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Abstract

We consider a propositional spatial logic for finite trees. The logic includes A | B (tree com-

position), A �B (the implication induced by composition), and 0 (the unit of composition).

We show that the satisfaction and validity problems are equivalent, and decidable. The crux

of the argument is devising a finite enumeration of trees to consider when deciding whether

a spatial implication is satisfied. We introduce a sequent calculus for the logic, and show it to

be sound and complete with respect to an interpretation in terms of satisfaction. Finally, we

describe a complete proof procedure for the sequent calculus. We envisage applications in the

area of logic-based type systems for semistructured data. We describe a small programming

language based on this idea.

1 Introduction

Due to the growing popularity of semistructured data (Buneman, 1997), and parti-

cularly XML (Bray et al., 1998), there is a renewed interest in typed programming

languages that can manipulate tree-like data structures. Unfortunately, semistruc-

tured data cannot be checked by conventional type systems with sufficient flexibility.

More advanced type systems are being proposed that better match the data schemas

used with semistructured data (Hosoya & Pierce, 2000).

In general, we are going to have some tree-like data t, and some description

language T that can flexibly describe the shape of the data. We are interested in

description languages so flexible that they are akin to logics rather than to type

systems. The question is: what is needed to use a description language T as a type

system in some programming language that manipulates t data?

First of all, the programming language needs to analyze the data, so it needs to

check at run-time whether a tree value matches a description. In type system terms

this is a run-time typing problem: does tree t have type A. In logical terms this is a

satisfaction problem: does tree t satisfy formula A.

Second, the programming language needs (most likely) to check at compile time

whether a description A is less general than a description B. In terms of type system

this is a subtyping test: is type A a subtype of type B. In logic terms this is a validity

test: does every tree t satisfying formula A also satisfy formula B.
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Given both a satisfaction and a validity algorithm, it is then fairly routine to

build a type system around the description language, along with an operational

semantics obeying standard typing soundness properties. The key problem, though,

is to find rich description languages that admit satisfaction and (more crucially)

validity algorithms. In the case of XDuce (Hosoya & Pierce, 2001), for example,

these algorithms are found in tree automata theory.

We propose here a logic that can be used as a rich description language for tree-

like data. It emerges as an application of the novel area of “spatial” logics used for

describing data and network structures. The logic of this paper is so expressive that,

in fact, satisfaction and validity are equivalent problems (validity can be defined

internally). For a restricted version of the spatial logics studied so far, we are able

to obtain a validity algorithm, and this is sufficient for language applications. We

end this paper by describing a simple language based on these ideas.

In a spatial logic, the truth of a formula depends on its location. Models for

spatial logics include computational structures such as concurrent objects (Caires &

Monteiro, 1998), heaps (Reynolds, 2002; Ishtiaq & O’Hearn, 2001; O’Hearn et al.,

2001), trees (Cardelli & Ghelli, 2001), graphs (Cardelli et al., 2002), and also process

calculi such as the π-calculus (Caires & Cardelli, 2003; Caires & Cardelli, 2002)

and the ambient calculus (Cardelli & Gordon, 2000; Cardelli & Gordon, 2001).

Previous applications of spatial logics include specifying and verifying imperative

and concurrent programs, and querying semistructured data.

The spatial logic of this paper describes properties of finite edge-labelled trees. In

our textual notation, n1[P1] | · · · |nk[Pk] is a tree consisting of k edges, labelled n1, . . . ,

nk , leading to k subtrees P1, . . . , Pk , respectively. Our logic starts with propositional

primitives: conjunction A∧B, implication A⇒ B, and falsity F. To this basis, we

add spatial primitives: composition A | B (satisfied by composite trees P | Q where

P and Q satisfy A and B, respectively), guarantee A � B (the spatial implication

corresponding to composition, satisfied by trees that, whenever composed with any

tree that satisfiesA, result in trees that satisfyB) and void 0 (the unit of composition,

satisfied by the empty tree). We complete the logic with primitives for labelled edges:

location n[A] (satisfied by a tree n[P ] if P satisfiesA) and placement A@n (satisfied

by a tree P if the tree n[P ] satisfies A).

We consider the satisfaction problem (whether a given tree satisfies a given

formula) and the validity problem (whether every tree satisfies a given formula). Since

satisfaction of the guarantee operator A �B is defined as an infinite quantification

over all trees, neither problem is obviously decidable. Our first significant result,

is that both are, in fact, decidable (Theorem 2). In effect, we show how to decide

validity by model checking. The main auxiliary result (Theorem 1) is that we need

consider only a finite enumeration of trees when model checking a formula A �B.

Subsequently, we introduce a sequent calculus for our spatial logic, and show

how to decide validity by deduction in this calculus. The finite enumeration of trees

introduced in the first half is built into the right rule forA�B. Our sequent calculus

has a standard interpretation in terms of the satisfaction predicate. By appeal to

Theorem 1, we show the sequent calculus to be sound (Theorem 3) and complete

(Theorem 4) with respect to its interpretation. Moreover, we obtain and verify a
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complete algorithm for finding proofs in the sequent calculus (Theorem 5). The

resulting algorithm for validity is better suited to optimizations than the algorithm

based directly on model checking.

Finally, we show an application of our decidability results: a λ-calculus to

manipulate tree data, where logical formulas are used as base types. We present

a typechecking algorithm parameterized on a validity algorithm for the tree logic,

allowing the use of optimized validity algorithms when they become available.

Section 2 gives formal definitions of our logic and its model. Section 3 develops

our first algorithm for validity, based on model checking. Section 4 develops our

second algorithm, based on our sequent calculus. Section 5 describes our λ-calculus

for manipulating trees, to illustrate the idea of using spatial logic formulas as

programming language types. Section 6 concludes.

An abridged version of this work appears in a conference paper (Calcagno et al.,

2003). A technical report (Calcagno et al., 2002) includes all omitted proofs.

2 Ground propositional spatial logic (review)

This section introduces our spatial logic and its model. First, we define our notation

for edge-labelled finite trees. Second, we introduce the formulas of the logic and

their semantics: the satisfaction predicate, P |=A, means that the tree P satisfies the

formulaA. Third, we define the validity predicate, vld(A), to mean P |=A for every

tree P . By constructing certain characteristic formulas, we note that satisfaction and

validity are interderivable.

In a study of a richer spatial logic than the one considered here, Hirschkoff

et al. (2002) also define characteristic formulas for ambient processes, and note

equivalences between the satisfaction and validity problems.

2.1 Edge-labelled finite trees

Let m, n range over an infinite set N of names. The model of our logic is the set of

edge-labelled trees, finitely branching and of finite depth.

Trees:

P ,Q ::= tree

0 empty tree

P | Q composition

m[P ] edge labelled by m, atop tree P

Let fn(P ) be the set of names free in P . For any X ⊆ N, let TreeX
�
= {P | fn(P ) ⊆ X}.

Structural Equivalence: P ≡ Q

P ≡ P (Struct Refl)

Q ≡ P ⇒ P ≡ Q (Struct Symm)

P ≡ Q,Q ≡ R ⇒ P ≡ R (Struct Trans)
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P ≡ Q⇒ P | R ≡ Q | R (Struct Par)

P ≡ Q⇒M[P ] ≡M[Q] (Struct Amb)

P | Q ≡ Q | P (Struct Par Comm)

(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)

P | 0 ≡ P (Struct Zero Par)

Lemma 1

If P ∈ TreeX and P ≡ Q then Q ∈ TreeX .

2.2 Logical formulas and satisfaction

Logical Formulas:

A,B ::= formula

F false

A∧B conjunction

A⇒ B implication

0 void

A | B composition

A �B guarantee

n[A] location

A@n placement

The derived propositional connectives T, ¬A, A∨B, are defined in the usual way.

Name equality can be defined by m = n
�
= m[T]@n; this formula holds if and only

if m = n. We write A{m←m′} for the outcome of substituting each occurrence of

the name m in the formula A with the name m′.

We define the satisfaction predicate, P |=A, as follows.

Satisfaction: P |=A

P |= F never

P |=A∧B �
= P |=A∧ P |= B

P |=A⇒ B �
= P |=A⇒ P |= B

P |= 0
�
= P ≡ 0

P |=A | B �
= ∃P ′, P ′′.P ≡ P ′ | P ′′ ∧ P ′ |=A∧ P ′′ |= B

P |=A �B �
= ∀P ′.P ′ |=A⇒ P | P ′ |= B

P |= n[A]
�
= ∃P ′.P ≡ n[P ′] ∧ P ′ |=A

P |=A@n
�
= n[P ] |=A

A basic property is that structural congruence preserves satisfaction:

Lemma 2

If P |=A and P ≡ P ′ then P ′ |=A.

Proof

An easy induction on the structure of A. �
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It is useful to know that every tree P has a characteristic formula P . Let 0
�
= 0,

P | Q �
= P | Q, and m[P ]

�
= m[P ]. The formula P identifies P up to structural

equivalence:

Lemma 3

For all P and Q, Q |= P if and only if Q ≡ P .

Proof

An easy induction on the structure of P . �

Now, to turn the definition of satisfaction into an algorithm, that is, to build a model

checker for the logic, we must show that the three quantifications in the clauses

for A | B, A � B, and n[A] can be reduced to finite problems. It is not hard to

reduce the clauses for A |B and n[A] to finite quantifications (Cardelli & Gordon,

2000), but it seems far from obvious how to reduce satisfaction of A �B to a finite

problem. The principal result of the paper, Theorem 1, is that for any A′, A′′ there

is a finite set T (A′ �A′′) such that:

P |=A′ �A′′ ⇔ ∀P ′ ∈ T (A′ �A′′).P ′ |=A′ ⇒ P ′ | P |=A′′

2.3 Validity of a formula

The validity predicate, vld(A), means every tree satisfies the formula A.

Validity: vld(A)

vld(A)
�
= ∀P .P |=A

The next two lemmas exhibit formulas to encode validity in terms of satisfaction,

and the converse.

Lemma 4 (Validity from Satisfaction)

vld(A) if and only if 0 |= T �A.

Proof

With appeal to Lemma 2, we get: vld(A)⇔ (∀P .P |=A)⇔ (∀P .P |= T⇒ P | 0 |=
A)⇔ 0 |= T �A. �

Lemma 5 (Satisfaction from Validity)

P |=A if and only if vld(P ⇒A).

Proof

With appeal to Lemmas 2 and 3, we get: vld(P ⇒A)⇔ (∀Q.Q |= P ⇒ Q |=A)⇔
(∀Q.Q ≡ P ⇒ Q |=A)⇔ P |=A. �

Hence, the validity and satisfaction problems are equivalent. The goal of the paper

is to show both are decidable.
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3 Deciding validity by model checking

The crux of our problem is the infinite quantification in the definition of satisfaction

for A � B. We bound this infinite quantification in three steps, which lead to an

alternative definition in terms of a finite quantification. This leads to a model

checking procedure, and hence to an algorithm for validity.

• In section 3.1, we bound the alphabet of distinct names that may occur in

trees that need to be considered. Let fn(A) be the set of names occurring

free in any formula A. Let m be some other name. Proposition 1 asserts that

P |=A �B if and only if Q |=A⇒ P |Q |= B for all trees Q with edge-labels

drawn from the set fn(A) ∪ {m}.
• In section 3.2, we introduce a measure of the size of a tree, and bound both

the alphabet and size of trees that need to be considered. Proposition 4 asserts

that P |=A �B if and only if Q |=A⇒ P |Q |= B for all the trees Q smaller

than a size determined by A and with edge-labels drawn from a particular

finite alphabet.

• In section 3.3, we give a procedure to enumerate a finite set of structural

equivalence classes of trees determined by a formula. Theorem 1 asserts that

P |= A �B if and only if Q |= A ⇒ P | Q |= B for all the representatives Q

of these equivalence classes. Hence, we prove in Theorem 2 that satisfaction,

and hence validity, is decidable.

3.1 Bounding the names to consider

We need the following facts relating substitution with the operators for adding an

edge to a tree and for composing trees.

Lemma 6

If n /∈ {m,m′} then:

P {m←m′} ≡ n[Q]⇔ ∃P ′.P ≡ n[P ′] ∧ P ′{m←m′} ≡ Q

Proof

P {m←m′} |= n[Q]

⇔ ∃m′′, P ′.P ≡ m′′[P ′] ∧ m′′{m←m′} = n ∧ P ′{m←m′} ≡ Q

⇔ ∃P ′.P ≡ n[P ′] ∧ P ′{m←m′} ≡ Q �

Lemma 7

P {m←m′} ≡ Q′ | Q′′
⇔ ∃P ′, P ′′.P ≡ P ′ | P ′′ ∧ P ′{m←m′} ≡ Q′ ∧ P ′′{m←m′} ≡ Q′′

Proof

Immediate since substitution preserves the structure of trees. �

Given these facts we can show that satisfaction of a formula is independent of

any name not occurring in the formula.
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Lemma 8

If m,m′ /∈ fn(A), P |=A⇔ P {m←m′} |=A.

Proof

By induction on the structure of A. We only consider the interesting cases.

Case A | B. We have m,m′ /∈ fn(A) ∪ fn(B). With appeal to Lemmas 2 and 7, and

the induction hypothesis, we calculate:

P |=A | B
⇔ ∃P ′, P ′′.P ≡ P ′ | P ′′ ∧ P ′ |=A∧ P ′′ |= B
⇔ ∃P ′, P ′′.P ≡ P ′ | P ′′ ∧ P ′{m←m′} |=A∧ P ′′{m←m′} |= B
⇔ ∃P ′, P ′′, Q′, Q′′.P ≡ P ′ | P ′′ ∧ Q′ ≡ P ′{m←m′} ∧

Q′′ ≡ P ′′{m←m′} ∧ Q′ |=A∧ Q′′ |= B
⇔ ∃Q′, Q′′.P {m←m′} ≡ Q′ | Q′′ ∧ Q′ |=A∧ Q′′ |= B
⇔ P {m←m′} |=A | B

Case A �B. We have m,m′ /∈ fn(A) ∪ fn(B). With appeal to the induction hypo-

thesis, we calculate:

P |=A �B ⇔ ∀Q.Q |=A⇒ P | Q |= B
⇔ ∀Q.Q |=A⇒ (P | Q){m←m′} |= B
⇔ ∀Q.Q |=A⇒ (P {m←m′} | Q){m←m′} |= B
⇔ ∀Q.Q |=A⇒ P {m←m′} | Q |= B
⇔ P {m←m′} |=A �B

Case n[A]. We have m,m′ /∈ {n} ∪ fn(A). With appeal to Lemma 2 and Lemma 6,

and the induction hypothesis, we calculate:

P |= n[A] ⇔ ∃P ′.P ≡ n[P ′] ∧ P ′ |=A
⇔ ∃P ′.P ≡ n[P ′] ∧ P ′{m←m′} |=A
⇔ ∃P ′, P ′′.P ≡ n[P ′] ∧ P ′{m←m′} ≡ P ′′ ∧ P ′′ |=A
⇔ ∃P ′′.P {m←m′} ≡ n[P ′′] ∧ P ′′ |=A
⇔ P {m←m′} |= n[A]

Case A@n. We have m,m′ /∈ {n} ∪ fn(A). With appeal to the induction hypothesis,

we calculate:

P |=A@n ⇔ n[P ] |=A
⇔ (n[P ]){m←m′} |=A
⇔ n[P {m←m′}] |=A
⇔ P {m←m′} |=A@n �

This lemma is not true for the logic extended with quantifiers: we have m[] | n[] |=
∃x, y.(x[] | y[]) ∧ x �= y but m[] | m[] �|= ∃x, y.(x[] | y[]) ∧ x �= y.
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Proposition 1 (Bounding Names)

Suppose m /∈ fn(A �B). Then:

P |=A �B ⇔ (∀Q ∈ Treefn(A�B)∪{m}. Q |=A⇒ P | Q |= B)

Proof

The forwards direction is immediate. For the backwards direction, assume that

(∀Q ∈ Treefn(A�B)∪{m}. Q |= A ⇒ P | Q |= B) and consider any tree Q such that

Q |= A. Suppose that fn(P | Q) ⊆ fn(A � B) ∪ {m, n1, . . . , nk} where {n1, . . . , nk} ∩
(fn(A � B) ∪ {m}) = ∅. Let P ′ = P {n1←m} · · · {nk←m} and Q′ = Q{n1←m} · · ·
{nk←m}. By repeated application of Lemma 8, we get that Q |= A ⇔ Q′ |= A.

Since Q′ ∈ Treefn(A�B)∪{m} and Q′ |=A, we obtain P | Q′ |= B by assumption. Now,

we have:

(P | Q′){n1←m} · · · {nk←m}
= P ′ | Q′

= (P | Q){n1←m} · · · {nk←m}

Hence, by repeated application of Lemma 8, we get that P | Q′ |= B ⇔ P ′ | Q′ |=
B ⇔ P | Q |= B. Hence P | Q |= B follows. �

3.2 Bounding the sizes to consider

We introduce measures of the height and width (h, w) of both trees and formulas,

and define a binary relation on trees parameterized on size. We show that formulas

of size (h, w) cannot distinguish between (h, w)-related trees, and that for any tree

there is an (h, w)-related tree of size at most (h, w).

Definition 1 (Notation)

Write a · P for a � 0 copies of P in parallel: P | . . . | P .

Definition 2 (Size of Trees)

|P |hw �
= (h, w) iff there are a1, n1, P1, . . . , ak , nk , Pk , for some k, such that the

following properties hold:

• P ≡ a1 · n1[P1] | . . . | ak · nk[Pk]

• ∀i, j ∈ 1..k. ni[Pi] ≡ nj[Pj]⇒ i = j

• (hi, wi) = |Pi|hw for each i ∈ 1..k

• if k = 0, h = 0; otherwise h = 1 + max(h1, . . . , hk)

• if k = 0, w = 0; otherwise w = max(a1, . . . , ak, w1, . . . , wk)

When |P |hw = (h, w), we write |P |h for h and |P |w for w. We write (h1, w1) � (h2, w2)

for (h1 � h2) ∧ (w1 � w2).

Intuitively |P |h is the height of P , and |P |w is the width, defined as the maximum

multiplicity of the subtrees of P . The multiplicity is the number of structurally

equivalent non-empty trees under the same edge. For example:

• |0|hw = (0, 0)
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• |n[0]|hw = (1, 1)

• |n[0] | m[0]|hw = (1, 1)

• |n[0] | n[0]|hw = (1, 2)

• |n[m[0]]|hw = (2, 1)

• |n[n[0]]|hw = (2, 1)

Next, we define height and width measures for logical formulas.

Size of Logical Formulas

|F|h �
= 0 |F|w �

= 0

|A ∧ B|h �
= max(|A|h, |B|h) |A ∧ B|w �

= max(|A|w, |B|w)

|A ⇒ B|h �
= max(|A|h, |B|h) |A ⇒ B|w �

= max(|A|w, |B|w)

|0|h �
= 1 |0|w �

= 1

|A | B|h �
= max(|A|h, |B|h) |A | B|w �

= |A|w + |B|w

|A �B|h �
= |B|h |A �B|w �

= |B|w

|n[A]|h �
= 1 + |A|h |n[A]|w �

= max(2, |A|w)

|A@n|h �
= max(|A|h − 1, 0) |A@n|w �

= |A|w

Here are the sizes for the derived propositional connectives:

|T|h �
= 0 |T|w �

= 0

|¬A|h �
= |A|h |¬A|w �

= |A|w

|A ∨ B|h �
= max(|A|h, |B|h) |A ∨ B|w �

= max(|A|w, |B|w)

We define a relation ∼h,w between trees, parameterized by the size (h, w). Intuitively,

a formula of height h can only distinguish trees on the basis of structure no deeper

than h, and a formula of width w can only distinguish trees on the basis of up to

w duplicate occurrences of equivalent subtrees. The main property of the relation is

that if P ∼h,w Q then no formula with size (h, w) can distinguish between P and Q

(Proposition 2).

Definition 3 (Relation P ∼h,w Q)

P ∼0,w Q always

P ∼h+1,w Q ⇔ ∀i ∈ 1..w. ∀n, Pj with j ∈ 1..i.

if P ≡ n[P1] | · · · | n[Pi] | Pi+1

then Q ≡ n[Q1] | · · · | n[Qi] | Qi+1

such that Pj ∼h,w Qj for j ∈ 1..i

and vice versa

Note that ∼h,w is an equivalence relation: reflexivity, symmetry, and transitivity

are immediate consequences of the definition. Moreover, it is preserved by structural

congruence:

Lemma 9

If P ∼h,w Q and Q ≡ R then P ∼h,w R.
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Proof

By an easy induction on h. �

The following lemma shows that the relation ∼h,w is antimonotone in (h, w).

Lemma 10 (Antimonotonicity)

If P ∼h,w Q and h′ � h and w′ � w then P ∼h′ ,w′ Q.

Proof

By induction on h. The case h = 0 is immediate.

For h + 1, suppose P ∼h+1,w Q and (h′, w′) � (h + 1, w). If h′ = 0 then clearly

P ∼h′ ,w′ Q. If h′ = h′′ + 1 for some h′′, then consider any i ∈ 1..w′, n, Pj for j ∈ 1..i

such that

P ≡ n[P1] | · · · | n[Pi] | Pi+1

Since w′ � w, then i ∈ 1..w, and from P ∼h+1,w Q we have

Q ≡ n[Q1] | · · · | n[Qi] | Qi+1 such that Pj ∼h,w Qj for j ∈ 1..i

Since (h′′, w′) � (h, w), by induction hypothesis we have Pj ∼h′′ ,w′ Qj for j ∈ 1..i. This

proves P ∼h′′+1,w′ Q, that is, P ∼h′ ,w′ Q. �

The following lemma shows that the relation ∼h,w is a congruence.

Lemma 11 (Congruence)

The following hold:

(1) If P ∼h,w Q then n[P ] ∼h+1,w n[Q].

(2) If P ∼h,w P ′ and Q ∼h,w Q′ then P | Q ∼h,w P ′ | Q′.

Proof

We prove both parts directly.

(1) Suppose P ∼h,w Q. If w = 0 then the conclusion is immediate. Otherwise,

consider any i ∈ 1..w, n, Pj for j ∈ 1..i such that

n[P ] ≡ n[P1] | · · · | n[Pi] | Pi+1

Then i = 1 and P1 ≡ P and Pi+1 ≡ 0. We have n[Q] ≡ n[Q] | 0, and P1 ∼h,w Q

by Lemma 9. This proves n[P ] ∼h+1,w n[Q].

(2) There are two cases. If h = 0 then the conclusion is immediate.

For h+ 1, suppose P ∼h+1,w P ′ and Q ∼h+1,w Q′; then consider any i ∈ 1..w, n,

Rj for j ∈ 1..i such that

P | Q ≡ n[R1] | · · · | n[Ri] | Ri+1

Suppose without loss of generality that the Rj are ordered in a way that there

exist k ∈ 1..i, P†, Q† such that

P ≡ n[R1] | · · · | n[Rk] | P†
Q ≡ n[Rk+1] | · · · | n[Ri] | Q†
Ri+1 ≡ P† | Q†
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Since k ∈ 1..w, from P ∼h+1,w P ′ we have

P ′ ≡ n[P ′1] | · · · | n[P ′k] | P ′† such that Rj ∼h,w P ′j for j ∈ 1..k

Similarly, from Q ∼h+1,w Q′ we have

Q′ ≡ n[Q′k+1] | · · · | n[Q′i] | Q′† such that Rj ∼h,w Q′j for j ∈ (k + 1)..i

Hence, we have

P ′ | Q′ ≡ n[P ′1] | · · · | n[P ′k] | n[Q′k+1] | · · · | n[Q′i] | P ′† | Q′†
Since Rj ∼h,w P ′j for j ∈ 1..k and Rj ∼h,w Q′j for j ∈ (k + 1)..i, this proves

P | Q ∼h+1,w P ′ | Q′. �

Lemma 12 (Inversion)

If P ′ | P ′′ ∼h,w1+w2
Q then there exist Q′, Q′′ such that Q ≡ Q′ | Q′′ and P ′ ∼h,w1

Q′

and P ′′ ∼h,w2
Q′′.

Proof

There are two cases. If h = 0 then the conclusion is immediate.

For h + 1, suppose P ′ | P ′′ ∼h+1,w1+w2
Q. Consider the following definition:

A tree P is in (h, w)-normal form if whenever P ≡ n[P1] | n[P2] | P3 for some

P1, P2, P3, if P1 ∼h,w P2 then P1 ≡ P2. Note that P ∼h+1,w n[P1] | n[P1] | P3. This

shows that for any (h, w) and any P it is possible to find a P † such that P † is in

(h, w)-normal form and P ∼h+1,w P †.

Let w be w1+w2. We can assume without loss of generality that P ′ and P ′′ and Q are

in (h, w)-normal form, since P ′ and P ′′ can be freely replaced with (h+ 1, w)-related

trees and, by Lemma 10, Q can be replaced with any tree that can equally be split

in (h + 1, w)-related subtrees. Hence, there exist k, Pj, a
′
j , a
′′
j , bj for j ∈ 1..k such that

P ′ ≡ a′1 · n1[P1] | · · · | a′k · nk[Pk]

P ′′ ≡ a′′1 · n1[P1] | · · · | a′′k · nk[Pk]

Q ≡ b1 · n1[P1] | · · · | bk · nk[Pk]

where if Pi ∼h,w Pj and ni = nj then i = j.

To split Q into two parts, we now specify how to split each bi, for i ∈ 1..k, into b′i
and b′′i , such that:

bi = b′i + b′′i (1)

a′i · ni[Pi] ∼h+1,w1
b′i · ni[Pi] (2)

a′′i · ni[Pi] ∼h+1,w2
b′′i · ni[Pi] (3)

For each i ∈ 1..k, we choose b′i and b′′i according to the following cases:

• Case a′i + a′′i < w1 + w2. Then P ′ | P ′′ ∼h+1,w Q implies bi = a′i + a′′i , so we can

choose b′i = a′i and b′′i = a′′i .

• Case a′i + a′′i � w1 +w2. Then P ′ | P ′′ ∼h+1,w Q implies bi � w1 +w2. There are

three subcases:

— Subcase a′i � w1 and a′′i � w2. Then we choose b′i = w1 and b′′i = bi − w1

(note that b′′i is saturated, that is, b′′i � w2, since bi � w1 + w2).
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— Subcase a′i < w1. We must have a′′i � w2. Then we choose b′i = a′i and

b′′i = bi − a′i. So b′′i � w2 since bi � w1 + w2 and b′i < w1.

— Subcase a′′i < w2. This is symmetric to the previous case. We must have

a′i � w1. We choose b′′i = a′′i and b′i = bi− a′′i . So b′i � w1 since bi � w1 +w2

and b′′i < w2.

Now we define Q′ and Q′′ as follows:

Q′ ≡ b′1 · n1[P1] | · · · | b′k · nk[Pk] Q′′ ≡ b′′1 · n1[P1] | · · · | b′′k · nk[Pk]

We have Q ≡ Q′ | Q′′, and by repeated application of Lemma 11 to (2) and (3) we

get P ′ ∼h+1,w1
Q′ and P ′′ ∼h+1,w2

Q′′ respectively. �

Proposition 2

If |A|hw = (h, w) and P |=A and P ∼h,w Q then Q |=A.

Proof

By induction on the structure of A. We consider only some interesting cases.

Case 0. Suppose P |= 0 and P ∼1,1 Q. Then P ≡ 0. Since P ∼1,1 Q, if Q ≡ n[Q1] | Q2

for some n, Q1, Q2 then P ≡ n[P1] | P2 for some P1, P2. Hence Q ≡ 0; thus Q |= 0.

Case A1 | A2. Suppose |Ai|hw = (hi, wi) for i = 1, 2 and P |= A1 | A2. We have

|(A1 | A2)|hw = (max(h1, h2), w1 + w2) and there exist P1, P2 such that P ≡ P1 | P2

and Pi |= Ai for i = 1, 2. Then by Lemma 12 there exist Q1, Q2 such that

Q ≡ Q1 | Q2 and Pi ∼max(h1 ,h2),wi
Qi for i = 1, 2. Then Pi ∼hi,wi

Qi for i = 1, 2

by Lemma 10, hence Qi |= Ai for i = 1, 2 by induction hypothesis. This proves

Q |=A1 | A2.

Case A �B. Suppose |B|hw = (h, w) and P |=A�B. We have |A�B|hw = (h, w) and

P ∼h,w Q. Consider any P1 such that P1 |= A; then P | P1 |= B. Since P ∼h,w Q

and P1 ∼h,w P1 we have P | P1 ∼h,w Q | P1 by Lemma 11. Hence Q | P1 |= B by

induction hypothesis. This proves Q |=A �B.

Case n[A]. Suppose |A|hw = (h, w). We have |n[A]|hw = (h + 1, max(w, 2)) and

P ∼h+1,max(w,2) Q and P |= n[A]. Then there exists P ′ such that P ≡ n[P ′] and

P ′ |=A. From P ∼h+1,max(w,2) Q we deduce that there exists Q′ such that Q ≡ n[Q′]

and P ′ ∼h,max(w,2) Q
′. Lemma 10 implies P ′ ∼h,w Q′, and by induction hypothesis

we have Q′ |=A. This proves Q |= n[A].

Case A@n. Suppose |A|hw = (h, w). We have |A@n|hw = (max(h − 1, 0), w) and

P ∼max(h−1,0),w Q. If h > 0 then we have n[P ] ∼h,w n[Q] by Lemma 11. If h = 0

then n[P ] ∼h,w n[Q] is immediate. With appeal to the induction hypothesis, we

calculate:

P |=A@n ⇔ n[P ] |=A
⇔ n[Q] |=A
⇔ Q |=A@n �

The following lemma shows that each equivalence class determined by ∼h,w contains

a tree of size bounded by (h, w).
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Lemma 13 (Pruning)

For all P ∈ TreeX, h, w there exists P ′ ∈ TreeX such that P ∼h,w P ′ and |P ′|hw �
(h, w).

Proof

We describe how to construct P ′ by induction on h. For h = 0 define P ′
�
= 0.

For h + 1, suppose P ≡ n1[P1] | · · · | nk[Pk], for some k and nj , Pj with j ∈ 1..k.

Let P ′j , for j ∈ 1..k, be the tree obtained by pruning Pj to size h, w. Define Q
�
=

n1[P
′
1] | · · · | nk[P ′k]. We can write Q in a canonical form with respect to ≡, that is,

there exist i and aj , mj , Qj for j ∈ 1..i such that Q ≡ a1 · m1[Q1] | · · · | ai · mi[Qi]

and, for all j, j ′ ∈ 1..i, if mj[Qj] ≡ mj ′ [Qj ′] then j = j ′. For each j ∈ 1..i, define

bi
�
= min(ai, w). Then we can define P ′

�
= b1 ·m1[Q1] | · · · | bi ·mi[Qi]. It is easy to see

that |P ′|hw � (h + 1, w) and P ∼h+1,w P ′. �

Proposition 3 (Bounding Size)

For any tree P , set of names X and formulas A and B, if h = max(|A|h, |B|h) and

w = max(|A|w, |B|w) then

(∀Q ∈ TreeX. Q |=A⇒ P | Q |= B) ⇔
(∀Q ∈ TreeX. |Q|hw � (h, w) ∧ Q |=A⇒ P | Q |= B)

Proof

The forwards direction is immediate. For the backwards direction, assume that the

right hand side holds. Take any Q ∈ TreeX such that Q |=A. Then we have:

∃Q′. Q ∼h,w Q′ ∧ |Q′|hw � (h, w) by Lemma 13

Q ∼|A|h ,|A|w Q′ by Lemma 10 since |A|hw � (h, w)

Q′ |=A by Proposition 2

P | Q′ |= B by assumption

P | Q ∼h,w P | Q′ by Lemma 11

P | Q ∼|B|h ,|B|w P | Q′ by Lemma 10 since |B|hw � (h, w)

P | Q |= B by Proposition 2 �

Proposition 4 (Bounding Size and Names)

For any tree P and formulas A and B, if m /∈ fn(A �B) and X = fn(A �B) ∪ {m}
and h = max(|A|h, |B|h) and w = max(|A|w, |B|w), then:

P |=A �B ⇔ (∀Q ∈ TreeX. |Q|hw � (h, w) ∧ Q |=A⇒ P | Q |= B)

Proof

We have:

P |=A �B
⇔ (∀Q ∈ TreeX. Q |=A⇒ P | Q |= B)

⇔ (∀Q ∈ TreeX. |Q|hw � (h, w) ∧ Q |=A⇒ P | Q |= B)

Proposition 1 justifies the first step, Proposition 3 the second. �

So, to check satisfaction of A � B, we need only consider trees whose free names

are drawn from fn(A �B) ∪ {m}, and whose size is bounded by max(|A|hw, |A|hw).
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We show in the next section, that the number of such trees, modulo structural

equivalence, is finite. Hence, we obtain an algorithm for satisfaction of A �B.

3.3 Enumerating equivalence classes

In this section we present an explicit characterization of the equivalence classes on

trees, modulo structural equivalence, determined by ∼h,w.

Definition 4 (Notation)

Consider the following notation, where metavariable c ranges over sets of trees

modulo structural congruence:

〈P 〉≡
�
= {P ′ | P ≡ P ′}

〈P 〉h,w
�
= {P ′ | P ∼h,w P ′}

c1 + c2
�
= c1 ∪ c2

n[c]
�
= {〈n[P ]〉≡ | 〈P 〉≡ ∈ c}

c�n �
= {〈a1 · P1 | · · · | ak · Pk〉≡ | 0 � ai � n for i ∈ 1..k}

when c = {〈P1〉≡, . . . , 〈Pk〉≡}

We can now give a direct definition of the set of equivalence classes EQX
h,w determined

by ∼h,w, given a set of names X.

Definition 5

If X = {n1, . . . , nk}, define EQX
h,w as follows:

EQX
0,w

�
= {〈0〉≡}

EQX
h+1,w

�
=

(
n1

[
EQX

h,w

]
+ · · ·+ nk

[
EQX

h,w

])�w

The following lemma shows that EQX
h,w contains exactly the trees (modulo ≡) of size

at most (h, w) with free names drawn from X.

Lemma 14

〈P 〉≡ ∈ EQX
h,w ⇔ P ∈ TreeX ∧ |P |hw � (h, w).

Proof

By construction, if 〈P 〉≡ ∈ EQX
h,w then P ∈ TreeX and |P |hw � (h, w). The converse

follows from a simple induction on h. �

We show that congruence and (h, w)-equivalence coincide on trees of size at most

(h, w).

Lemma 15

If |P |hw � (h, w) and |P ′|hw � (h, w), then

P ≡ P ′ ⇐⇒ P ∼h,w P ′

Proof

The interesting direction is ⇐. We proceed by induction on h. If h = 0 then

|P |h = |Q|h = 0, hence P ≡ Q ≡ 0.
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For the case h + 1, suppose |P |hw � (h + 1, w) and |P ′|hw � (h + 1, w) and
P ∼h+1,w P ′. Write P and P ′ in canonical form with respect to ≡, that is, there exist

k and aj , a
′
j , nj , Pj for j ∈ 1..k such that

P ≡ a1 · n1[P1] | · · · | ak · nk[Pk] P ′ ≡ a′1 · n1[P1] | · · · | a′k · nk[Pk]

where, for all i, j ∈ 1..k, if ni[Pi] ≡ nj[Pj] then i = j. Since |P |hw � (h + 1, w) and

|P ′|hw � (h+ 1, w) we have aj � w and a′j � w for each j ∈ 1..k. For each i ∈ 1..k we

show ai � a′i:

There exists P† such that P ≡ ai · ni[Pi] | P †. Then by definition of P ∼h+1,w P ′

there exist P ′1, . . . , P
′
ai
, P ′† such that P ′ ≡ ni[P

′
1] | · · · | ni[P ′ai] | P

′
† and Pi ∼h,w P ′j

for j ∈ 1..ai. By induction hypothesis we have Pi ≡ P ′j for each j ∈ 1..ai, hence

P ′ ≡ ai · ni[Pi] | P ′†. This proves ai � a′i.

With a symmetric argument we can show a′i � ai for each i ∈ 1..k. This proves

P ≡ P ′. �

The following proposition shows that EQX
h,w is an enumeration of the representatives

of the equivalence classes in TreeX/∼h,w.

Proposition 5
The function f : TreeX → TreeX/∼h,w sending P to 〈P 〉h,w extends to a bijection

f′ : EQX
h,w → TreeX/∼h,w.

Proof
Let f′ be the function sending 〈P 〉≡ to 〈P 〉h,w . Clearly f′ is well defined since P ≡ P ′

implies P ∼h,w P ′.

To show that f′ is surjective, take any 〈P 〉h,w ∈ TreeX/∼h,w . By Lemma 13 there

exists P ′ ∈ TreeX such that P ∼h,w P ′ and |P ′|hw � (h, w). So 〈P ′〉h,w = 〈P 〉h,w , and

〈P ′〉≡ ∈ EQX
h,w by Lemma 14.

To show that f′ is injective, consider any P ,Q ∈ TreeX with 〈P 〉≡, 〈Q〉≡ ∈ EQX
h,w

and 〈P 〉h,w = 〈Q〉h,w . Then |P |hw � (h, w) and |Q|hw � (h, w) by Lemma 14, hence

P ≡ Q by Lemma 15. This proves 〈P 〉≡ = 〈Q〉≡. �

Theorem 1 (Finite Bound )
Consider any formulas A and B. Let EQX

h,w = {〈Q1〉≡, . . . , 〈Qn〉≡}, where h =

max(|A|h, |B|h) and w = max(|A|w, |B|w) and X = fn(A � B) ∪ {m} for some

m /∈ fn(A �B).

Then, for any tree P :

P |=A �B ⇔ (∀i ∈ 1..n. Qi |=A⇒ P | Qi |= B)

Proof
Using Proposition 4, Lemma 14, and Lemma 2:

P |=A �B
⇔ (∀Q ∈ TreeX. |Q|hw � (h, w) ∧ Q |=A⇒ P | Q |= B)

⇔ (∀Q. 〈Q〉≡ ∈ EQX
h,w ∧ Q |=A⇒ P | Q |= B)

⇔ (∀Q. (∃i ∈ 1..n. Q ≡ Qi) ∧ Q |=A⇒ P | Q |= B)

⇔ (∀i ∈ 1..n. ∀Q.Q ≡ Qi ∧ Q |=A⇒ P | Q |= B)

⇔ (∀i ∈ 1..n. Qi |=A⇒ P | Q |= B) �
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Given this result, we can now show that each of the three quantifications in the

definition of satisfaction can be reduced to a finite problem.

Finite Test Sets: T (P ), T (A �B), and T (n, P )

T (P ) is the finite non-empty set {〈Q,R〉 | P ≡ Q | R}/(≡×≡).

T (A �B) is the finite non-empty set EQX
h,w ,where h = max(|A|h, |B|h)

and w = max(|A|w, |B|w)and X = fn(A �B) ∪ {m} for some m /∈ fn(A �B).

T (n, P ) is the finite (singleton or empty) set {Q | P ≡ n[Q]}/ ≡.

Lemma 16

(1) For any P , P |=A′ | A′′ ⇔ ∃〈P ′, P ′′〉 ∈ T (P ).P ′ |=A′ ∧ P ′′ |=A′′.
(2) For any A, B, P |=A �B ⇔ ∀Q ∈ T (A �B).Q |=A⇒ Q | P |= B.

(3) For any P , P |= n[A′]⇔ ∃P ′ ∈ T (n, P ).P ′ |=A′.

Proof

Part (2) follows at once from Theorem 1. The other parts follow easily, as in earlier

work (Cardelli & Gordon, 2000). �

Theorem 2

Satisfaction and validity are interderivable and decidable.

Proof

As noted in section 2, Lemmas 4 and 5 establish the equivalence of satisfaction

and validity. An algorithm for satisfaction follows from the rules of its definition in

section 2, together with the facts in Lemma 16. �

Validity is defined in terms of an infinite quantification over trees. We end with a

corollary of Lemma 4 and Theorem 1, which reduces validity to a finite quantification

over a computable sequence of trees. Hence, we obtain an explicit algorithm for

validity.

Corollary 1

Consider any formula A. Suppose EQX
h,w = {〈P1〉≡, . . . , 〈Pn〉≡}, where (h, w) = |A|hw

and X = fn(A) ∪ {m} for some m /∈ fn(A). Then

vld(A)⇔ (∀i ∈ 1..n. Pi |=A)

It is straightforward to implement the algorithms for satisfaction and validity

suggested above. However, they are of limited practical interest, since the size

of EQX
h,w is not elementary (not bounded by any tower of exponentials) in the worst

case. The only lower bound we know is PSPACE. Still, the algorithm terminates in

a reasonable time on small formulas. Here is a selection of formulas found to be

valid by our implementation.

• (0 ∨ p[0]) | ¬(p[0])

• q[¬0] � ¬(0)

• ¬((q[q[0]] | q[0])@q)
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• (T � ¬((q[0] ∨ T) � 0))@q

• ((0 ∨ p[0])@p)@p@p

• (¬(p[T]) ∨ ¬(q[T]))@q

• p[T] � (p[T] | T)

• ¬(p[T] � 0)

• ¬(T | (T � q[0])@q)

• (T | (¬(0) ∨ 0)) | T
• (T | q[T])@q ∨ 0

To see why, for example, that the formula (0∨ p[0]) | ¬(p[0]) is valid, consider any

process P . Either P |= p[0] or not. If so, we have P ≡ P | 0, and P |= 0 ∨ p[0] and

0 |= ¬(p[0]). If not, we have P ≡ 0 | P , and 0 |= 0 ∨ p[0] and P |= ¬(p[0]). So, in

either case, the process satisfies (0 ∨ p[0]) | ¬(p[0]).

4 Deciding validity by deduction

We present a sequent calculus for our spatial logic, following the pattern of Caires &

Cardelli (2002). We show the calculus to be sound and complete with respect to

an interpretation in terms of the satisfaction relation, and present a complete proof

procedure. Hence, we obtain an algorithm for deciding validity by deduction in the

sequent calculus. The algorithm of the previous section decides validity; in addition,

the algorithm suggested by the sequent calculus of this section yields a deductive

proof of validity, which is amenable to the optimizations typically used in theorem

proving.

4.1 A sequent calculus

A context, Γ or ∆, is a finite multiset of entries of the form P :A where P is a tree

and A is a formula. A sequent is a judgment Γ � ∆ where Γ and ∆ are contexts.

The following table states the rules for deriving sequents. The rules depend on the

finite test sets T (P ), T (A �B), and T (n, P ) introduced in section 3. All that matters

for the purpose of this section is that these sets are computable and that they satisfy

the properties stated in Lemma 16. Hence, this is a finitary proof system; note the

form of the rules (| L), (� R), and (n[] L).

Rules of the Sequent Calculus:

(Id)

P ≡ Q

Γ, P :A � Q :A,∆

(Cut)

Γ � P :A,∆ Γ, P :A � ∆

Γ � ∆

(C L)

Γ, P :A, P :A � ∆

Γ, P :A � ∆

(C R)

Γ � P :A, P :A,∆

Γ � P :A,∆
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(F L)

Γ, P : F � ∆

(F R)

Γ � ∆

Γ � P : F,∆

(∧ L)

Γ, P :A, P : B � ∆

Γ, P :A∧B � ∆

(∧ R)

Γ � P :A,∆ Γ � P : B,∆

Γ � P :A∧B,∆

(⇒ L)

Γ � P :A,∆ Γ, P : B � ∆

Γ, P :A⇒ B � ∆

(⇒ R)

Γ, P :A � P : B,∆

Γ � P :A⇒ B,∆

(0 L)

P �≡ 0

Γ, P : 0 � ∆

(0 R)

P ≡ 0

Γ � P : 0,∆

(| L)

∀〈Q,R〉 ∈ T (P ). Γ, Q :A, R : B � ∆

Γ, P :A | B � ∆

(| R)

Γ � Q :A,∆ Γ � R : B,∆ P ≡ Q | R

Γ � P :A | B,∆

(� L)

Γ � Q :A,∆ Γ, Q | P : B � ∆

Γ, P :A �B � ∆

(� R)

∀Q ∈ T (A �B). Γ, Q :A � Q|P : B,∆

Γ � P :A �B,∆

(n[] L)

∀Q ∈ T (n, P ). Γ, Q :A � ∆

Γ, P : n[A] � ∆

(n[] R)

Γ � Q :A,∆ P ≡ n[Q]

Γ � P : n[A],∆

(@n L)

Γ, n[P ] :A � ∆

Γ, P :A@n � ∆

(@n R)

Γ � n[P ] :A,∆

Γ � P :A@n,∆

The variables Q, R in (| L) and the variable Q in (� R) cannot occur free (in a

formalistic reading) in Γ, P , ∆. Compare the side conditions on these rules in Caires &

Cardelli (2002). Here, these are meta-level variables ranging over terms, so there is

no need for such side conditions. Note that (n[] L) applies also when T (n, P ) is

empty (something that never happens for (| L)), so we can conclude, for example,
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Γ, 0 : n[A] � ∆. The fact that T (n, P ) may be empty explains also the irregular form

of clause (n[] R) of Lemma 18 below.

Lemma 17 (Weakening)

If Γ � ∆ is derivable, then Γ, P :A � ∆ and Γ � P :A,∆ are derivable. Moreover,

if there is a derivation of Γ � ∆ free of (Id), (Cut), (C L), (C R), then there are

derivations of Γ, P :A � ∆ and Γ � P :A,∆ free of (Id), (Cut), (C L), (C R).

Proof

By induction on the derivation of Γ � ∆. The second part of the statement comes

from inspection of the cases different from (Id), (Cut), (C L), (C R). �

4.2 Soundness and completeness

We make a conventional interpretation of sequents:

∧[[P1 :A1, . . . , Pn :An]]
�
= P1 |=A1 ∧ . . . ∧ Pn |=An

∨[[Q1 : B1, . . . , Qm : Bm]]
�
= Q1 |= B1 ∨ . . . ∨ Qm |= Bm

[[Γ � ∆]]
�
= ∧[[Γ]]⇒ ∨[[∆]]

To prove soundness and completeness of the sequent calculus, we need the following

two lemmas.

Lemma 18 (Validity of Antecedents)

(F L) [[Γ, P : F � ∆]]

(F R) [[Γ � P : F,∆]] iff [[Γ � ∆]]

(∧ L) [[Γ, P :A′ ∧A′′ � ∆]] iff [[Γ, P :A′, P :A′′ � ∆]]

(∧ R) [[Γ � P :A′ ∧A′′,∆]] iff [[Γ � P :A′,∆]] ∧ [[Γ � P :A′′,∆]]

(⇒ L) [[Γ, P :A′ ⇒ A′′ � ∆]] iff [[Γ � P :A′,∆]] ∧ [[Γ, P :A′′ � ∆]]

(⇒ R) [[Γ � P :A′ ⇒ A′′,∆]] iff [[Γ, P :A′ � P :A′′,∆]]

(0 L) [[Γ, P : 0 � ∆]] iff P ≡ 0⇒ [[Γ � ∆]]

(0 R) [[Γ � P : 0,∆]] iff P �≡ 0⇒ [[Γ � ∆]]

(| L) [[Γ, P :A′ | A′′ � ∆]] iff ∀P ′, P ′′.P ≡ P ′ | P ′′ ⇒ [[Γ, P ′ :A′, P ′′ :A′′ � ∆]]

(| R) [[Γ � P :A′|A′′,∆]] iff ∃P ′, P ′′.P ≡ P ′|P ′′∧[[Γ � P ′ :A′,∆]]∧[[Γ � P ′′ :A′′,∆]]

(� L) [[Γ, P :A′ �A′′ � ∆]] iff ∃P ′.[[Γ � P ′ :A′,∆]] ∧ [[Γ, P ′ | P :A′′ � ∆]]

(� R) [[Γ � P :A′ �A′′,∆]] iff ∀P ′.[[Γ, P ′ :A′ � P ′ | P :A′′,∆]]

(n[] L) [[Γ, P : n[A′] � ∆]] iff ∀P ′.P ≡ n[P ′]⇒ [[Γ, P ′ :A′ � ∆]]

(n[] R) [[Γ � P : n[A′],∆]] iff (∀P ′.P �≡ n[P ′] ∧ [[Γ � ∆]]) ∨ (∃P ′.P ≡ n[P ′] ∧ [[Γ �
P ′ :A′,∆]])

(@n L) [[Γ, P :A′@n � ∆]] iff [[Γ, n[P ] :A′ � ∆]]

(@n R) [[Γ � P :A′@n,∆]] iff [[Γ � n[P ] :A′,∆]]

Proof

By detailed, but straightforward, calculations. �
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Lemma 19 (Finite Test Sets)

(1) For any P there is a finite set T (P ) with:

∀P ′, P ′′.P ≡ P ′ | P ′′ ⇒ [[Γ, P ′ :A′, P ′′ :A′′ � ∆]]

iff ∀〈P ′, P ′′〉 ∈ T (P ).[[Γ, P ′ :A′, P ′′ :A′′ � ∆]].

(2) For any A′, A′′, there is a finite set T (A′ �A′′) with:

∀P ′.[[Γ, P ′ :A′ � P ′ | P :A′′,∆]]

iff ∀P ′ ∈ T (A′ �A′′).[[Γ, P ′ :A′ � P ′ | P :A′′,∆]].

(3) For any P there is a finite set T (n, P ) with:

∀P ′.P ≡ n[P ′]⇒ [[Γ, P ′ :A′ � ∆]]

iff ∀P ′ ∈ T (n, P ).[[Γ, P ′ :A′ � ∆]].

Proof

By expanding definitions, and appeal to Lemma 16. �

Theorem 3 (Soundness)

If Γ � ∆ is derivable, [[Γ � ∆]].

Proof

By induction on the derivation of Γ � ∆. �

Theorem 4 (Completeness)

If [[Γ � ∆]], then Γ � ∆ has a derivation. Moreover, it has a derivation that does not

use (Id), (Cut), (C L), (C R).

Proof

By induction on the sum of the sizes of all the formulas in Γ � ∆. The interesting

cases are (| L), (n[] L) and, particularly, (� R), relying on Lemma 19. These are the

only cases we show.

Subcase [[Γ, P :A′ | A′′ � ∆]]. By Lemma 18(| L) we have ∀P ′, P ′′.P ≡ P ′ | P ′′ ⇒
[[Γ, P ′ : A′, P ′′ : A′′ � ∆]]. By Lemma 19(1) there is a finite set T (P ) such that

∀〈P ′, P ′′〉 ∈ T (P ).[[Γ, P ′ :A′, P ′′ :A′′ � ∆]]. By induction hypothesis, ∀〈P ′, P ′′〉 ∈
T (P ).Γ, P ′ :A′, P ′′ :A′′ � ∆ has a derivation. Hence by (| L) we can construct a

(finite) derivation for Γ, P :A′ | A′′ � ∆.

Subcase [[Γ, P : n[A′] � ∆]]. By Lemma 18(n[] L) we have ∀P ′.P ≡ n[P ′]⇒ [[Γ, P ′ :

A′ � ∆]]. By Lemma 19(3) there is a finite set T (n, P ) such that ∀P ′ ∈ T (n, P ).

[[Γ, P ′ : A′ � ∆]]. By induction hypothesis, ∀P ′ ∈ T (n, P ).Γ, P ′ : A′ � ∆ has

a derivation. Hence by (n[] L) we can construct a (finite) derivation for Γ, P :

n[A′] � ∆.

Subcase [[Γ � P :A′ �A′′,∆]]. By Lemma 18(� R) we have ∀P ′.[[Γ, P ′ :A′ � P ′ |P :

A′′,∆]]. By Lemma 19(2) there is a finite set T (A′ � A′′) such that ∀P ′ ∈
T (A′ �A′′).[[Γ, P ′ :A′ � P ′ | P :A′′,∆]]. By induction hypothesis, ∀P ′ ∈ T (A′ �
A′′).Γ, P ′ :A′ � P ′ | P :A′′,∆ has a derivation. Hence by (� R) we can construct

a (finite) derivation for Γ � P :A′ �A′′,∆.

For the second part of the statement, it is sufficient to note that the rules (Id), (Cut),

(C L), (C R) are never used in the proof to construct the derivation, and that the

cases (0 L), (0 R), (n[] R) use Lemma 17 applied to a derivation that, inductively,

does not contain (Id), (Cut), (C L), (C R). �
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Proposition 6 (Id, Cut, and Contraction Elimination)

If Γ � ∆ has a derivation, then there is a derivation that does not use (Id), (Cut),

(C L), (C R).

Proof

If Γ � ∆ is derivable in the full system, then [[Γ � ∆]] by Theorem 3 (Soundness).

Then, by Theorem 4 (Completeness), Γ � ∆ has a derivation that does not use (Id),

(Cut), (C L), (C R). �

By combining Theorems 2, 3, and 4 we obtain:

Proposition 7 (Decidability)

It is decidable whether Γ � ∆ is derivable.

Proof

Suppose that Γ = P1 :A1, . . . , Pn :An and ∆ = Q1 : B1, . . . , Qm : Bm. By Theorems 3

(Soundness) and 4 (Completeness), P1 : A1, . . . , Pn : An � Q1 : B1, . . . , Qm : Bm is

derivable if and only if ∧[[P1 : A1, . . . , Pn : An]] ⇒ ∨[[Q1 : B1, . . . , Qm : Bm]]. By

Theorem 2 we know that P |= A is decidable. Therefore, we just need to test that

either there is an i with Pi �|=Ai, or there is a j with Qj |= Bj . �

Moreover, as the following theorem asserts, there is a procedure that yields an

actual derivation, in the case that Γ � ∆ is derivable. The proof relies on Lemma 18

and appears elsewhere (Calcagno et al., 2002).

Theorem 5 (Complete Proof Procedure)

For any Γ � ∆ there is a procedure such that: if ¬[[Γ � ∆]], then the procedure

terminates with failure; if [[Γ � ∆]], then the procedure terminates with a derivation

for Γ � ∆.

5 A language for manipulating trees

We describe a typed λ-calculus that manipulates tree data. The type system of this

calculus has, at its basis, tree types. Function types are built on top of the tree types

in standard higher-order style. The tree types, however, are unusual: they are the

formulas of our logic. Therefore, we can write types such as:

T→ ¬0

((A∧¬0) | n[B])→ (n[A] | B)

Logical operators can be applied only to tree types, not to higher-order types.

A subtyping relation is defined between types. On tree types, subtyping is defined

as validity of logical implication; that is, A <: B means vld(A ⇒ B). Subtyping

is then extended to function types by the usual contravariant rule. This implies

that a logical validity check is used during static typechecking, whenever we need

to check type inclusion. Tree data is manipulated via pattern matching constructs

that perform “run-time type checks”. Since tree types are formulas, we have the

full power of the logic to express the pattern matching conditions. Those run-time

type checks are executed as run-time satisfaction checks. For example, one of our
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matching constructs is a test to see whether the value denoted by expression t has

type A:

t?(x:A).u, v

This construct first computes the tree P denoted by the expression t, and then

performs a test P |= A. If the test is successful, it binds P to x and executes u;

otherwise it binds P to x and executes v. The variable x can be used both inside u

and v, but in u it has type A, while in v it has type ¬A.

To summarize, our formulas are used as a very expressive type system for tree

data, within a typed λ-calculus. A satisfaction algorithm is used to analyze data

at run-time, and a validity algorithm is needed during static typechecking. We of

course have such algorithms available, as described in previous sections, at least

for ground terms and types. In the absence of polymorphism or dependent types,

types are in fact ground. And, at run-time, all values are ground too. As usual, the

type system checks whether an open term has a (ground) type: it can do so without

additional difficulties, even though the basic satisfaction test we have is for closed

terms (that is, trees).

Again, we do not claim that the validity algorithms of this paper yield efficient

typecheckers; however, any improved algorithm can be slotted in without change.

5.1 Syntax

The λ-calculus is stratified in terms of low types and high types. The low types are,

in this case, just tree types, but could in general include other basic data types such

as integers and names. The high types are function types over the low types. The

tree types are the formulas of our logic.

The same stratification holds on terms: there are terms of low types (the trees)

and terms of high types (the functions). This stratification is not reflected in the

syntax, essentially because variables can hold high or low values, but it is reflected

in the operational semantics.

Syntax:

F,G,H ::= High Types

A tree types (formulas of the logic)

F→ G function types

t, u, v ::= terms

0 void

n[t] location

t | u composition

t?n[x:A].u location match

t?(x:A | y:B).u composition match

t?(x:A).u, v tree type match

x variable

λx:F.t function

t(u) application
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The syntax of terms provides: a standard λ-calculus fragment, the three basic tree

constructors, and three matching operators for analyzing tree data. The tree type

match construct performs a run-time check to see whether a tree matches a given

formula. Then one needs other constructs to decompose the trees: a composition

match splits a tree in two components, and a location match strips an edge from a

tree. A zero match is redundant because of the tree type match construct.

These multiple matching constructs are designed to simplify the operational

semantics and the type rules. In practice, one would use a single case statement over

the structure of trees; this can be easily translated to the given matching constructs.

Example: Case Statement

case t of analyze t

0.u1, if t ≡ 0, run u1, else

n[x:A].u2, if t ≡ n[P ] and P |= A,

bind P to x and run u2, else

(x:A | y:B).u3, if t ≡ P | Q and P |=A, Q |= B,

bind P to x, Q to y and run u3,

else u4 else run u4

�
= can be translated as:

t?(z1:0).u1,

t?(z2:n[A]).z2?n[x:A].u2,

t?(z3:A | B).z3?(x:A | y:B).u3,

u4

Further, one may want to allow complex nested patterns, that can be translated

to nested uses of the given matching constructs.

5.2 Values

Programs in the syntax of the previous section produce values; either tree values or

function values (that is, closures). Over the tree values we define the usual structural

congruence ≡; the matching constructs of the language are not able to distinguish

between structurally congruent trees. The function values are triples of a term t with

respect to an input variable x (that is, essentially λx.t) and a stack for free variables

ρ. A stack ρ is a list of bindings x, F of variables to values, with possible repetitions

of the variables.

Values:

F,G,H ::= High Values

P tree values

〈ρ, x, t〉 function values

ρ is a list of x, F pairs Stacks

ρ[x←F] is ρ plus an x, F pair at the end

ρ(x) is the last F associated with x (if any)
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5.3 Operational semantics

The operational semantics is given by a relation t ⇓ρ F between terms t, stacks ρ,

and values F , meaning that t can evaluate to F on stack ρ. The semantics makes

use of the satisfaction relation P |= A from section 2. We use, for example, t ⇓ρ P

to indicate that t evaluates to a tree value P . We use t ⇓ρ≡ P as an abbreviation for

t ⇓ρ Q and Q ≡ P , for some Q.

Operational Semantics

(Red 0)

0 ⇓ρ 0

(Red |)
t ⇓ρ P u ⇓ρ Q

t | u ⇓ρ P | Q

(Red n[])

t ⇓ρ P

n[t] ⇓ρ n[P ]

(Red ?n[])

t ⇓ρ≡ n[P ] P |=A u ⇓ρ[x←P ] F

t?n[x:A].u ⇓ρ F

(Red ?|)
t ⇓ρ≡ P ′ | P ′′ P ′ |=A P ′′ |= B
u ⇓ρ[x←P ′][y←P ′′] F

t?(x:A | y:B).u ⇓ρ F

(Red ?1)

t ⇓ρ P P |=A u ⇓ρ[x←P ] F

t?(x:A).u, v ⇓ρ F

(Red ?2)

t ⇓ρ P P |= ¬A v ⇓ρ[x←P ] F

t?(x:A).u, v ⇓ρ F

(Red Var)

x ∈ dom(ρ)

x ⇓ρ ρ(x)

(Red Lam)

λx:F.t ⇓ρ 〈ρ, x, t〉

(Red App)

t ⇓ρ 〈ρ′, x, t′〉 u ⇓ρ G t′ ⇓ρ′[x←G] H

t(u) ⇓ρ H

5.4 Type system

The type system uses environments E, which are lists of associations x:F of unique

variables and their types. We indicate by dom(E) the set of variables defined in E, by

E, x:F the extension of E with a new association x:F (provided that x /∈ dom(E)),

and by E(x) the type associated with x in E (provided that x ∈ dom(E)).

The judgments are:

Judgments:

F <: G F is a subtype of G
E � � E is well-formed

E � t :F t has type F in E
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A validity test is used in the (Sub Tree) rule.

Type Rules:

(Env ∅)

∅ � �

(Env x)

E � � x /∈ dom(E)

E, x:F � �

(Term 0)

E � �

E � 0 : 0

(Term |)
E � t :A E � u : B

E � t | u :A | B

(Term n[])

E � t :A

E � n[t] : n[A]

(Term ?|)
E � t :A | B E, x:A, y:B � u :F

E � t?(x:A | y:B).u :F

(Term ?n[])

E � t : n[A] E, x:A � u :F

E � t?n[x:A].u :F

(Term ?)

E � t : B E, x:A � u :F E, x:¬A � v :F

E � t?(x:A).u, v :F

(Term Var)

E � �

E � x : E(x)

(Term Lam)

E, x:F � t : G

E � λx:F.t :F→ G

(Term App)

E � t :F→ G E � u :F

E � t(u) : G

(Subsumption)

E � t :F F <: G

E � t : G

(Sub Tree)

vld(A⇒ B)

A <: B

(Sub →)

F′ <:F G <: G′

F → G <:F′ → G′

Since types are ground, we do not need reflexivity and transitivity rules for

subtyping. Reflexivity for the base case derives from vld(A⇒A).

In order to derive some basic results, we need to define a satisfaction relation

between values and types. Over tree types, this is just the satisfaction relation of

Section 2, P |= A. This is then generalized to closures by saying that 〈ρ, x, t〉 |=
F → G if for every F |= F, the result G of evaluating t with F bound to x on

stack ρ, is such that G |= G. Moreover we say that a stack satisfies an environment,

ρ |= E, if ρ(x) |= E(x) for all the variables defined in E.

Satisfaction:

P |=A as in Section 2

H |=F→ G iff H = 〈ρ, x, t〉 and ∀F,G.(F |=F∧ t ⇓ρ[x←F] G)⇒ G |= G
ρ |= E iff ∀x ∈ dom(E).ρ(x) |= E(x)

https://doi.org/10.1017/S0956796804005404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005404


568 C. Calcagno et al.

Proposition 8 (Subsumption)

If F <: G and H |=F then H |= G.

Proof

Induction on the derivation of F <: G.

(Sub Tree) We have vld(A⇒ B) and H |=A; hence H is a tree value, and H |= B
by definition of vld.

(Sub →) We have F′ <: F and G <: G′, and H |= F → G. By definition,

H = 〈ρ, x, t〉 and ∀F,G.(F |= F∧ t ⇓ρ[x←F] G) ⇒ G |= G. Take any F |= F′; by

Ind Hyp F |= F. Assume t ⇓ρ[x←F] G, then G |= G, and by Ind Hyp G |= G′. We

have shown that ∀F,G.(F |=F′ ∧ t ⇓ρ[x←F] G)⇒ G |= G′. That is, we have shown

that 〈ρ, x, t〉 |=F′ → G′. �

Proposition 9 (Subject Reduction)

If E � t :F and ρ |= E and t ⇓ρ F , then F |=F.

Proof

Induction on the derivation of E � t :F.

(Term 0) We have E � 0 : 0 and ρ |= E and 0 ⇓ρ 0. By definition, 0 |= 0.

(Term n[]) We have E � n[t] : n[A] and ρ |= E and n[t] ⇓ρ F . We must have from

(Term n[]) that E � t :A. We must have from (Red n[]) that F = n[P ] and t ⇓ρ P .

By Ind Hyp, P |=A, hence by definition n[P ] |= n[A].

(Term |) We have E � t | u : A | B and ρ |= E and t | u ⇓ρ F . We must have from

(Term |) that E � t :A and E � u : B. We must have from (Red |) that F = P |Q
and t ⇓ρ P and u ⇓ρ Q. By Ind Hyp, P |= A and Q |= B, hence by definition

t | u |=A | B.

(Term ?n[]) We have E � t?n[x:A].u : F and ρ |= E and t?n[x:A].u ⇓ρ F . We

must have from (Term ?n[]) that E � t : n[A] and E, x:A � u : F. We must

have from (Red ?n[]) that t ⇓ρ≡ n[P ] and P |= A and u ⇓ρ[x←P ] F . We have

that ρ[x←P ] |= E, x:A. By Ind Hyp E, x:A � u :F and ρ[x←P ] |= E, x:A and

u ⇓ρ[x←P ] F implies F |=F.

(Term ?|) We have t?(x:A|y:B).u :F and ρ |= E and t?(x:A |y:B).u ⇓ρ F . We must

have from (Term ?|) that E � t : A | B and E, x:A, y:B � u : F. We must have

from (Red ?|) that t ⇓ρ≡ P ′ | P ′′ and P ′ |=A and P ′′ |= B and u ⇓ρ[x←P ′][y←P ′′] F .

We have that ρ[x←P ′][y←P ′′] |= E, x:A, y:B. By Ind Hyp E, x:A, y:B � u : F
and ρ[x←P ′][y←P ′′] |= E, x:A, y:B and u ⇓ρ[x←P ′][y←P ′′] F implies F |=F.

(Term ?) We have E � t?(x:A).u, v :F and ρ |= E and t?(x:A).u, v ⇓ρ F . We must

have from (Term ?) that E � t : B and E, x:A � u :F and E, x:¬A � v :F. The

reduction may come from (Red ?1); then t ⇓ρ P and P |=A and u ⇓ρ[x←P ] F . We

have that ρ[x←P ] |= E, x:A. By Ind Hyp E, x:A � u :F and ρ[x←P ] |= E, x:A
and u ⇓ρ[x←P ] F implies F |= F. Else the reduction must come from (Red ?2);

then t ⇓ρ P and P |= ¬A and v ⇓ρ[x←P ] F . We have that ρ[x←P ] |= E, x:¬A.

By Ind Hyp E, x:¬A � v : F and ρ[x←P ] |= E, x:¬A and v ⇓ρ[x←P ] F implies

F |=F.

(Term Var) We have E � x : E(x) and ρ |= E and x ⇓ρ F . We must have from (Red

Var) that F = ρ(x). Since ρ |= E, we have that ρ(x) |= E(x), that is, F |= E(x).
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(Term Lam) We have E � λx:F.t :F→ G and ρ |= E and λx:F.t ⇓ρ F . We must

have from (Red Lam) that F = 〈ρ, x, t〉. We need to show that 〈ρ, x, t〉 |=F→ G,

that is, that ∀F,G.(F |= F ∧ t ⇓ρ[x←F] G) ⇒ G |= G. Take any F |= F, then

ρ[x←F] |= E, x:F. Assuming that t ⇓ρ[x←F] G we need to show that G |= G. We

must have from (Term Lam) that E, x:F � t : G. By Ind Hyp if ρ[x←F] |= E, x:F
and t ⇓ρ[x←F] G, then G |= G.

(Term App) We have E � t(u) : F and ρ |= E and t(u) ⇓ρ F . We must have

from (Term App) that E � t : G → F and E � u : G. We must have from

(Red App) that t ⇓ρ 〈ρ′, x, t′〉 and u ⇓ρ G and t′ ⇓ρ′[x←G] F . By Ind Hyp if

E � t : G →F and ρ |= E and t ⇓ρ 〈ρ′, x, t′〉 then 〈ρ′, x, t′〉 |= G →F. That means

that ∀G′, F ′.(G′ |= G ∧ t′ ⇓ρ′[x←G′] F
′) ⇒ F ′ |= F. By Ind Hyp if E � u : G and

ρ |= E and u ⇓ρ G then G |= G. Hence, by taking G′ = G and F ′ = F , we conclude

F |=F.

(Subsumption) We have E � t : F and ρ |= E and t ⇓ρ F . We must have from

(Subsumption) that E � t : G and G <:F. By Ind Hyp, F |= G. By Proposition 8,

F |=F. �

5.5 Examples

The following program inspects an arbitrary tree (that is, anything of type T). If the

tree is 0 it returns the tree a[0], otherwise it returns the input tree. Hence the result

is never 0, and the result type can be set to ¬0.

λx:T.x?(y:0).a[0], y : T→ ¬0

Here is a (truncated) typing derivation; note the use of the subsumption rule to

determine that a[0] <: ¬0. Each judgment is derived from the lines above it at the

next level of indentation.

E, x:T � x:T (Term Var)

E, x:T, y:0 � 0 : 0 (Term 0)

E, x:T, y:0 � a[0] : a[0] (Term n[])

a[0] <: ¬0 (Sub Tree)

E, x:T, y:0 � a[0] : ¬0 (Subsumption)

E, x:T, y:¬0 � y : ¬0 (Term Var)

E, x:T � x?(y:0).a[0], y : ¬0 (Term ?)

E � λx:T.x?(y:0).a[0], y : T→ ¬0 (Term Lam)

6 Conclusions

This paper concerns a propositional spatial logic for finite edge-labelled trees. The

spatial modalities are composition A | B, guarantee A �B, void 0, location n[A],

and placement A@n. There are two main results. First, satisfaction and validity are

equivalent and decidable. Second, there is a sound and complete proof system for

validity.

The spatial logic of this paper is a fragment of the ambient logic introduced by

Cardelli & Gordon (2000; 2001). Model checking algorithms for various fragments
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without guarantee have been proposed (Charatonik et al., 2003). Lugiez and Dal

Zilio (2002) show decidability of the satisfiability problem for another fragment

of the ambient logic, but without guarantee; their techniques are based on tree

automata.

Dal Zilio et al. (2004) recently propose a radically different approach. The key

idea is to count the number of parallel occurrences of trees satisfying a given

formula: subformulas describe the structure of the possible subtrees and Presburger

arithmetic constraints determine the local numbers of subtrees of those shapes that

can appear in parallel. Their formalism is naturally suited for extending the logic

with a Kleene star operator and vertical recursion. Their approach enjoys a better

complexity than ours, bounded by solving Presburger constraints, and hence may

yield a practical typechecker for the type system of section 5.

Validity for some other propositional substructural logics turns out to be un-

decidable. Urquhart (1984) proves undecidability for propositional relevant logic.

Lincoln et al. (1992) prove undecidability for both propositional linear logic and

propositional intuitionistic linear logic. See Cardelli & Gordon (2000) for a detailed

discussion of the differences between the ambient logic and relevant and linear

logics.

Calcagno et al. (2001) show decidability of validity in a propositional substructural

logic for reasoning about heaps. The proof in this paper is an adaptation of their

proof technique.

We briefly consider the prospects of extending our results:

• Charatonik & Talbot (2001) show that validity becomes undecidable in a

spatial logic with name quantification. (Their result depends only on the

presence of propositional logic, 0, n[A], A | B, and ∀x.A.)

• Caires & Monteiro (1998) and Cardelli and Gordon (2001) introduce logical

modalities to deal with fresh names. A prerequisite of studying these operators

would be to enrich our tree model with fresh names.

• Conforti & Ghelli (2004) study decidability for fragments of ambient logic

with various restrictions on the use of quantifiers. The decidability proofs are

based on the techniques described in this paper.

The technique of Lozes (2003) for adjunct elimination uses a measure similar

to our notion of size and equivalence classes, where the size is given by the

number of connectives in the logical formula. The main difference is that we show

how to effectively enumerate equivalence classes, while on the other hand Lozes’

approach applies to undecidable logics (where, as a consequence, the enumeration

of equivalence classes cannot be effective).

We obtain only preliminary results about the complexity of validity for our logic

from the constructions of this paper. It is easy to show that PSPACE is a lower-

bound, by reduction from the Quantified Boolean Variables problem. However, there

is still a significant gap between PSPACE and the complexity of our algorithm: it is

easy to see that the number of equivalence classes is not elementary (not bounded

by a tower of exponentials) in the size parameter. We can obtain a higher complexity

lower-bound for an extension of our logic with a Kleene star operator, A∗ (zero or
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more copies of A in parallel). The extended logic can encode Presburger arithmetic,

whose satisfiability problem is known to be complete for a class between double and

triple exponential time. However, our algorithm cannot be trivially extended: there

is a formula A∗ that would invalidate our results when assigned any finite size.

Finally, building on some of the results of this paper, Cohen (2002) proposes

improvements to the algorithms for satisfaction and validity of section 3. He studies

a multiset logic, able to encode our logic, and including Kleene star.
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O’Hearn, P., Reynolds, J. and Yang, H. (2001) Local reasoning about programs that alter

data structures. Computer Science Logic (CSL’01): Lecture Notes in Computer Science 2142,

pp. 1–19. Springer.

Reynolds, J. C. (2002) Separation logic: a logic for shared mutable data structures. Logic in

Computer Science (LICS’02), pp. 55–74. IEEE.

Urquhart, A. (1984) The undecidability of entailment and relevant implication. J. Symbolic

Logic, 45, 1059–1073.

https://doi.org/10.1017/S0956796804005404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005404

