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Abstract

Skew Boolean algebras for which pairs of elements have natural meets, called intersections, are studied
from a universal algebraic perspective. Their lattice of varieties is described and shown to coincide with
the lattice of quasi-varieties. Some connections of relevance to arbitrary skew Boolean algebras are also
established.
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1. Introduction

Noncommutative variations of (generalized) Boolean algebras go back at least to
Robert Bignall’s 1976 dissertation [3] and the 1980 paper by his advisor, William
Cornish [12]. If one includes variations of substructures of Boolean algebras, then
the path no doubt goes back further. Jonathan Leech published his 1990 paper ‘Skew
Boolean algebras’ [22] in an initial sequence of papers on skew lattices. Aspects of
Bignall and Cornish’s earlier work were then integrated into a developing theory of
skew lattices in the joint paper by Bignall and Leech [4] in 1995. These papers, along
with Leech’s 1996 survey article on skew lattices [24], provide ample background for
reading this paper.

For skew Boolean algebras (or SBAs), the lattice of varieties is rather simple.
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〈1〉

〈2〉

〈3l〉 〈3r〉

〈3l, 3r〉

ppp
p p pppp

p p p ppp Generator(s) Variety
3l, 3r Skew Boolean algebras

3l Left-handed SBAs
3r Right-handed SBAs
2 Generalized Boolean algebras
1 Trivial algebras

The generators 3l and 3r give dual ways of placing an SBA structure on {0,1,2} that
generalizes the Boolean algebra 2 on {0, 1}. On both, 0 behaves as one would expect
a bottom element: x ∧ 0 = 0 = 0 ∧ x and x ∨ 0 = x = 0 ∨ x. On {1, 2} in the case of
3l, x ∧l y = x on the left and x ∨l y = y on the right; for 3r, it is the opposite. Also,
x ∨ y = y ∧ x on {1, 2} for 3l and 3r.

Besides a (skew) join ∨, a (skew) meet ∧, and a constant 0, skew Boolean algebras
have a difference (or relative complement) operation. For both 3l and 3r, it is given by

x\y =

x if y = 0,
0 otherwise.

Another operation can at times be defined on skew lattices and on skew Boolean
algebras in particular. The intersection x ∩ y is the infimum of x and y in the natural
partial order (see details below), if it exists. In the case of both 3l and 3r,

x ∩ y =

x if x = y,
0 otherwise.

The intersection ∩, when it exists for all pairs x and y, is of course there already
and not a new operation forced upon the system. But, brought into the signature,
some significant consequences occur, not the least of which is that SBAs with
intersections are congruence distributive and congruence permutable. Indeed, the
lattice of congruences on an SBA with intersections (often written ‘skew Boolean
∩-algebra’ or SBIA for short) is isomorphic to the lattice of ideals of its SBA
reduct. Of special interest, left- or right-handed SBIAs are term-equivalent to pointed
discriminator algebras. (See Bignall and Leech [4].) On the other hand, the lattice of
(quasi-)varieties is more complex. It is the purpose of this paper to explore this lattice
and related universal algebraic features.

In Section 2, some general background about skew lattices, skew Boolean algebras,
and intersections is presented. In the next section, SBIAs are studied from the
perspective of their SBA reducts. Its main result is Theorem 3.3, which states that a
given SBA S has intersections if and only if both of its algebraic images S/L and S/R
(where L and R are the canonical Green’s congruences) have intersections (even
though neither the induced map S→ S/L nor S→ S/R need preserve intersections). In
Section 4, nontrivial subdirectly irreducible SBIAs are characterized in Theorem 4.3 as
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primitive algebras, the (generally) noncommutative variants of the Boolean algebra 2.
In Section 5, we describe the lattices of (quasi-)varieties of skew Boolean ∩-algebras.
Following a result of Brian Davey, Theorem 5.5 states that this lattice is completely
distributive and isomorphic to the lattice of order ideals of a prior lattice Ω0 of finite
primitive algebras (including the trivial case 1). We also show in Theorem 5.3 that the
question of a given identity holding for all [left-handed/right-handed] skew Boolean
∩-algebras is decidable. We conclude with a corresponding discussion for the case
of quasi-varieties, showing that all quasi-varieties of SBIAs are varieties and thus
collectively possess the same lattice structure.

Skew Boolean algebras, possibly with intersections, have received a fair amount of
attention. Recently, Bauer and Cvetko-Vah [1] developed a Stone duality theory for
SBIAs, while Kudryavtseva [19, 20] developed a similar theory for arbitrary SBAs.
Cvetko-Vah and Leech [15, 16] have studied rings whose idempotents are closed
under multiplication, and thus form SBAs that often have intersections. Both of the
present authors with Cvetko-Vah [17] have studied applications to theoretical computer
science. Spinks and his former advisor, Bignall, have studied connections with other
types of algebras. See, for example, [5, 6, 30, 31]. These references are but few of
even more, as will be evident from a search of publications by the individuals just
mentioned.

2. Some background

A skew lattice is an algebra S = 〈S ;∨,∧〉, where ∨ and ∧ are associative binary
operations on a set S that satisfy the absorption identities:

x ∧ (x ∨ y) = x = (y ∨ x) ∧ x and x ∨ (x ∧ y) = x = (y ∧ x) ∨ x.

Both operations are necessarily idempotent and the following dualities hold:

u ∧ v = u ⇐⇒ u ∨ v = v and u ∧ v = v ⇐⇒ u ∨ v = u.

The reducts 〈S ;∨〉 and 〈S ;∧〉 are regular bands, that is, semigroups of idempotents
that satisfy xyxzx = xyzx. All skew lattices possess a coherent natural partial order:
x ≥ y if x ∧ y = y = y ∧ x or dually x ∨ y = x = y ∨ x. This refines the natural preorder:
x � y if y ∧ x ∧ y = y or dually x ∨ y ∨ x = x.

A skew lattice S is symmetric if a ∨ b = b ∨ a if and only if a ∧ b = b ∧ a for all
a, b ∈ S . Symmetry thus makes instances of commutation unambiguous. A skew
lattice S is distributive if, for all x, y, z ∈ S,

x ∧ (y ∨ z) ∧ x = (x ∧ y ∧ x) ∨ (x ∧ z ∧ x)

and

x ∨ (y ∧ z) ∨ x = (x ∨ y ∨ x) ∧ (x ∨ z ∨ x).
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Example 2.1. Let P(A, B) denote the set of all partial functions from a given set A to
a second set B. Given supports F,G ⊆ A and functions f : F → B and g : G → B,
we define functions f ∨ g and f ∧ g with supports F ∪ G and F ∩ G as follows:
f ∨ g = f ∪ (g | G\F) and f ∧ g = g | (G ∩ F). The function f ∨ g is often called
the override since f overrides g on the common part of their support. Clearly, f ∨ g
favors f while the restriction f ∧ g favors g. The algebra P = 〈P(A, B);∨,∧〉 is a
skew lattice that is easily seen to be distributive and symmetric. In fact, P is strongly
distributive in that it satisfies the identities

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z).

This leads us to recall that a skew lattice is normal if it satisfies the identity
x ∧ y ∧ z ∧ w = x ∧ z ∧ y ∧ w.

Theorem 2.2 [23]. A skew lattice S is strongly distributive if and only if it is symmetric,
distributive, and normal. �

Being normal is equivalent to requiring that for each e ∈ S , dee = {x ∈ S | e ≥ x}
is commutative, thus forming a sublattice of S. (Normality was studied by Leech
in [23].)

Two other operations can be defined on P(A, B): the difference, f \g = f | (F\G),
an operation favoring f , and the nullary operation given by the constant ∅. The latter
is the zero of P(A, B). In general, a zero element of a skew lattice, if it exists, is
characterized by the identities 0 ∨ x = x = x ∨ 0 and 0 ∧ x = 0 = x ∧ 0. Zero elements,
when they exist, are always unique. The difference and ∅ turn P into a variant of the
Boolean algebra on the power set P(A).

A skew Boolean algebra is an algebra S = 〈S ;∨,∧, \, 0〉 such that the 〈∨,∧, 0〉-
reduct is a strongly distributive skew lattice with zero element 0 and \ is a binary
operation on S satisfying

(x ∧ y ∧ x) ∨ (x\y) = x and (x ∧ y ∧ x) ∧ (x\y) = 0 = (x\y) ∧ (x ∧ y ∧ x).

By symmetry, one has (x\ f ) ∨ (x ∧ f ∧ x) = x also, so that x ∧ y ∧ x commutes with
x\y. This all implies that each dxe = {u ∈ S | x ≥ u} is a Boolean sublattice of S with x\y
being the unique complement of x ∧ y ∧ x in dxe. Clearly, we have the following result.

Theorem 2.3 [22, Theorem 1.8]. Skew Boolean algebras form a variety. �

The algebra 〈P(A, B);∨,∧, \, ∅〉 is a skew Boolean algebra. In fact, it is right-
handed in that x ∧ y ∧ x = y ∧ x holds and, dually, x ∨ y ∨ x = x ∨ y also. (Likewise, a
skew lattice is left-handed if x ∧ y ∧ x = x ∧ y and x ∨ y ∨ x = y ∨ x.) As with Boolean
algebras and their power set exemplars, every right-handed skew Boolean algebra can
be embedded in some partial function algebra 〈P(A, B);∨,∧, \, ∅〉. (See Leech [22].)

The four operations ∨, ∧, \, and ∅ are not the only ones that can be defined
on P(A, B). Given f , g in P(A, B), their intersection f ∩ g is exactly that given
upon viewing f and g as subsets of the Cartesian product A × B. As such, f ∩ g ≤
both f and g and, given any h ≤ both f and g, then h ≤ f ∩ g follows.
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In general, a skew lattice 〈S ;∨,∧〉 has intersections (or is with intersections) if
every pair x, y ∈ S possesses a natural meet with respect to the natural partial order ≥
on S . We denote the natural meet of x and y, when it exists, by x ∩ y and call it
their intersection. For any pair x and y, x ∧ y coincides with x ∩ y if and only if
x ∧ y = y ∧ x. The following results are from Bignall and Leech [4, Proposition 2.6
and Theorem 2.8].

Lemma 2.4. A skew lattice with intersections is an algebra 〈S ;∨,∧,∩〉 such that 〈S ;∩〉
is a meet semilattice, 〈S ;∨,∧〉 is a skew lattice, and the following identities hold:

e ∩ (e ∧ f ∧ e) = e ∧ f ∧ e and e ∧ (e ∩ f ) = e ∩ f = (e ∩ f ) ∧ e.

Skew lattices with intersections, and in particular SBAs with intersections, thus form
varieties of algebras.

Proof. The identities state in essence that the two partial orders on S induced by ∧
and ∩ must contain each other and thus coincide. �

Theorem 2.5. Skew lattices with intersections form a congruence distributive variety,
as do skew Boolean algebras with intersections.

Proof. Given a skew lattice with a natural meet, 〈S ;∨,∧,∩〉, set

m(x, y, z) = (x ∩ y) ∨ (y ∩ z) ∨ (x ∩ z)

and notice that m(x, x, y) = m(x, y, x) = m(y, x, x) = x. This establishes that
Con 〈S ;∨,∧,∩〉 is distributive. (See [10, Theorem II, Section 12.3].) �

The Green’s equivalences, D, L, and R, defined originally for semigroups, are
extended to skew lattices as follows. The equivalence D is defined via the natural
preorder � by x D y if x � y � x. Thus, x D y if and only if both x ∧ y ∧ x = x and
y ∧ x ∧ y = y and, dually, both x ∨ y ∨ x = x and y ∨ x ∨ y = y. Applying the Clifford–
McLean theorem for bands (semigroups of idempotents), we know (1) thatD is a skew
lattice congruence; (2) that S/D is the maximal lattice image of S; and (3) that each
D-class is a maximal rectangular subalgebra of S. EachD-class is anticommutative in
that x ∧ y = y ∧ x (or x ∨ y = y ∨ x) if and only if x = y. If D denotes a D-class, then
both 〈D;∧〉 and 〈D;∨〉 are rectangular bands that jointly satisfy x ∧ y = y ∨ x. A zero
element 0, if it exists, consists of a soleD-class. If x ∧ y = 0, then also y ∧ x = 0 and,
if S is symmetric, x ∨ y = y ∨ x. In general, if x ∧ y = 0 and u D x and v D y, then
u ∧ v = 0 also.

The equivalence D is refined by a pair of congruences, L and R. We have x L y
if x ∧ y = x and y ∧ x = y or, equivalently, x ∨ y = y and y ∨ x = x. Likewise, x R y if
x ∧ y = y and y ∧ x = x or, equivalently, x ∨ y = x and y ∨ x = y. The congruence
L ∩ R = ∆, the identity equivalence, while L ◦ R = R ◦ L = L ∨ R = D. A skew
lattice S is right-handed [respectively left-handed] if and only if D = R [respectively
D = L]. In general, S/R and S/L are the maximal left-handed and right-handed
images of S, respectively, and S is isomorphic to the fibered product S/R ×S/D S/L
over their common maximal lattice image S/D.
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Given a skew lattice S, an ideal of S is a subset I of S such that if x, y ∈ I and
z ∈ S , then x ∨ y, z ∧ x, and x ∧ z are in I. Given any element a in S , the principal
ideal of a is the set 〈a〉 = {x ∈ S | x � a}. Clearly, x ∈ 〈a〉 if and only if x � b for all
b ∈ Da, where Da is the D-class of a. If S has a zero element 0, the annihilator
of a is the set ann(a) = {x ∈ S | x ∧ a = 0}. Alternatively, it is both {x ∈ S | a ∧ x = 0}
and {x ∈ S | a ∧ x ∧ a = 0}. By our discussion above, x ∈ ann(a) if and only if
x ∧ b = 0 = b ∧ x for any (or all) b ∈ Da. If S is distributive, then ann(a) is easily
seen to be an ideal. The ideal 〈a〉 and annihilator ann(a) can also be parameterized
by the D-class A =Da as 〈A〉 and ann(A), respectively, since any b in Da induces the
same pair of sets.

Remarks. (1) Four distributive identities occur in this section: two characterize strong
distributivity and two characterize distributivity. All four are equivalent for lattices.
No two, however, are equivalent for skew lattices. In particular, the identities
characterizing distributivity are not equivalent in general, but are so for symmetric
skew lattices. (See [28] and [13].) A duality theory for strongly distributive skew
lattices with zero has been developed that extends Priestly duality for distributive
lattices with zero, itself an extension of classical Stone duality. (See [2].) (2) Given
an SBA, any congruence on its skew lattice reduct is easily seen to be an SBA
congruence [29, Proposition 1.4.27]. In particular, the congruences D, R, and L are
SBA congruences; moreover, the canonical factorization S � S/R ×S/D S/L of skew
lattices extends to SBAs.

3. Algebras with intersections amongst skew Boolean algebras

If an SBA has intersections, it is because ∩ occurs naturally in that 〈S ;≥〉 has meets.
Many SBAs thus have intersections. This includes finite SBAs or, more generally,
SBAs with finite maximal lattice images. Even more generally, complete SBAs (where
point-wise commuting subsets have suprema and hence also infima) have arbitrary
intersections. The latter includes partial function algebras P(A, B). Free skew Boolean
algebras have intersections. (See Kudryavtseva and Leech [21].) On the other hand,
we have the following example.

Example 3.1. Let S ⊆ P(N, {0, 1}) be characterized by f ∈ S if and only if dom( f ) is
either finite or else cofinite in N (in that N \ dom( f ) is finite). Let ϕ and ψ in S be
defined by letting ϕ(n) = 0 for all n ∈ N and setting

ψ(n) =

1 if n is odd,
0 if n is even.

Then ϕ ∩ ψ in P(N, {0, 1}) is the partial function ξ : {0, 2, 4, . . .} → 0. The set of all
subfunctions of both ϕ and ψ in S consists of all restrictions of ξ to finite domains.
Clearly, ϕ ∩ ψ < S.
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Consider the class of implicit SBIAs where ∩ is not built into the algebra’s
signature, that is, the class of their SBA reducts which is a proper subclass of SBAs.
One can ask how implicit SBIAs fit into the core theory of SBAs. In particular, what
is the relevance of the canonical SBA congruences D, R, and L? And what is the
role of left-handed and right-handed implicit SBIAs in their general theory? Here we
consider aspects of varieties in the partial lattice of varieties below that directly mirrors
the lattice of SBA varieties in the introduction.

〈1〉

〈2〉

SBIAl SBIAr

SBIA

ppp
p p pppp

p p p ppp Notation Variety of
SBIA SBIAs
SBIAL Left-handed SBIAs
SBIAR Right-handed SBIAs
〈2〉 Generalized Boolean algebras

or GBAs (∧ and ∩ merge)
〈1〉 Trivial algebras

We begin by proving two results that may seem to be at odds. The first is little more
than an observation.

Proposition 3.2. Given an SBIA S, let D, R, and L be the Green’s relations on S.
Then:

(1) D is an ∩-congruence on S if and only if D = ∆ so that S is a generalized
Boolean algebra;

(2) R is an ∩-congruence on S if and only if R = ∆ so that S is left-handed;
(3) L is an ∩-congruence on S if and only if L = ∆ so that S is right-handed.

Proof. ‘If’ is trivial. Conversely, if we say that D is a ∩-congruence but D , ∆, then
a , b in S exist such that aD bD a ∩ b. But then a ≥ a ∩ b ≤ b in thisD-class, which
is possible only if a = b. Thus, if D is an ∩-congruence, then D = ∆, making S a
generalized Boolean algebra. The R and L cases are similar. �

On the other hand, we have the following result.

Theorem 3.3. A skew Boolean algebra S has intersections if and only if both S/L
and S/R have them. More generally, a normal skew lattice S has intersections if
and only if both S/L and S/R have them. (In all cases, S/D possesses intersections
trivially since ∩ merges with ∧.)

To prove this, we will need the following result.

Proposition 3.4. If a skew lattice S with intersections has a lattice section (a
sublattice meeting eachD-class in a unique point), then both S/L and S/R also have
intersections.
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Proof. If T ≤ S is a lattice section in S, then a copy of S/R in S is given by
T[L] =

⋃
t∈T Lt. Since L is a congruence, T[L] is a (necessarily maximal) left-

handed subalgebra of S; the natural epimorphism from S to S/R moreover restricts
to an isomorphism of T[L] with S/R. Given x ∈ S , let tx be the unique element
in Dx ∩ T and set xL = x ∧ tx in T [L]. Then T [L] = {xL | x ∈ S }, x R xL L tx, and
the map x→ xL is a retraction of S upon T[L] with xL corresponding to the natural
image Rx of x in S/R. (See Cvetko-Vah [14].) We prove the proposition by showing
that x, y ∈ T [L] implies that x ∩ y ∈ T [L]. So, consider (x ∩ y)L = (x ∩ y) ∧ tx∩y.
We have x ∧ (x ∩ y)L = x ∧ (x ∩ y) ∧ tx∩y = (x ∩ y) ∧ tx∩y = (x ∩ y)L and likewise
y ∧ (x ∩ y)L = (x ∩ y)L. On the other hand, (x ∩ y)L ∧ x = (x ∩ y) ∧ tx∩y ∧ x ∧ tx since
x ∈ T [L]. But, since x � tx, tx∩y, regularity gives tx∩y ∧ x ∧ tx = tx∩y ∧ tx = tx∩y, so that
(x ∩ y)L ∧ x = (x ∩ y)L and likewise (x ∩ y)L ∧ y = (x ∩ y)L. Thus, x, y ≥ (x ∩ y)L and
we must have x ∩ y ≥ (x ∩ y)L. But, since x ∩ yD (x ∩ y)L, x ∩ y = (x ∩ y)L follows
and T[L] is closed under intersections. Likewise, the dual subalgebra T[R] =

⋃
t∈T Rt

is also closed under intersections, and the proposition follows. �

Proof of Theorem 3.3. A skew lattice S has intersections if and only if each principal
ideal S ∧ x ∧ S has intersections. Given a normal skew lattice S, then each ideal
S ∧ x ∧ S has a lattice section, namely x ∧ S ∧ x, with x ∧ S = (x ∧ S ∧ x)[R] �
(S ∧ x ∧ S )/L and S ∧ x = (x ∧ S ∧ x)[L] � (S ∧ x ∧ S )/R. But (S ∧ x ∧ S )/L and
(S ∧ x ∧ S )/R in turn form the principal ideals of S/L and S/R, respectively. Thus,
if S has intersections, so do all (S ∧ x ∧ S )/L and (S ∧ x ∧ S )/R and hence S/L
and S/R.

Conversely, let S/L and S/R have finite intersections, where S is normal. We
represent S as the fibred product S/L ×S/D S/R. So, let both (x′, x′′) and (y′, y′′)
in S be given, where x′, y′ ∈ S/L and x′′, y′′ ∈ S/R. Since S/L and S/R have finite
intersections, x′ ∩ y′ and x′′ ∩ y′′ exist in S/L and S/R, respectively. If x′ ∩ y′ and
x′′ ∩ y′′ share a common image in S/D, then (x′, x′′) ∩ (y′, y′′) is just (x′ ∩ y′, x′′ ∩ y′′).
In general, let u0 ∧ v0 be the meet in S/D of the respective images u0 of x′ ∩ y′ and v0

of x′′ ∩ y′′ in S/D. In the respective D-classes of S/L and S/R indexed by u0 ∧ v0,
unique elements w′ and w′′ exist (by normality) such that both x′ ∩ y′ ≥ w′ in S/L and
x′′ ∩ y′′ ≥ w′′ in S/R. The intersection (x′, x′′) ∩ (y′, y′′) is then precisely (w′,w′′). �

To complete this picture, here is a second observation (the first being
Proposition 3.2).

Proposition 3.5. Given a skew Boolean algebra S with intersections, (xl, xr) ∩
(yl, yr) = (xl ∩ yl, xr ∩ yr) holds in S/L ×S/D S/R if and only if S is a generalized
Boolean algebra (makingD = R = L = ∆).

Proof. If S is indeed commutative, then things are trivialized and the identity holds.
Otherwise, x , y in S exist such that either x L y or x R y, say x L y. Then xl , yl
in S/R, so that xl ∩ yl lies in a lower D-class in S/R than that of xl and yl, while
xr ∩ yr = xr = yr in a common D-class in S/L. It follows that (xl ∩ yl, xr ∩ yr) is in
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298 J. Leech and M. Spinks [9]

S/R × S/L, but not in S/L ×S/D S/R. Thus, the identity in the proposition’s statement
does not hold in the fibered product. �

Since similar identities for ∨, ∧, and \ do hold, for example (xl, xr) ∨ (yl, yr) =

(xl ∨ yl, xr ∨ yr), we get the following result.

Corollary 3.6. The operation ∩ cannot be polynomially defined in terms of ∨, ∧,
and \. �

This, of course, also follows from Proposition 3.2.
Returning to Theorem 3.3, hopefully one can appreciate its simple significance.

Just as all SBAs can be constructed to within isomorphism from pairs of left- and
right-handed SBAs, S/L and S/R, sharing a common maximal commutative image B
by taking the fibered product S/L ×B S/R, so also all SBIAs can be constructed to
within isomorphism from pairs of left- and right-handed SBIAs, S/L and S/R, whose
SBA reducts share a common maximal commutative image B by forming the fibered
product over B. Thus, like SBAs, many (but not all) aspects of SBIAs can be reduced
to studying the right-handed cases or their term-equivalent left-handed duals.

An instance of this occurs in constructing the free skew Boolean algebra FSBA(X) on
a set X. (See [21].) It is more convenient to first construct the free left-handed SBA,
FLSBA(X). The free right-handed SBA, FRSBA(X), is just its left–right dual (where
x ∨ ∗y = y ∨ x and x ∧ ∗y = y ∧ x, but x\y and 0 remain the same). Both algebras share
a maximal generalized Boolean algebra (GBA) image, FGBA(X), the free GBA on X.
The image FSBA(X) is just the fibered product over FGBA(X) of the two one-sided free
algebras. Since both factor algebras are seen to have intersections, so must FSBA(X).

Before going to the next section, observe that Example 3.1 shows that the class of
implicit SBIAs is not closed under the processes of taking SBA subalgebras or taking
SBA homomorphic images. As an SBA, this example is a subalgebra of P(N, {0, 1})
and the homomorphic image of some free SBA. Implicit SBIAs, however, are closed
under products.

4. The subdirectly irreducible algebras

When S is a skew Boolean algebra, given aD-class A, the relation between 〈A〉 and
ann(A) can be sharpened to give a decomposition of primary importance.

Theorem 4.1. Given aD-class A of a skew Boolean algebra S, then:

(1) both 〈A〉 and ann(A) are ideals of S;
(2) all elements of 〈A〉 commute with all elements of ann(A);
(3) in particular, for all u ∈ 〈A〉 and all v ∈ ann(A), u ∧ v = 0 = v ∧ u;
(4) the map µ : 〈A〉 × ann(A)→ S defined by µ(e, f ) = e ∨ f is an isomorphism.

Proof. See Leech [22, Paragraph 1.10 and Lemma 1.11]. �

Given skew lattices S and T, their product S × T has intersections if and only if S
and T each do, with (x, y) ∩ (x′, y′) = (x ∩ x′, y ∩ y′). We thus have the following result.
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Corollary 4.2. Given a principal ideal 〈A〉 in a skew Boolean algebra S and its
associated annihilator ideal ann(A), S has intersections if and only if both 〈A〉
and ann(A) have intersections, in which case the map µ : 〈A〉 × ann(A)→ S defined
by µ(x, y) = x ∨ y is an isomorphism of skew Boolean ∩-algebras. In particular, given
x, y in 〈A〉 and u, v in ann(A), (x ∨ u) ∩ (y ∨ v) = (x ∩ y) ∨ (u ∩ v). �

This holds not just for finite intersections (the meaning of ‘having intersections’),
but also for arbitrary intersections, as in the case of P(A, B).

A skew Boolean algebra is primitive if it consists of two D-classes: D > {0}.
All such algebras are created by the following process: take a rectangular band D
(satisfying xyz = xz) and create a rectangular skew lattice by setting x ∧ y = xy and
x ∨ y = yx. Then adjoin an element 0 < D along with the extended outcomes, x ∧ 0 =

0 = 0 ∧ x and x ∨ 0 = x = 0 ∨ x. Next set x\y = 0 if y , 0, but = x when y = 0.
This gives a primitive skew Boolean algebra. Theorem 4.1 implies that the nontrivial
directly irreducible skew Boolean algebras are precisely the primitive algebras. Skew
Boolean algebras with finitely many D-classes are thus direct products of primitive
algebras. Finally, note that primitive algebras have intersections: x ∩ y = x if x = y
and 0 otherwise. Thus, all skew Boolean algebras with finitely many D-classes have
intersections. We also have the following result.

Theorem 4.3. In the variety of skew Boolean ∩-algebras, the following hold:

(1) the primitive algebras are the nontrivial simple algebras;
(2) the primitive algebras are the nontrivial subdirectly irreducible algebras.

Proof. By Theorem 4.1, nontrivial simple (respectively, subdirectly irreducible) skew
Boolean algebras must be primitive. Conversely, let S be a primitive algebra and let θ
be a congruence on S. Suppose that e θ f with e , f in S . Then e and f are also
θ-congruent to e ∩ f = 0. Since either e , 0 or f , 0, this forces every element of
the primitive algebra to be congruent to 0. Hence, θ is the universal congruence. The
only other congruence possible is thus the identity congruence ∆. Thus, all primitive
algebras are both simple and hence also subdirectly irreducible. �

Corollary 4.4. Given a primitive SBA P, any ∩-preserving homomorphism ϕ from P
to an SBIA S is either the 0-homomorphism or an embedding.

5. The lattice of subvarieties

The following notation is observed. For all n ≤ ℵ0, nL [or nR] denotes the left-
handed [right-handed] primitive skew Boolean ∩-algebra on n = {0, 1, 2, . . . , n − 1} or
on {0, 1, 2, . . .} if n = ℵ0, with 0 the zero element. In the left-handed case, x ∧ y = x
and x ∨ y = y for both x, y , 0. In the right-handed case, x ∧ y = y and x ∨ y = x
if both x, y , 0. Given primitive algebras A and B, we denote their fibered product
A ×2 B, also a primitive algebra, by A • B. If A and B have D-class structures
A′ > {0} and B′ > {0}, then A • B has the D-class structure A′ × B′ > {(0, 0)}, where
A′ × B′ is the direct product of rectangular skew lattices A′ and B′, and (0, 0) is the
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zero element, often replaced by 0. Our interest is in algebras mL •mR for which
mL • nR/L � nR while mL • nR/R � mL. Each finite primitive algebra is a copy
of some mL • nR. Finally, given any skew Boolean ∩-algebra A, 〈A〉∩ denotes the
principal subvariety of all skew Boolean ∩-algebras generated by A in that they satisfy
all identities satisfied by A. Consider the following lattice Ω of subalgebras of the
primitive algebra ℵ0L • ℵ0R with all viewed as skew Boolean ∩-algebras.

1

2

3L 3R

4L 3L • 3R 4R

ℵ0LΩ: ℵ0R

ℵ0L • 3R 3L • ℵ0R

ℵ0L • ℵ0R

6

�
��

@
@I

�
��

@
@I

@
@I

�
��

@@I

ppp
���

p p p
@@I

ppp
���

p p p
@@I

ppp
���

p p p
�
��

@
@I

���

p p p p p p
@@I

pppppp

In this diagram, each nL is identified with the trivial fibered product, nL • 2,
and each nR is likewise identified with the trivial fibered product, 2 • nR. The
embeddings → are induced from the standard chain of inclusions: {0} ⊂ {0, 1} ⊂
{0, 1, 2} ⊂ {0, 1, 2, 3} ⊂ · · · .

Proposition 5.1. The map A → 〈A〉∩ applied to the above diagram of inclusions
induces a corresponding diagram of strict inclusions of the respective varieties, with:

(1) 〈ℵ0L • nR〉
∩ =
⋃
{〈mL • nR〉

∩ | m < ℵ0} for all n < ℵ0;
(2) 〈mL • ℵ0R〉

∩ =
⋃
{〈mL • nR〉

∩ | n < ℵ0} for all m < ℵ0;
(3) 〈ℵ0L • ℵ0R〉

∩ =
⋃
{〈mL • nR〉

∩ | m, n < ℵ0}.

(The variety 〈ℵ0L • ℵ0R〉
∩ is, of course, the variety of all SBIAs, also denoted

by SBIA.)

Proof. Clearly, we have a diagram of inclusions. Since any equation in the operations
of the signature contains only finitely many variables, the final three assertions are
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clear. Thus, we need only show the inclusions of the induced subvarieties to be proper
in the case of the finite primitive algebras. We first show 〈nL〉

∩ ⊂ 〈n + 1L〉
∩ to be

proper for all finite n. To begin, x ≈ y holds on 〈1〉∩ but not on 〈2〉∩. Next, for n ≥ 2,
we set

Φn(x1, x2, . . . , xn) = (x1\(x1 ∩ x2)) ∧ (x2\(x2 ∩ x3)) ∧ · · · ∧ (xn\(xn ∩ x1))

and

Ψn(x1, x2, . . . , xn) = x1\[(x1 ∩ x2) ∨ · · · ∨ (x1 ∩ xn) ∨
(x2 ∩ x3) ∨ . . . (x2 ∩ xn) ∨ · · · ∨ (xn−1 ∩ xn)].

Since Φn(a1, a2, . . . , an) , 0 only if none of a1, a2, . . . , an is 0,

Φn(x1, x2, . . . , xn) ∧ Ψn(x1, x2, . . . , xn) = 0

holds on nL but not on n + 1L (respectively, on nR but not on n + 1R) for all n ≥ 2.
All inclusions at least along the two lower sides of the above diagram are seen to
be proper. But this forces all links in the above diagram to be proper. For instance,
〈mL • nR〉

∩ ⊆ 〈m + 1L • nR〉 for m < ℵ0 and n ≤ ℵ0 is proper since

Φm(x1 ∧ y, x2 ∧ y, . . . , xm ∧ y) ∧ Ψm(x1 ∧ y, x2 ∧ y, . . . , xm ∧ y) ≈ 0

must hold in 〈mL • nR〉
∩ but not in 〈m + 1L • nR〉. �

Remark. The part in the proof regarding the left-handed (or right-handed) case was
essentially in Bignall’s 1976 dissertation [3].

Thus, Ω and its induced array Ω〈〉 of principal varieties possess lattice isomorphic
structures (if partially ordered by inclusion). The latter, however, is not the full lattice
of varieties for SBIAs. But, before proceeding on that front, we first have the following
result.

Theorem 5.2. Skew Boolean ∩-algebras are locally finite.

Proof. Given an SBIA S generated from a finite set X of size n, if ϕ : S→ P is a
nontrivial homomorphism from S to a primitive algebra P, then ϕ[S] is a primitive
subalgebra P′ of P that is isomorphic to a subalgebra of n + 1L • n + 1R. It follows
that a homomorphism of ϕ′ : S→ n + 1L • n + 1R exists inducing the same congruence
on S that ϕ has. Moreover, only finitely many distinct homomorphisms from S to
n + 1L • n + 1R are possible since S is generated from X. Thus, S can be embedded in
a finite power of n + 1L • n + 1R, making S itself finite. �

Theorem 5.2 also follows directly from Theorem 4.3 and [27, Theorem 1].

Theorem 5.3. A (quasi-)identity of signature 〈∨,∧, \,∩, 0〉 in n variables holds for all
skew Boolean ∩-algebras if and only if it holds in n + 1L • n + 1R, itself an algebra
with n generators. Likewise, the (quasi-)identity holds for all left-handed [respectively
right-handed] skew Boolean ∩-algebras if and only if it holds in n + 1L [respectively
in n + 1R]. The question of when a given (quasi-)identity holds for all (left-handed or
right handed) skew Boolean ∩-algebras is thus decidable.
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Proof. A (quasi-)identity in variables x1, . . . , xn holds for all SBIAs if and only if it
holds on all such algebras with ≤ n generators. From the previous proof, this happens
if and only if the (quasi-)identity holds on n + 1L • n + 1R. The left-handed and right-
handed cases are similar. �

In light of the results of this paper, Theorem 5.3 may also be deduced directly from
the quasi-equational version of Harrop’s theorem [8, Lemma 3.13].

We denote by Ω0 and Ω
〈〉

0 the isomorphic sublattices of Ω and Ω〈〉 determined by
the finite cases mL • nR and the varieties 〈mL • nR〉

∩ they generate. At this stage,
a result of Davey is relevant. To begin, given a partially ordered set P = 〈P;≥〉, an
order ideal of P is any nonempty subset I of P satisfying the implication: if x ∈ I and
x ≥ y in P, then y ∈ I also. Our interest here is in Ω0 or its isomorphic copy Ω

〈〉

0 when
ordered by inclusion: A ≥ B if and only if A ⊇ B. The theorem is as follows. (See [18,
Theorems 3.3 and 3.5].)

Theorem 5.4 (Davey [18]). Let V be a locally finite, congruence distributive variety.
Then its lattice of subvarieties is completely distributive and is isomorphic to the lattice
of order ideals of its partially ordered set of principal subvarieties generated by finite,
subdirectly irreducible algebras and ordered by subvariety inclusion. �

This plus Proposition 5.1, Theorem 5.2, and our remarks gives us the following
result.

Theorem 5.5. The lattice of varieties of skew Boolean ∩-algebras is completely
distributive and is isomorphic to the lattice of order ideals of the lattice Ω0 of finite
primitive algebras including 1, when partially ordered by inclusion.

The lattices of varieties of left-handed skew Boolean ∩-algebras, of their right-
handed duals, and of generalized Boolean algebras are respectively the lattice

〈1〉∩ < 〈2〉∩ < 〈3l〉∩ < · · · < 〈ℵ0L〉
∩

its right-handed counterpart, and their common subchain {〈1〉∩ < 〈2〉∩}. �

Remarks. (1) Again, the left- and right-handed cases go back to Bignall [3]. (2) In
general, various proper inclusions occur (for example, 〈3L, 3R〉

∩ ⊂ 〈3L • 3R〉
∩) that

take us beyond Ω〈〉. (3) Interestingly, the lattice of varieties of SBAs in Section 1 is
also completely distributive and isomorphic to a lattice of order ideals. (4) 〈3R〉

∩ plays
a special role in a construction studied by Leech and Spinks [25].

The sublattice of nontrivial varieties containing at least 〈2〉 is described in Cartesian
fashion using abbreviated notation in the array below. Here m, n represents (m + 1)L •

(n + 1)R with m and n counting the sizes of both non-0 D-classes. (m is thus the
‘y-variable’ and n the ‘x variable’.) One has m, n ≥ p, q when m ≥ p and n ≥ q,
so that p, q lies nonstrictly to the lower left of m, n, which represents the fact that
(p + 1)L • (q + 1)R is a subalgebra of (m + 1)L • (n + 1)R.
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...
...

...
...

...
... . . .

5 5, 1 5, 2 5, 3 5, 4 5, 5 · · ·

4 4, 1 4, 2 4, 3 4, 4 4, 5 · · ·

3 3, 1 3, 2 3, 3 3, 4 3, 5 · · ·

2 2, 1 2, 2 2, 3 2, 4 2, 5 · · ·

1 1, 1 1, 2 1, 3 1, 4 1, 5 · · ·

1 2 3 4 5 · · ·

In the quadrant, a nontrivial ideal corresponds to a nonincreasing array of the terraced
form below.

s s s s s s s s ss s s s s s s ss s s s s s ss s s s ss s s s ss ss s

As such, it is described by a nonstrictly decreasing function f from the set {1, 2, 3, . . .}
to the set {0, 1, 2, 3, 4, . . . ,ℵ0}, where f (n) measures the highest dot in the n-column,
which must correspond to (f(n) + 1)L • (n + 1)R. The function f for the above array is
thus

f =
n 1 2 3 4 5 6 7 8 9 10 · · ·

f (n) 7 7 5 5 5 3 3 2 1 0 · · ·

corresponding to the variety

〈8L • 3R〉
∩ ∪ 〈6L • 6R〉

∩ ∪ 〈4L • 8R〉
∩ ∪ 〈3L • 9R〉

∩ ∪ 〈2L • 10R〉
∩,

since the algebra 8L • 3R has paired non-0 D-classes of sizes 7 and 2, 6L • 6R has
paired non-0 D-classes of sizes 5 and 5, and so forth. Since 8L • 3R, 6L • 6R, etc,
belong to the variety, so do all the (m + 1)L • (n + 1)R represented by dots to the
(nonstrictly) lower left of each of these dots. Hence, f (1) = 7 = f (2), f (3) = 5 =

f (4) = f (5), etc. Since nontrivial varieties are determined by the algebras of type
(m + 1)L • (n + 1)R that they contain, the join of two such varieties is determined by
the union of their sets of such algebras and their intersection by all common algebras
of this form.
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In general, each variety is the union of a finite number of ‘upper right corner
subvarieties’ with the latter including the possibilities of 〈ℵ0L • nR〉

∩ and 〈mL • ℵ0R〉
∩.

The variety of all SBIAs is of course 〈ℵ0L • ℵ0R〉
∩. Thus, since only finitely many strict

decreases in the output are possible, the number of such functions (ideals) is countably
infinite. Even the trivial ideal 〈1〉∩ can be represented as the zero function: z(n) = 0
for all n. The lattice operations are evaluated in point-wise fashion: ( f ∨ g)(n) =

max{ f (n), g(n)} and ( f ∧ g)(n) = min{ f (n), g(n)}. We thus have the following result.

Theorem 5.6. The lattice of varieties of skew Boolean algebras with intersections is
isomorphic to the lattice of nonstrictly decreasing functions from the set {1, 2, 3, . . .} to
the set {0, 1, 2, 3, . . . ,ℵ0} with the join and meet operations given point-wise as above.
In either the right- or left-handed cases, the lattice of varieties is isomorphic to the
usual lattice ordering on {1, 2, 3, . . . ,ℵ0}. �

Another consequence of the above observation of ‘only finitely many strict
decreases’ is the fact that every variety is principal in that it is generated from a
single algebra. In the case of the example above, the variety is generated by the direct
product:

8L • 3R × 6L • 6R × 4L • 8R × 3L • 9R × 2L • 10R.

When viewed as SBIAs, 〈(n + 1)L • (n + 1)R〉
∩ includes all (necessarily finite) skew

Boolean algebras on ≤ n generators, of which (n + 1)L • (n + 1)R is an instance.
What about the lattice of quasi-varieties? This leads us to recall an important aspect

of SBIAs. The (ternary) discriminator on a set A is a function t : A3 → A defined by

t(a, b, c) =

c if a = b,
a otherwise.

A varietyV is a discriminator variety if a term t(x, y, z) in the language ofV exists
whose canonical interpretation on any subdirectly irreducible member of V is the
ternary discriminator. SBIAs form a discriminator variety since the following term
realizes the ternary discriminator on any subdirectly irreducible SBIA (see Bignall
and Leech [4, Theorem 4.4]):

t(x, y, z) = (x\(x ∩ y)) ∨ (z\((x\(x ∩ y)) ∨ (y\(y ∩ x)))).

For a variety V, let Λv(V) [respectively Λq(V)] denote the lattice of subvarieties
[respectively the lattice of sub-quasi-varieties] of V. In general, Λv(V) ⊆ Λq(V).
We shall exploit the following result of Blanco, Campercholi, and Vaggione. In its
statement, 2 denotes the two-element chain (considered as a lattice).

Theorem 5.7 [7, Theorem 1(a)]. LetV be a discriminator variety having the property
that the class

B[V] = {A ∈ V | A is simple with no trivial subalgebra}

is closed under the formation of ultraproducts. Then Λq(V) = Λv(V) if and only if
either B[V] = ∅ or Λv(V) � 2. (Thus, for a discriminator varietyV, Λq(V) = Λv(V)
if B[V] = ∅.) �
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As a consequence, we have the following result.

Theorem 5.8. Λq(SBIA) = Λv(SBIA). In particular, every sub-quasi-variety
of SBIA is actually a subvariety of SBIA.

Proof. In the discriminator variety SBIA, the simple algebras are precisely the trivial
algebras along with the primitive algebras, the latter all having trivial subalgebras.
Thus, B[SBIA] is empty, making Λq(SBIA) = Λv(SBIA). �

Remarks. (1) In our definition of a discriminator variety we used a three-variable
discriminator term. At the beginning of [7], the authors used an alternative four-
variable term. Both approaches, however, are equivalent as both terms are term-
equivalent. (2) For different reasons, the SBA version of Theorem 5.8 also holds:
every sub-quasi-variety of an SBA is actually a subvariety of the SBA. For the right-
handed case, see [17, Theorem 12]. The term-equivalent left-handed case thus also
holds. From both, the general case must follow. (3) Let V be a variety of SBIAs
and let S(V, 0) be the canonical deductive system inherent in V, namely the 0-
assertional logic of V. (See Blok and Raftery [9].) Then Theorem 5.8 asserts
that S(V, 0) is hereditarily structurally complete in the sense of Olson et al. [26].
For a recent study of structural completeness in the context of discriminator varieties,
see Campercholi et al. [11]. For studies of the canonical deductive systems inherent in
varieties of skew Boolean ∩-algebras, see [30] and [31].
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