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P R I M E N E S S OF T H E E N V E L O P I N G A L G E B R A
OF HAMILTONIAN S U P E R A L G E B R A S

MARK C. WILSON

In 1990 Allen Bell presented a sufficient condition for the primeness of the universal
enveloping algebra of a Lie superalgebra. Let Q be a nonsingular bilinear form on
a finite-dimensional vector space over a field of characteristic zero. In this paper
we show that Bell's criterion applies to the Hamiltonian Cartan type superalgebras
determined by Q, and hence that their enveloping algebras are semiprimitive.

1. INTRODUCTION

Let L — L++L_ be a finite-dimensional Lie superalgebra over a field of characteristic
zero, and let U(L) be its universal associative enveloping (super)algebra. In [1] Bell gave
the following simple criterion for primeness of U(L). Let {fu . . . , / „ } be a basis for the
odd part L_ of L. Form the product matrix M — ([/i,/,-]), considered as a matrix over
the symmetric algebra S(L+). If det M ^ 0 then U(L) is prime.

Note that since U(L) is a Jacobson ring (see for example [5]), if U(L) is prime then
it is also semiprimitive. As far as is known these last two properties may be equivalent
for rings of the form U(L).

The primeness question for enveloping algebras of the classical simple Lie superalge-
bras has been settled completely in [1] and [3]. An investigation into the applicability of
Bell's criterion to the Cartan type Lie superalgebras was begun in [8], continued in [10]
and is concluded in this paper and [9].

Here it is shown that the Hamiltonian algebras H(Q) and H(Q) satisfy Bell's crite-
rion. This immediately gives

THEOREM. Let K be a fieid of characteristic zero, letn.^4 and let Q be a nonsin-
gular bilinear form on a K-vector space of dimension n. Then U(H(Q)) and U(H(Q))
are prime.

As a consequence of the results of the above-mentioned papers we have the following
theorem.

THEOREM. Let L be a finite-dimensional simple Lie superalgebra over an alge-
braically closed Geld of characteristic zero. Then L satisfies Bell's criterion, and hence
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U(L) is prime, unless L is of one of the types: b(n) for n ^ 3; W(n) for odd n ^ 5; S(n)
for odd n ^ 3.

2. T H E HAMILTONIAN SUPERALGEBRAS

Good references for basic facts about Lie superalgebras are [2] and [7].

Let K be a field of characteristic zero, n a positive integer and V an n-dimensional
/("-vector space. Let A = A.(V) be the Grassmann algebra of V. Recall that A is an
associative Z-graded superalgebra. Fix a basis {v\,... ,vn} for V. For each ordered
subset / = {ii, i2,..., ir} of N = {1, 2 , . . . , n) with i\ < i2 < • • • < ir, let i>/ be the
product Vi1vl2 • • • vlr. The set of all such vj forms a basis for A, where we interpret 1 = v^
as the empty product, and the homogeneous component Ar is spanned by the vi with
|/ | = r. The anticommutativity of multiplication in A implies that

1 iJ <

lo i f / n J /

The algebra W = W(V) is the Z-graded Lie superalgebra consisting of all su-
perderivations of A. Every element of W maps V into A and since it is a superderivation
it is completely determined by its action on the generating subspace V. It follows that
W can be identified with A <SIK V* and we shall henceforth do so.

Under this identification the map d{ — d/dVi corresponds to the dual of V{ which we
shall also denote di. The set of all v\ <g> d{ is then a homogeneous basis for W, the degree
of such an element being equal to | / | — 1.

For each symmetric bilinear form Q on V there are subalgebras of W denoted by
H(Q) and H(Q). Their (rather complicated) definition can be found in [7, p.194] or
[2, section 3.3.2]. If we extend K to its algebraic closure then all such algebras become
isomorphic to the algebra H{n) (respectively H(n)) defined below. Since Bell's criterion
holds over a given field if and only if it holds over the algebraic closure of that field, it is
sufficient to verify the criterion for the algebras H(n) and H(n).

We now recall some basic facts about the Hamiltonian superalgebras. The subspace
of W spanned by all superderivations of the form

where A G A, is a Lie superalgebra called H = H(n). H inherits a natural Z-grading
from W and we have

n-2
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n-3 ~ _
The subalgebra H = H(n) = 0 Hr = [#, H] is a simple Lie superalgebra of Cartan

r = - l
type.

The homogeneous component # r is isomorphic as a vector space (in fact as an Ho-
module) to Ar+2 via D\ i-> A. Thus the superderivations xj — DVn where 0 ^ / C N,
form a basis for H, and dim Hr — (r"2).

3. COMPUTATION

It is known that the multiplication in H satisfies

where {A, fj,} = ^<9;(A)<9;(/i). Note that this differs slightly from the notation in [2], and
i

that the exact multiplication formula is not needed for our purposes.

It follows from (1) that di(vr)di(vj) = 0 unless I n J = {i}, whence

f i z / A j i f | / n J | = l,
(2) [XI,XJ] = (

I 0 otherwise

where A denotes the symmetric difference (Boolean sum). Since A is the addition in
the usual Boolean ring structure on the power set of N, this implies that for a given
A,ICN, the equation [x/,xj] = ±xA has at most one solution for J. This solution
exists precisely when AAI / 0, that is when I g A and A g / . Furthermore if | / | is
odd and \A\ even then \J\ = \A\ + | / | — 2 |7 n A\ is necessarily odd. Thus every even xA

appears (perhaps with a minus sign) in the product matrix, and each such xA appears at
most once in each row or column.

3.1. n EVEN

THEOREM 3 . 1 . Let n ^ 4 be an even integer. Then # (n ) and # (n ) satisfy Bell's
criterion.

PROOF: Write n — 2m. The highest odd degree occurring in # and H is n — 3.
It follows that if we group the basis elements Xj by increasing degree, then the product
matrices for both H and # are the same and that this common matrix has the block
reverse triangular structure

1 -rc-1,-1 -n-1,1 -"-l.n-3 *

#1,-1 #1,1 • • • #l,n-5 0

\f ln-3,-! 0 . . . 0 0 y

where HTS is the block formed by the products of elements of degree r with those of
degree s. Furthermore each block on the reverse diagonal is square, since if r + s = n — 4
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then dimHr = (r"2) = (s"2) = dimHs. The product matrix is nonsingular if and only if
each of these blocks is nonsingular.

Fix such a reverse diagonal block Hr<s corresponding to products of elements of
degree r by those of degree s = n — 4 — r. Using the identification of Hn_i with An_2
we can index the basis elements of /fn_4 by their (ordered) 2-element complements, for
example j/13 = XN\{I,3}- We now make the specialisation which sends j/y to 0 unless
j — i = m, and call the m remaining variables Z\ = yn1, • • •, zm = ymm'- For each i let
i' = i + m (mod n). Note that (i')' = i and z{ = Zi>. The image B of the block Hrs

under this specialisation is a matrix whose only possibilities for nonzero entries are ±Z;
for some i.

We shall obtain a further block decomposition of B. By replacing all nonzero ele-
ments of B by l's, we obtain a (0,1) matrix which is the adjacency matrix of a unique
graph G = G(B). In other words, G has vertices the x/ and an edge joining xj and xj
if and only if the product [xj, Xj) remains nonzero under our specialisation above. If for
simplicity we label the vertex corresponding to xj by / , there is an edge in G joining /
to J if and only if [x/,Xj] = ±z{ for some i. We shall say that in this case / and J are
joined by an edge of colour i.

Finding a block decomposition of B is equivalent to decomposing G into disjoint
subgraphs, which we now proceed to do. Fix i e N. We determine exact conditions
on I and J for there to exist an edge of colour i joining them. It follows from (2) that
this occurs if and only if either I tl J = {i} and I L) J = N \ {i1}, or / n J = {i1}
and 11) J = N \{i}. Thus there is an edge of colour i joining I and J if and only if
| / | + I J\ = n, one of i or i' belongs to both I and J and the other belongs to neither.
Furthermore, for a given I ^ N, there is at most one edge of a given colour at the vertex
/. Also there is at least one edge of some colour at the vertex /: since I / N, for some i
we must have i € I and i' £ I.

We now obtain a further block decomposition of B by showing that the set of colours
occurring at a given vertex of G{B) is constant on each component. To this end, we
first show that vertices distance 2 apart have the same colours. Suppose that / and
J are linked by an edge of colour i. Then without loss of generality / D J = {i} and
I\jJ = N\ {i1}. Let K be linked to J. If J and K are linked by an edge of colour j then
either {«,«'} — {j,j'}, in which case K = / , or {z, i'} n {j,f} = 0- In the latter case we
can assume J n K - {j} and J U K = N \ {j'}. Thus i' G K since i' € J U K but i! 0 J.
Let X = Ju{i',f}\{i,j}. Then \X\ = \J\, KnX = {i'}, K U X = N \ {1} and so K
and X are linked by an edge of colour i. Thus every colour occurring at / also occurs at
K, and by symmetry / and K have the same colours.

It follows that if / and J are joined by an edge then they have the same colours,
since if an edge of some colour i joins I and L, then J and L have the same colours
by above and so the colour i occurs at J. By induction on the length of a path joining
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two vertices, the set of colours occurring at a vertex is constant on components. This

decomposes G(B) into a union of disjoint subgraphs, each corresponding to a given set

of colours. Hence B decomposes as a direct sum of smaller blocks, each of which is

parametrised by some nonempty subset of the set of colours.

Now fix such a block corresponding to a given set of colours. This matrix is such

that in every row and column, each variable which is present occurs exactly once, perhaps

with a minus sign. Then by specialising all but one of these variables to zero we obtain

a nonsingular monomial matrix. This shows that the original product matrix for H(n)

and H(n) is nonsingular. D

The fact that the Noetherian rings R = U(H) and S — U(H) are simultaneously

prime is not a surprise. The component Hn-2 is 1-dimensional, spanned by x say. Since

[x, H] C [H, H] = H, ad x stabilises R. When n is even then ad x is an ordinary derivation

and so 5 is the differential polynomial ring i?[x;adx]. It is a well-known fact (see for

example [6, Proposition 8.3.32]) that in this situation R is prime if and only if 5 is.

3.2. n ODD This case reduces rather easily to the previous one.

THEOREM 3 . 2 . Let n ^ 5 be odd. Then H(n) and H{n) satisfy Bell's criterion.

PROOF: Let M,M be the product matrices for H(n),H(n) respectively. The top
degree n —2 occurring in H(n) is odd, and dimi/n_2 = 1. Thus M is obtained from M by
adding another row and column. Since this procedure either leaves the rank unchanged
or increases the rank by 1, it suffices to show that M is nonsingular.

We decompose M into 4 blocks as follows. Group the rows indexed by those / for
which n G / together and follow them by the rows for which n 0 / . Do the same for the
columns. This gives an obvious 2 x 2 block structure. Make the specialisation which sets

all even X[ with n £ / to zero. Then M specialises to a matrix of the form I . I t

suffices to show that X and Y are nonsingular.

The matrix Y has entries which are the pairwise products of the Xj with / C
{ 1 , . . . ,n — 1} and hence is just a product matrix for H(n — 1). Thus Y is nonsingular
by Theorem 3.1.

Now choose / with n € I. Since I ^ N, both I % N\ {n} and TV\ {n} g / hold and
so there is precisely one J with n £ J for which [xj, Xj] — ±£w\{n}. Thus in X every row
and column has precisely one occurrence of ±2;^\{n}, so specialising to zero all variables
except this one yields a nonsingular monomial matrix. D

It is not as obvious a priori that the rings R = U(H) and 5 = U(H) should be simulta-
neously prime. Let x span i/n_2. Then [x, x] = 2x2 = 0 and so S — R[x; 5}/1, where 5 is
the skew derivation ad x and / is the ideal generated by x2. Obviously S prime implies
R prime but the converse for extensions of this type (see [4]) requires extra hypotheses
regarding the action of 5 on the symmetric Martindale quotient ring of R which seem
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difficult to verify in our situation.
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