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Abstract

Recently Li and Yam (2005) studied which ageing properties for series and parallel
systems are inherited for the components. In this paper we provide new results for
the increasing convex and concave orders, the increasing mean residual life (IMRL),
decreasing failure rate (DFR), the new worse than used in expectation (NWUE), the
increasing failure rate in average (IFRA), the decreasing failure rate in average (DFRA),
and the new better than used in the convex order (NBUC) ageing classes.
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1. Introduction

One of the main problems in reliability theory is the study of ageing properties of a co-
herent system from ageing properties of the components. For example, Esary et al. (1970)
and Ross (1972) proved that for a coherent system with independent components, if the
components are new better than used (NBU) or IFRA then the system is NBU or IFRA,
respectively. For some particular coherent systems, which include series and parallel systems,
Esary and Proschan (1963) proved a similar result for the increasing failure rate property,
and Franco et al. (2003) proved some results for the increasing likelihood ratio (ILR) and
the decreasing likelihood ratio (DLR) properties. Some extensions of these results can be
found in Belzunce et al. (2002). However, it is not so easy to provide similar preservation
results for some other ageing classes and some papers have been devoted to the study of
particular coherent systems such as parallel and series systems. For example, Abouammoh
and El-Neweihi (1986) proved that the decreasing mean residual life (DMRL) and the new
better than used in expectation (NBUE) ageing classes are preserved under the formation of
parallel systems with independent and identically distributed (i.i.d.) random variables, and
Hendi et al. (1993) proved a similar result for the NBUC ageing property. Li et al. (2000)
and Pellerey and Petakos (2002) extended this result for the case of parallel systems with
independent and not necessarily identically distributed components. Some other results for
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Reversed preservation properties 929

parallel and series systems, and the new better than used of the second order (NBU(2)) and the
new worst than used of the second order (NWU(2)) ageing classes were given by Franco et al.
(2001).

A similar study has been carried out for some stochastic orders. For results in this direction
and references on the subject, the reader is referred to Belzunce et al. (2001) and Boland et al.
(1998), (2002).

Recently Li and Yam (2005) proposed the following reversed question. Given an ageing
property for the system, do the components have the same ageing property? A similar problem
is considered for some stochastic orders. In particular, Li andYam (2005) proved that if a series
system with i.i.d. components is IMRL, DMRL, or new worse than used in convex ordering
(NWUC) then the components are IMRL, DMRL, or NWUC, respectively. A similar result is
proved for parallel systems and the NWU(2) property. Results for the reversed preservation of
the right spread and total time on test orders are also proved.

The purpose of this paper is to provide some additional results to those given by Li and Yam
(2005). The organization of this paper is the following. In Section 2 we provide the definitions
and previous results of interest, and in Section 3 we provide some new results. In this paper we
consider nonnegative random variables, with continuous distributions and left extreme of the
support 0 (the results can be extended with slight modifications to more general distributions).
Given a random variable X and any event A, we denote by {X | A} the random variable X

conditioned to the event A. The notation ‘
st=’ denotes equality in law.

2. Definitions and previous results

In this section we provide the definitions of the ageing classes and stochastic orders that will
be considered in the paper. Also, some results that will be used throughout the paper are given.
First we give the definitions of the increasing convex and increasing concave orders.

Definition 2.1. Given two nonnegative random variables X and Y , with distribution functions
F and G, respectively, we say that

(i) X is less than Y in the increasing convex order, denoted by X ≤icx Y or alternatively
F ≤icx G, if

∫ +∞

x

(1 − F(u)) du ≤
∫ +∞

x

(1 − G(u)) du for all x ≥ 0,

(ii) X is less than Y in the increasing concave order, denoted by X ≤icv Y or alternatively
F ≤icv G, if

∫ x

0
(1 − F(u)) du ≤

∫ x

0
(1 − G(u)) du for all x ≥ 0.

For applications and properties of these orders in reliability, economics, and risk theory, the
reader is referred to Müller and Stoyan (2002), and Shaked and Shanhtikumar (2007).

Now we proceed to give the definitions of the ageing classes considered in the paper.
For general references about definitions, properties, and applications, the reader is referred
to Barlow and Proschan (1981), Gertsbakh (1989), and Lai and Xie (2006).

Definition 2.2. Let X be a nonnegative random variable with absolutely continuous distribution
function F and density function f . We say that X has a DFR, or alternatively X or F has a
DFR, if the failure rate r(t) ≡ f (t)/(1 − F(t)) is decreasing for all t ≥ 0.
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For the DFR ageing class, it is easy to prove the following result that will be used later.

Lemma 2.1. Let X be a nonnegative random variable with absolutely continuous distribution
function F , density function f , and hazard rate r . If X has a DFR then f is decreasing.

Proof. It follows from the equality f (t) = r(t)(1 − F(t)).

Definition 2.3. Let X be a nonnegative random variable with continuous distribution F . We
say that X has an IFRA or a DFRA, or alternatively X or F has an IFRA or a DFRA, if

R(t)

t
= − ln(1 − F(t))

t
is increasing or decreasing in t > 0,

respectively.

To finish we consider some ageing notions which are defined through the concept of residual
life. Given a nonnegative random variable X and given t ≥ 0, the residual lifetime at time t is
the random variable Xt ≡ {X − t | X ≥ t}, which represents the remaining lifetime of a unit
which has survived up to time t .

Definition 2.4. Let X be a nonnegative random variable. We say that X is NWUE, or alterna-
tively that X or F is NWUE, if E(Xt ) ≥ E(X) for all t ≥ 0.

This ageing class can be characterized as follows; see Abouammoh and El-Neweihi (1986).

Lemma 2.2. Let X be a nonnegative random variable with continuous distribution function F .
Then X is NWUE if and only if

∫ t

0
(1 − F(u)) du ≤ F(t)

(1 − F(t))

∫ ∞

t

(1 − F(u)) du for all t ≥ 0.

Definition 2.5. Let X be a nonnegative random variable with continuous distribution function
F . We say that X has an IMRL, or alternatively that X or F has an IMRL, if E(Xt ) is increasing
in t ≥ 0.

A characterization of this class is the following; see Abouammoh and El-Neweihi (1986).

Lemma 2.3. Let X be a nonnegative random variable with absolutely continuous distribution
function F and density function f . Then X has an IMRL if and only if

f (t)

(1 − F(t))2

∫ ∞

t

(1 − F(u)) du ≥ 1 for all t ≥ 0.

Cao and Wang (1991) considered the following ageing class by comparisons with residual
lives in the increasing convex order previously defined.

Definition 2.6. Let X be a nonnegative random variable with continuous distribution function
F . We say that X is new better than used in the increasing convex order, or alternatively that
X or F is NBUC, if

X ≥icx Xt for all t ≥ 0.

We conclude this section with a technical result that will be used in the next section; see
Barlow and Proschan (1981).

https://doi.org/10.1239/jap/1197908814 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1197908814


Reversed preservation properties 931

Lemma 2.4. Let W(x) be a Lebesgue–Stieltjes measure not necessarily positive. If

(a) h(x) is a nonnegative increasing function and
∫ ∞
t

dW(x) ≥ 0 for all t ≥ 0, then

∫ ∞

0
h(x) dW(x) ≥ 0;

(b) h(x) is a nonnegative decreasing function and
∫ t

0 dW(x) ≥ 0 for all t ≥ 0, then

∫ ∞

0
h(x) dW(x) ≥ 0.

Throughout this paper, we consider series and parallel systems. Given a set of n components
with random lifetimes X1, X2, . . . , Xn, a series system formed by the n components is a system
that fails if one of the components fails. The random lifetime of a series system will be denoted
by X(1,n), and clearly X(1,n) = min{X1, X2, . . . , Xn}. If the random lifetimes are i.i.d. with
common distribution function F then the distribution function of X(1,n) is given by

1 − (1 − F(t))n for all t ≥ 0. (2.1)

A parallel system fails when all the components have failed, and in this case the random lifetime
of the parallel system is given by X(n,n) = max{X1, X2, . . . , Xn}. If the random lifetimes are
i.i.d. with common distribution function F then the distribution function of X(n,n) is given by

Fn(t) for all t ≥ 0. (2.2)

3. Reversed preservation properties

In this section we give several results for the reversed preservation of some stochastic orders
and ageing classes for series and parallel systems. We first consider results for the increasing
convex and increasing concave orders.

3.1. Reversed preservation of stochastic orders

First we prove the reversed preservation of the increasing convex order for series systems.

Theorem 3.1. Let X1, . . . , Xn be a set of n i.i.d. random variables with distribution function
F , and let Y1, . . . , Yn be another set of n i.i.d. random variables with distribution function G.
If X(1,n) ≤icx Y(1,n), then F ≤icx G, that is, Xi ≤icx Yi for i = 1, . . . , n.

Proof. We need to prove that
∫ ∞

t

(1 − F(x)) dx ≤
∫ ∞

t

(1 − G(x)) dx for all t ≥ 0. (3.1)

From the assumptions and (2.1), we have
∫ ∞

t

((1 − G(x))n − (1 − F(x))n) dx ≥ 0 for all t ≥ 0.

This inequality can be written as
∫ ∞

t

(Ḡ(x) − F̄ (x))(Ḡn−1(x) + Ḡn−2(x)F̄ (x) + · · · + F̄ n−1(x)) dx ≥ 0 for all t ≥ 0,
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where F̄ = 1 − F and Ḡ = 1 − G denote the survival functions associated to F and G,
respectively. It is easy to see that the function

h(x) = (Ḡn−1(x) + Ḡn−2(x)F̄ (x) + · · · + F̄ n−1(x))−1

is increasing and nonnegative. Therefore, by Lemma 2.4(a) and taking

dW(x) = (Ḡ(x) − F̄ (x))(Ḡn−1(x) + Ḡn−2(x)F̄ (x) + · · · + F̄ n−1(x)) dx,

we obtain
∫ ∞

t

h(x)(Ḡ(x) − F̄ (x))(Ḡn−1(x) + Ḡn−2(x)F̄ (x) + · · · + F̄ n−1(x)) dx

=
∫ ∞

t

Ḡ(x) dx −
∫ ∞

t

F̄ (x) dx ≥ 0 for all t ≥ 0.

Therefore, we obtain (3.1), that is, F ≤icx G.

Next we prove a similar result for parallel systems and the increasing concave order.

Theorem 3.2. Let X1, . . . , Xn be n i.i.d. random variables with distribution function F , and
let Y1, . . . , Yn be another set of n i.i.d. random variables with distribution function G. If
X(n,n) ≤icv Y(n,n) then F ≤icv G, that is, Xi ≤icv Yi for i = 1, . . . , n.

Proof. In this case we need to prove the following inequality:

∫ t

0
(1 − F(x)) dx ≤

∫ t

0
(1 − G(x)) dx for all t ≥ 0. (3.2)

By hypothesis and from (2.2), we find that

∫ t

0
(F n(x) − Gn(x)) dx ≥ 0 for all t ≥ 0.

This inequality can be written as
∫ ∞

t

(F (x) − G(x))(F (x)n−1 + Fn−2(x)G(x) + · · · + Gn−1(x)) dx ≥ 0 for all t ≥ 0.

Now it is easy to show that the function

h(x) = (F n−1(x) + Fn−2(x)G(x) + · · · + Gn−1(x))−1

is decreasing and nonnegative. Therefore, by Lemma 2.4(b) and considering

dW(x) = (F (x) − G(x))(F n−1(x) + Fn−2(x)G(x) + · · · + Gn−1(x)) dx,

we obtain
∫ t

0
(F (x) − G(x)) dx =

∫ t

0
((1 − G(x)) − (1 − F(x))) dx ≥ 0 for all t ≥ 0.

Therefore, we obtain (3.2), that is, F ≤icv G.
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3.2. Reversed preservation of ageing properties

Next we consider several results for reversed preservation of ageing classes. First we consider
the reversed preservation of the IMRL class for parallel systems.

Theorem 3.3. Let X1, . . . , Xn be n i.i.d. random variables with absolutely continuous distri-
bution function F and density function f . If X(n,n) is IMRL then F is IMRL.

Proof. To prove that F is IMRL, we will consider the characterization given in Lemma 2.1,
that is, F is IMRL if and only if

1 ≤ f (t)

(1 − F(t))2

∫ +∞

t

(1 − F(u)) du for all t ≥ 0. (3.3)

By hypothesis X(n,n) is IMRL, and by Lemma 2.1 and (2.2), we have

1 ≤ nFn−1(t)f (t)

(1 − Fn(t))2

∫ ∞

t

(1 − Fn(u)) du for all t ≥ 0.

Therefore, from (3.3), if

nFn−1(t)f (t)

(1 − Fn(t))2

∫ ∞

t

(1 − Fn(u)) du ≤ f (t)

(1 − F(t))2

∫ ∞

t

(1 − F(u)) du for all t ≥ 0

then F is IMRL. This inequality follows if we prove the following inequality:

nFn−1(t)f (t)

(1 − Fn(t))2 (1 − Fn(u)) ≤ f (t)

(1 − F(t))2 (1 − F(u)) (3.4)

for all t ≥ 0 and for all u ≥ t .
From

1 − Fn(t) = (1 − F(t))(1 + F(t) + · · · + Fn−1(t)),

we find that (3.4) is equivalent to

nFn−1(t)(1 + F(u) + · · · + Fn−1(u)) ≤ (1 + F(t) + · · · + Fn−1(t))2

for all t ≥ 0 and for all u ≥ t , or equivalently,

n1/2F (n−1)/2(t)(1 + F(u) + · · · + Fn−1(u))1/2 ≤ 1 + F(t) + · · · + Fn−1(t)

for all t ≥ 0 and for all u ≥ t . Given that (1 + F(u) + · · · + Fn−1(u))1/2 ≤ n1/2, then (3.4)
is true if

0 ≤ 1 + F(t) + · · · + Fn−1(t) − nF (n−1)/2(t) for all t ≥ 0,

and this follows from

1 + F(t) + · · · + Fn−1(t) − nF (n−1)/2(t)

=
[(n−1)/2]∑

j=0

(1 − F (n−1)/(2−j)(t))(F j (t) − F (n−1)/2(t)) ≥ 0,

where [(n − 1)/2] denotes the integer part of (n − 1)/2 (see Abouammoh and El-Neweihi
(1986)). Therefore, F is IMRL.
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Next we consider a similar result for the DFR ageing class.

Theorem 3.4. Let X1, . . . , Xn be n i.i.d. random variables with absolutely continuous distri-
bution function F and differentiable density function f . If X(n,n) has a DFR then F has a
DFR.

Proof. Let us prove that F has a DFR, that is, that the hazard rate is decreasing, or
equivalently, that

f 2(t) + (1 − F(t))f ′(t) ≤ 0 for all t ≥ 0. (3.5)

By hypothesis the hazard rate of X(n,n) is decreasing in t ≥ 0; therefore,

(n(n − 1)F n−2(t)f 2(t) + nFn−1(t)f ′(t))(1 − Fn(t)) + (nFn−1(t)f (t))2

(1 − Fn(t))2 ≤ 0

for all t ≥ 0. This inequality can be written as follows:

(n(n − 1)F n−2(t)(1 − Fn(t)) + n2(F n−1(t))2)f 2(t)

+ nFn−1(t)f ′(t)(1 − Fn(t)) ≤ 0 for all t ≥ 0. (3.6)

Also, by Lemma 2.1, the hazard rate of X(n,n) is decreasing, that is,

n(n − 1)F n−2(t)f 2(t) + nFn−1(t)f ′(t) ≤ 0 for all t ≥ 0;
therefore, f ′(t) ≤ 0.

From

(1 − Fn(t)) = (1 − F(t))(1 + F(t) + · · · + Fn−1(t)) ≤ n(1 − F(t))

and (3.6), we obtain

(n2Fn−2(t)(1 − Fn(t)) − n2Fn−2(t)(1 − F(t)) + n2F 2n−2(t))f 2(t)

+ n2Fn−1(t)(1 − F(t))f ′(t) ≤ 0 for all t ≥ 0,

which is equivalent to

f 2(t) + (1 − F(t))f ′(t) ≤ 0 for all t ≥ 0;
therefore, (3.5) is true and F has a DFR.

To complete the results for parallel systems we consider a result for the NWUE ageing class.

Theorem 3.5. Let X1, . . . , Xn be n i.i.d. random variables with continuous distribution func-
tion F. If X(n,n) is NWUE then F is NWUE.

Proof. In this case to prove that F is NWUE, we consider the characterization given in
Lemma 2.2, that is, F is NWUE if and only if

∫ t

0
(1 − F(u)) du ≤ F(t)

1 − F(t)

∫ ∞

t

(1 − F(u)) du for all t ≥ 0. (3.7)
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By hypothesis and Lemma 2.2, we have

∫ t

0
(1 − Fn(u)) du ≤ Fn(t)

1 − Fn(t)

∫ ∞

t

(1 − Fn(u)) du for all t ≥ 0,

and given that ∫ t

0
(1 − F(u)) du ≤

∫ t

0
(1 − Fn(u)) du for all t ≥ 0,

if we prove that

Fn(t)

1 − Fn(t)

∫ ∞

t

(1 − Fn(u)) du ≤ F(t)

1 − F(t)

∫ ∞

t

(1 − F(u)) du for all t ≥ 0

then (3.7) is true.
By proving that

Fn(t)

1 − Fn(t)
(1 − Fn(u)) ≤ F(t)

1 − F(t)
(1 − F(u)) (3.8)

for all t ≥ 0 and for all u ≥ t , the result follows.
Considering

1 − Fn(t) = (1 − F(t))(1 + F(t) + F 2(t) + · · · + Fn−1(t)),

we find that (3.8) is equivalent to

Fn(t)(1 + F(u) + · · · + Fn−1(u))

(1 − F(t))(1 + F(t) + · · · + Fn−1(t))
(1 − F(u)) ≤ F(t)

1 − F(t)
(1 − F(u))

for all t ≥ 0 and for all u ≥ t , that is

Fn−1(t)(1 + F(u) + · · · + Fn−1(u)) ≤ 1 + F(t) + · · · + Fn−1(t)

for all t ≥ 0 and for all u ≥ t . This inequality is true, as can be easily seen; therefore, (3.8) is
true, and F is NWUE.

To finish we consider two reversed preservation results for series systems. First we consider
the IFRA and DFRA ageing classes.

Theorem 3.6. Let X1, . . . , Xn be n i.i.d. random variables with continuous distribution func-
tion F . The series system X(1,n) is IFRA or DFRA if and only if F is IFRA or DFRA, respectively.

Proof. Clearly, X(1,n) is IFRA or DFRA if and only if

RX(1,n)
(t)

t
= − ln(1 − F(t))n

t
= −n ln(1 − F(t))

t
is increasing or decreasing in t,

respectively, which is equivalent to

R(t)

t
= − ln(1 − F(t))

t
is increasing or decreasing in t,

respectively, that is, F is IFRA or DFRA, respectively.
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Next we prove a reversed preservation property for the NBUC ageing class. To obtain this
result, the following result will be considered. This result can be found in Pellerey and Petakos
(2002).

Lemma 3.1. (Pellerey and Petakos (2002).) Given a nonnegative integer n, then

(min{X1, . . . , Xn})t st= min{(X1)t , . . . , (Xn)t }.

Theorem 3.7. Let X1, . . . , Xn be n i.i.d. random variables with continuous distribution func-
tion F . If X(1,n) is NBUC then F is NBUC.

Proof. Recall that F is NBUC if

∫ ∞

t

F̄t (x) dx ≤
∫ ∞

t

F̄ (x) dx for all t ≥ 0.

By hypothesis

(min{X1, . . . , Xn})t ≤icx min{X1, . . . , Xn} for all t ≥ 0,

and, from Lemma 3.1, this is equivalent to

∫ ∞

x

F̄ n
t (y) dy ≤

∫ ∞

x

F̄ n(y) dy for all t, x ≥ 0.

This inequality can be written as

∫ ∞

x

(F̄ n(y) − F̄ n
t (y)) dy

=
∫ ∞

x

(F̄ (y) − F̄t (y))(F̄ n−1(y) + F̄ n−2(y)F̄t (y) + · · · + F̄ n−1
t (y)) dy ≥ 0.

Now it is easy to see that the function

h(y) = (F̄ n−1(y) + F̄ n−2(y)F̄t (y) + · · · + F̄ n−1
t (y))−1

is nonnegative and increasing, and from Lemma 2.4(a) and considering

dW(y) = (F̄ (y) − F̄t (y))(F̄ n−1(y) + F̄ n−2(y)F̄t (y) + · · · + F̄ n−1
t (y)) dy,

we obtain ∫ ∞

x

(F̄ (y) − F̄t (y)) dy ≥ 0 for all t, x ≥ 0,

that is, F is NBUC.
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