) ;

then for every positive integer m the number F(m) is com-

putable but not (—Jg computable.

The author wishes to thank the referee for improvements,
corrections and suggestions.
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