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Abstract. We present a unifying framework for the key concepts and results of
higher Koszul duality theory for N-homogeneous algebras: the Koszul complex, the
candidate for the space of syzygies and the higher operations on the Yoneda algebra.
We give a universal description of the Koszul dual algebra under a new algebraic
structure. For that we introduce a general notion: Gröbner bases for algebras over
non-symmetric operads.
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1. Introduction. The Koszul duality theory originates from the work of Priddy
[22], inspired by the ideas of Koszul [17]. Priddy’s theory describes ‘small’ resolutions
for associative algebras. To compute derived functors, such as the Tor and Ext functors,
one needs projective resolutions of modules. There always exist such resolutions, which,
for instance, are built functorially from the bar construction. This functoriality has a
price: such a resolution is pretty big. For a given algebra, one can find a (generally)
smaller resolution by describing step by step an economic set of generators, called the
syzygies. This inductive process is now called the Koszul–Tate resolution after [17, 26].
The same type of process allows one to build a model for a given algebra A, that is,
a differential graded free algebra whose homology is isomorphic to A. Such a model,
according to the general results of homotopical algebra [24], can be used to compute
the Quillen homology HQ

• (A), for instance.
The original Koszul duality theory developed by Priddy [22] starts from an

algebra A given with a quadratic presentation (V, R ⊂ V⊗2) and produces a quadratic
Koszul dual coalgebra A¡ generated by the same presentation. Under this algebraic
structure, it produces, at once, a good candidate for the space of syzygies. All the three
graded vector spaces TorA

• (�, �), Ext•A(�, �) and HQ
• (A) can be expressed naturally

in terms of A¡ by re-grading or passing to the graded dual A! := (A¡)∗. The algebra A!

admits a simple presentation as T(V∗)/(R⊥). The relationship between the differentials
in the corresponding resolutions is more subtle.

The higher case, when a given algebra A has a homogeneous presentation (V, R ⊂
V⊗N) of weight N > 2, has been first studied by Berger in [2] (see also [3, 27]), where a
candidate for the dual A! of the space of syzygies was described, and where a condition
for that candidate to work was given.
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Each of the equivalent ways to look at the space of syzygies (Ext, Tor, Quillen
homology) exhibits a rich structure of an associative algebra up to homotopy, or A∞-
algebra. This viewpoint has become more common in ring theory in the past decade,
once it was understood that higher operations on the Ext-algebras of associative
algebras allow one to keep track of all the homotopy information of those algebras
that would otherwise be lost if we restrict ourselves to the Yoneda product only. This
circle of ideas is presented in a sequence of papers by Lu et al. [19, 20].

In the case of N-Koszul algebras, the A∞-algebra structure of the Yoneda algebras
was computed by He and Lu in [12]. They proved that most of the higher operations for
such an algebra vanish, and that the non-vanishing ones admit very explicit formulas. In
a sense, their theorems provide an exhaustive description of the Ext-algebras as A∞-
algebras. However, those theorems have a slightly mysterious feature, which makes
one hope for a different way to view the same result. Namely, in the quadratic case
the Ext-algebra of a Koszul algebra is an A∞-algebra with all the higher operations
vanishing, that is, an associative algebra presented by generators and relations. In the
N-Koszul case, the Ext-algebra carries an A∞-algebra structure with all the higher
operations except for the Nth one vanishing, that is, an A2,N-algebra. It is also proved
to be a reduced A2,N-algebra, meaning that it satisfies additional vanishing conditions.
However, to describe the higher operations explicitly, this algebra has to be realised as
a subspace of a usual associative algebra.

In this paper, we suggest to replace the condition of being reduced by a more
functorial condition involving properties of operations only. More precisely, we
consider a new type of algebras, which we call NA 2,N-algebras. An NA 2,N-algebra
is a graded vector space with an associative product μ2 of degree zero and an N-ary
operation μN of degree 2 − N which satisfy the identity

μ2(μN(−, . . . ,−),−) + (−1)N−1μ2(−, μN(−, . . . ,−))

+
N∑

i=1

(−1)i−1+NμN(−, . . . ,−, μ2(−,−),−, . . . ,−) = 0, (1)

and the identities

μN(−, . . . ,−, μN(−, . . . ,−),−, . . . ,−) = 0. (2)

It turns out that the Berger’s candidate A! for the linear dual of space of syzygies admits
the following presentation via generators and relations as a NA 2,N-algebra.

THEOREM (5.1). Let A = T(V )/(R) be a finitely generated N-homogeneous algebra.
Then

A! ∼= FreeNA 2,N (V∗)/(μ2(V∗, V∗), μN(R⊥))

as NA 2,N-algebras, where μN(R⊥) is viewed as a subspace of μN(V∗, V∗, . . . , V∗).

To prove this theorem, and in general to get a better understanding of NA 2,N-
algebras, we introduce a general notion of Gröbner bases for algebras over non-
symmetric operads.

We also exhibit a precise equivalence between describing a free A-module
resolution of the ground field � and describing a model for A. Overall, this

https://doi.org/10.1017/S0017089513000505 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089513000505


HIGHER KOSZUL DUALITY FOR ASSOCIATIVE ALGEBRAS 57

demonstrates a clear analogy between the N = 2 Koszul duality theory of Priddy
[22] and the higher Koszul property for N-homogeneous algebras with N > 2.

We were motivated to develop the higher Koszul duality theory for N-
homogeneous algebras in a way similar to the Koszul duality for quadratic algebras in
order to generalise it even further. Some related work was done in [11] for relations of
weights 2 and N, and in [25] for relations of weights N1 and N2, both greater than 2.
However, the results of [8] demonstrate that even ‘small’ resolutions may yield ‘big’
A∞-algebra structures, and so it might make sense to refine the corresponding class of
Koszul algebras. We shall address this question in a future work.

Layout. The paper is organised as follows. In Section 2, we recall some basic
notions and results we use throughout the paper. In Section 3, we introduce Gröbner
bases for non-symmetric operads and for algebras over a non-symmetric operad,
and we formulate the key results about them. In Section 4, we introduce the operad
of NA 2,N-algebras and compute its reduced Gröbner basis. In Section 5, we prove
the theorem stated above, and use it to formulate an equivalent criterion for an N-
homogeneous algebra to be N-Koszul. In Section 6, we relate the construction of the
free resolution of the trivial A-module and the construction of a dg algebra resolution
of A, using the language of twisting morphisms.

Conventions. We work over a ground field �. The word ‘algebra’, unless otherwise
specified, refers to an associative algebra. As above, N is a positive integer greater
than 2. Most of the vector spaces that we use are bi-graded with finite-dimensional
bi-graded components. The weight grading is coming from the convention that we
consider algebras with generators of weight 1 subject to homogeneous relations, and
the (homological) degree is coming from the fact that our constructions produce chain
complexes.

2. Recollections. We shall recall the basic definitions and results used throughout
the paper, however trying to keep this section reasonably concise. For details on
associative algebras and operads and their homotopy theory we refer the reader to
[18].

2.1. Koszul N-homogeneous algebras.

DEFINITION 2.1. An associative algebra A presented by generators and relations,
A = T(V )/(R), is said to be N-homogeneous if R ⊂ V⊗N . In this case, the algebra A is
weight-graded: A ∼= ⊕m≥0Am. When V is finite-dimensional, the N-homogeneous dual
algebra A∨ of an N-homogenenous algebra is defined by the formula

A∨ := T(V∗)/(R⊥),

where R⊥ ⊂ (V∗)⊗N is the annihilator of R under the natural pairing of vector spaces
(V∗)⊗N ⊗ V⊗N → �.

In the case N = 2, it turns out that various homological questions of A admit
natural answers in terms of the algebra A∨, which is, in that case, usually denoted by
A!. However, in the case N > 2, only some of the homogeneous components of A∨ are
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relevant. We define the graded vector space A! by the formula

A!
m :=

{
A∨

m, m ≡ 0, 1 (mod N)

0, otherwise
,

where, in addition, to being of weight m, A∨
m is assigned the homological degree

2m
N if m ≡ 0 (mod N) and the homological degree 2(m−1)

N + 1 is m ≡ 1 (mod N). The
associative product on A∨ induces an associative product on A! (whenever the product
in A∨ ends up in a component absent in A!, the corresponding product is defined to
be equal to zero). The algebra A! is called the Koszul dual algebra of A. Note that our
notational convention differs somewhat from the one adopted in the earlier literature
[2, 3]; we believe that it is strongly beneficial to use, for any homogeneous algebra A,
the notation A¡ for the space of syzygies of A, hence the change.

We also put A¡ := (A!)∗ (we use the convention that the dual of a graded space
with finite-dimensional component is the direct sum of component-wise duals). Since
A! is weight-wise finite-dimensional, A¡ is a coalgebra. Note that for N = 2, we have
A∨ = A!.

Recall from Berger [2] that the Koszul complex of an N-homogeneous algebra A is
A¡ ⊗ A with the boundary maps

A¡
kN ⊗ A → A¡

(k−1)N+1 ⊗ A,

A¡
kN+1 ⊗ A → A¡

kN ⊗ A

being, respectively, the composites

A¡
kN ⊗ A → A¡

(k−1)N+1 ⊗ (A¡
1)⊗(N−1) ⊗ A ∼= A¡

(k−1)N+1 ⊗ (A1)⊗(N−1) ⊗ A → A,

A¡
kN+1 ⊗ A → A¡

kN ⊗ A¡
1 ⊗ A ∼= A¡

(k−1)N+1 ⊗ A1 ⊗ A → A,

the maps coming from the coproduct of A¡, the identification A¡
1 = (V∗)∗ ∼= V = A1

and the product of A. Note that we assume elements of A to be of homological degree 0,
so the elements of A¡

kN ⊗ A (respectively, A¡
kN+1 ⊗ A) are, according to the convention

we adopted above, assigned the homological degree 2k (respectively, 2k + 1).

DEFINITION 2.2. An N-homogeneous algebra A is said to be N-Koszul if its Koszul
complex is acyclic in positive homological degrees.

2.2. Homotopy associative algebras. Let A be a graded vector space, and
f : A⊗k → A, g : A⊗l → A be two linear maps of degrees p and q respectively. We
define their pre-Lie product f � g : Ak+l−1 → A by the formula

f � g :=
k∑

i=1

(−1)q(k−1)+(l−1)(i−1)f ◦i g ,

where f ◦i g stands for f (id⊗(i−1) ⊗g ⊗ id⊗(k−i)).

DEFINITION 2.3. Let N ≥ 3 be an integer. An A2,N-algebra is a triple (A; μ2, μN),
where A is a graded vector space and μ2 : A⊗2 → A and μN : A⊗N → A are linear
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maps of degrees 0 and 2 − N respectively. They are required to satisfy the relations

μ2 � μ2 = μ2 � μN + μN � μ2 = μN � μN = 0.

An A2,N-algebra is a particular case of an A∞-algebra (see, e. g. [15] and [18,
Chapter 9]), whose differential vanishes and whose structure maps μn vanish as well
for n �= 2, N .

Dualising the above definitions, we can define the corresponding notion of
coalgebras. If C is a graded vector space, and f : C → C⊗k, g : C → C⊗l be two linear
maps of degrees p and q respectively, we define their pre-Lie product f � g : C → Ck+l−1

by the formula

f � g :=
k∑

i=1

(−1)q(k−1)+(l−1)(i−1)g i◦ f ,

where g i◦ f stands for (id⊗(i−1) ⊗g ⊗ id⊗(k−i)) ◦ f . An A2,N-coalgebra is a triple
(C; δ2, δN), where C is a graded vector space and δ2 : C → C⊗2 and δN : C → C⊗N

are linear maps of degrees 0 and N − 2 respectively. They are required to satisfy the
relations

δ2 � δ2 = δ2 � δN + δN � δ2 = δN � δN = 0.

2.3. Koszul dual and Ext-algebra. This section is a brief summary of the results
obtained in [12].

Let A be an augmented algebra. Recall that the Ext-algebra Ext•A(�, �) of A is
defined as the derived functor R• HomA(�, �); it can be computed in many ways, for
instance, via the bar construction. The bar construction BA is a quasi-free coalgebra
Tc(sĀ) on the suspension of the augmentation ideal of A. Its differential is the unique
coderivation extending the product of A. Hence, the linear dual (BA)∗ of the bar
construction is a differential graded algebra, whose underlying cohomology groups
are equal to the Ext-functor:

H•((BA)∗) ∼= Ext•A(�, �).

As the homology of a dg algebra, the Ext-functor acquires a canonical associative
product; this algebra is called the Yoneda algebra. Moreover, using the Homotopy
Transfer Theorem [20, 18], one can endow the Ext-functor with an A∞-algebra
structure, which extends the Yoneda product. We call it the Yoneda A∞-algebra. In
the A∞-setting, we shall, for simplicity, mostly work with non-unital algebras, and
therefore consider the augmentation ideal of the usual Yoneda algebra.

DEFINITION 2.4. An A2,N-algebra E is said to be reduced if μ2(a1, a2) = 0 when
both a1 and a2 are of odd degree, and μN(a1, . . . , aN) = 0 when at least one of ai is not
of odd degree.

One of the reasons for the notion of a reduced A2,N-algebra to be important is
explained by the following theorem.

https://doi.org/10.1017/S0017089513000505 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089513000505


60 VLADIMIR DOTSENKO AND BRUNO VALLETTE

THEOREM 2.1 ([12, Theorem 6.2]). Let A be an N-homogeneous algebra. It is N-
Koszul if and only if its Yoneda A∞-algebra is a reduced A2,N-algebra generated in
degree 1.

The higher operations of the Yoneda algebra of an N-Koszul algebra can be
described as follows.

THEOREM 2.2 [12, Theorem 6.5]. The Yoneda A∞-algebra Ext•A(�, �) of an N-
Koszul algebra A satisfies

Extk
A(�, �) =

⎧⎨
⎩

A!
N k

2
, if k is even

A!
N k−1

2 +1
, if k is odd

.

The operations μ2 and μN on that algebra can be computed using the product on A∨ as
follows:

μ2 :

⎧⎪⎨
⎪⎩

A!
iN ⊗ A!

jN → A!
(i+j)N

A!
iN+1 ⊗ A!

jN → A!
(i+j)N+1

A!
iN ⊗ A!

jN+1 → A!
(i+j)N+1

,

μN : A!
k1N+1 ⊗ · · · ⊗ A!

kN N+1 → A!
(k1+···+kN+1)N,

and are zero for all other choices of arguments.

2.4. Non-symmetric operads. We denote by Ord the category whose objects are
finite-ordered sets (with order-preserving bijections as morphisms), and by Vect the
tensor category of graded vector spaces (by definition, morphisms in that category are
degree zero linear operators, and the symmetry isomorphism is given by the formula
σ (v ⊗ w) = (−1)|v||w|w ⊗ v). A (non-symmetric) collection is a contravariant functor
from the category Ord to the category Vect. We shall refer to images of individual sets
as components of our collection. We denote the set [k] := {1, 2, . . . , k}.

DEFINITION 2.5. Let P and Q be two collections. The composition product of P
and Q is the collection P ◦ Q defined by the formula

(P ◦ Q)(I) :=
⊕

k

P([k]) ⊗
⎛
⎝ ⊕

f : I�[k]

Q(f −1(1)) ⊗ · · · ⊗ Q(f −1(k))

⎞
⎠ , (3)

where the sum is taken over all non-decreasing surjections f .

The composition product equips the category of collections with a structure of a
monoidal category. The unit object is the collection I with

I (M) =
{

�.M, |M| = 1

0, |M| �= 1
.

DEFINITION 2.6. A non-symmetric operad is a monoid in the monoidal category of
collections equipped with the composition product.
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By functoriality, for every collection P and every finite-ordered set M, we have
the corresponding isomorphism P(M) ∼= P({1, 2, . . . , |M|}), so to define a collection
it is sufficient to define a graded vector space

P(n) := P({1, 2, . . . , n}), for n ≥ 0 .

The component P(n) of this graded vector space may be viewed as the space of n-ary
operations of some sort.

The associativity and the unit condition for a monoid ensure that to know the
non-symmetric operad structure on a collection it is sufficient to know all the partial
compositions: those correspond to the surjections f in Formula (3) (which we now
apply in the case Q = P) for which all the pre-images except for f −1(i) for some
fixed i consist of one element, and such that P(f −1(j) is equal to the unit, for j �= i.
Such a partial composition is denoted by α ◦i β. These partial compositions satisfy the
appropriate associativity relations; namely, if α ∈ P(n), β ∈ P(m), γ ∈ P(r), we have

(α ◦i β) ◦j γ =

⎧⎪⎨
⎪⎩

(−1)|β||γ |(α ◦j γ ) ◦i+r−1 β, 1 ≤ j ≤ i − 1

α ◦i (β ◦i+j−1 γ ), i ≤ j ≤ i + m − 1

(−1)|β||γ |(α ◦j−m+1 γ ) ◦i β, i + m ≤ j ≤ n + m − 1

. (4)

These associativity relations include signs coming from the symmetry isomorphisms;
these signs will be of crucial importance in our subsequent computations.

Similar to the case of associative algebras, a non-symmetric operad can be
presented via generators and relations, that is, as a quotient of the free non-symmetric
operad T (W ) for some collection W . Let us describe an explicit construction of T (W ).
Suppose that X is a collection of ordered sets, which is a functor from Ord to Ord, and
provides bases for the components of W .

DEFINITION 2.7. A (planar) tree monomial is a planar rooted tree with labelled
vertices: ‘Planar’ means that for each vertex v of a tree, the set of its inputs Iv is ordered,
and ‘labelled’ means that each vertex v carries a label from the set X(Iv). We use the
notation t(T) for the underlying tree of a tree monomial T .

For example, if X(n) = ∅ for n �= 2, then the component T (W )(3) has basis
elements

i

j
and

j

i

j

indexed by pairs i, j ∈ X(2).

PROPOSITION 2.1. The free non-symmetric operad T (W ) admits a basis made up of
(planar) tree monomials.

An important property of the aforementioned basis is that each composition of
tree monomials is again a tree monomial. To be precise, a tree monomial should be
viewed as an equivalence class: to determine the actual composition product in the
operad, one has to introduce levels of trees, i.e. decide what should be composed first
(ignoring that would only compute the result up to a sign).
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A basic example of a non-symmetric operad is the endomorphism operad EndV

of a vector space V , whose components EndV (n) is Hom(V⊗n, V ) with the partial
composition of f ∈ EndV (k) and g ∈ EndV (l) given by the composition of functions:
f ◦i g := f (id⊗(i−1) ⊗g ⊗ id⊗(k−i)). By definition, a structure of an algebra over a non-
symmetric operad P on a vector space V is a morphism of operads P → EndV . The
free P-algebra P(W ) generated by a vector space W is given by the formula

P(W ) :=
⊕
n≥0

P(n) ⊗ W⊗n.

3. Gröbner bases. In this section, we shall define the notions of Gröbner bases
for non-symmetric operads and their algebras. Some related work for ‘free non-
associative algebras’ has been done in [10]; a much more general approach, on which
our exposition is modelled, is discussed in [9] within the framework of shuffle operads.
Let us note, however, that there is a very important feature of non-symmetric operads
that symmetric and shuffle operads do not exhibit: the machinery of Gröbner bases
for non-symmetric operads includes 0-ary operations.

3.1. Gröbner bases for non-symmetric operads. The definitions and results below
are completely parallel to those for associative algebras. Basically, Gröbner bases allow
one to find for each algebra A a ‘monomial replacement’, that is, an algebra Å with the
same generators and with monomial relations for which the natural monomial basis
(of monomials not divisible by any of relations) is also a basis for the vector space A.

DEFINITION 3.1. A total ordering of the set of tree monomials is said to be
admissible if the operadic composition of several tree monomials is an increasing
function in each argument.

Let us describe one of the orderings of tree monomials that we shall use throughout
the paper. This ordering was discovered and used by Hoffbeck in [13].

DEFINITION 3.2. The path-lexicographic ordering of tree monomials is defined as
follows. We first assign, to each tree monomial T , a sequence of words in the alphabet

� =
⊔
k≥0

X({1, 2, . . . , k}),

one word for each leaf of t(T) (here by leaves we mean both the inputs and the vertices
that have no inputs but however have labels corresponding to operations with no
arguments). For each of those leaves, starting from the leftmost one and moving from
left to right, we walk along a unique path from the root of t(T) to that leaf, and write
down the labels of vertices encountered along the way. We form a word in the alphabet �

from these labels using the isomorphisms X(Iv) ∼= X({1, 2, . . . , |Iv|}). For each total
ordering of �, we are now able to define the corresponding path-lexicographic ordering
of tree monomials. To compare two monomials S and T , we first compare the number
of leaves; a tree with the larger number of leaves is, by definition, larger. If two trees
have the same number of leaves, we compare the corresponding sequences word by
word, comparing words degree-lexicographically.
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For example, we have

i

j

( ji, ji, j) ,

and therefore

i

j

> k

l

whenever (ji, ji, l) > (lk, lk, j), that is if j > l, or j = l and i > k.

PROPOSITION 3.1 [13]. The path-lexicographic ordering is admissible.

In what follows, we fix some admissible ordering of tree monomials in T (W ). All
our definitions and statements are valid for any choice of such ordering.

DEFINITION 3.3. A tree monomial S is said to be divisible by a tree monomial T if
t(S) contains t(T) as a subtree with matching labels. For a fixed admissible ordering, we
define the leading term lt(g) of an element g ∈ T (W ) to be the largest tree monomial T
that appears in g with a non-zero coefficient. This non-zero coefficient (the leading
coefficient of g) is denoted by cg.

Assume that a tree monomial S is divisible by a tree monomial T . For every
element g ∈ T (W ) of the same arity as T , we can consider the operation that inserts
g in place of T in S; this produces an element of free operad of the same arity as S.
We denote that operation by mS,T (g). Note that by the construction mS,T (T) = S, and
since we work with admissible orderings, it is clear that if T ′ < T , then mS,T (T ′) < S.

DEFINITION 3.4. Assume that f and g are two elements of T (W ) for which lt(f ) is
divisible by lt(g). The element

rg(f ) := f − cf

cg
mlt(f ),lt(g)(g)

is called the reduction of f modulo g. We shall often use the notation f → rg(f ) for
reductions.

DEFINITION 3.5. Two tree monomials S and T are said to have a small common
multiple if there exists a tree monomial U which is divisible by both S and T for which
each of its vertices is contained in either S or T , and such that the number of vertices of
t(U) is less than the total number of vertices of t(S) and t(T). Assume that the leading
terms of two elements f, g ∈ T (W ) have a small common multiple U . The element

sU (f, g) := mU,lt(f )(f ) − cf

cg
mU,lt(g)(g),

is called the S-polynomial of f and g (corresponding to the small common multiple U).

DEFINITION 3.6. A Gröbner basis of an ideal I in the free non-symmetric operad
is a system G of generators of I for which the leading tree monomial of every element
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of I is divisible by one of the leading terms of elements of G. A Gröbner basis G is
said to be reduced if none of the leading terms of elements of G are divisible by leading
terms of other elements of G.

One can prove that every ideal of the free non-symmetric operad admits a unique
reduced Gröbner basis.

DEFINITION 3.7. A tree monomial is said to be normal with respect to a system of
elements G if it is not divisible by any of the leading terms of elements of G.

It is easy to see that iterated reductions modulo elements of some set G allow one
to replace every element of a free operad by a linear combinations of tree monomials
that are normal with respect to G. In the case of a Gröbner basis, this representation
produces what is natural to think of as a canonical form of an element, as the following
proposition shows.

PROPOSITION 3.2. Suppose that G is a Gröbner basis of an ideal I ⊂ T (W ). Then
normal tree monomials with respect to G form a basis of the quotient T (W )/I.

A useful criterion for a set of generators G to form a Gröbner basis is given by the
following version of Bergman’s Diamond Lemma [5]. The proof is analogous to that
for Diamond Lemma and is omitted.

THEOREM 3.1. Suppose that G is a system of generators of I. Then G forms a Gröbner
basis if and only if each such S-polynomial of two elements of G can be reduced to zero
modulo G.

This theorem allows one to come up with an algorithm, analogous to Buchberger’s
algorithm in the commutative case [7], that computes for each operad presented by
generators and relations its reduced Gröbner basis. In what follows, a computation of
a Gröbner basis of a certain non-symmetric operad will be done from the beginning
to the end, which will hopefully be instructional enough to the reader.

3.2. Gröbner bases for algebras over non-symmetric operads. Unlike the case of
symmetric operads, where first steps in studying an operad can be done without
symmetries by passing to shuffle operads [9] but for algebras over a given operad
there is no clear way to define a theory of Gröbner bases, for non-symmetric operads
one can handle the corresponding algebras as well.

Let P = T (W )/I be a non-symmetric operad, and A be an algebra over P.
By a slight abuse of notation, we think of A as a collection concentrated in arity 0.
The following construction is an explicit adaptation for the non-symmetric case of the
construction of the enveloping operad for the pair (P, A), see [4] and references therein.

DEFINITION 3.8. The extension of constants in P by A, denoted P � A, is the
operad

T (W ⊕ A)/(I ⊕ IA),

where IA consists of all the relations

μ ◦ (a1, . . . , an) = μ(a1, . . . , an)
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with μ ∈ W (n), and the elements a1, . . . , an ∈ A viewed as operations of arity 0 in
P � A on the left-hand side (so that the non-symmetric composition μ ◦ (a1, . . . , an) ∈
T (W ⊕ A) ◦ T (W ⊕ A) can be evaluated), and as elements of the algebra A on the
right-hand side (so that μ acts on these elements via the homomorphism P → EndA).

PROPOSITION 3.3. We have (P � A)(0) ∼= P(0) ⊕ A.

Consequently, it becomes clear how to develop Gröbner bases for algebras over
any non-symmetric operad: one should pass to the extension of constants, compute the
operadic Gröbner basis and restrict it to arity 0. This results in the following theorem.

THEOREM 3.2. Let P = T (W )/I be a non-symmetric operad, and let A be an
algebra over P. If G is the reduced Gröbner basis of the operad P � A, then the normal
tree monomials of arity zero not belonging to P form the basis of A.

In the case of the operad of associative algebras, this leads to the standard notion
of a monomial replacement coming from the theory of Gröbner–Shirshov bases [6],
whereas in various other cases this produces new definitions that are to be explored. To
the best of our knowledge, even for the simplest case of algebras with two associative
products satisfying no identities with each other, the corresponding Gröbner bases
theory is not known.

4. An operad acting on reduced A2,N-algebras. The general approach of the
operad theory is to express universal results in terms of relations that operations
satisfy when they are evaluated on any elements. In this section, we suggest relations
to provide a replacement for the property of an A2,N-algebra to be reduced. Namely,
we introduce a quotient of the operad A2,N that naturally acts on all reduced A2,N-
algebras. We conclude with the description of its reduced Gröbner basis.

DEFINITION 4.1. The operad NA 2,N is generated by two operations, a binary
operation μ2 and an N-ary operation μN, that satisfy the identities

μ2 � μ2 = 0, (5)

μ2 � μN + μN � μ2 = 0, (6)

μN ◦i μN = 0, for i = 1, . . . , N. (7)

PROPOSITION 4.1. The operations of any reduced A2,N-algebra satisfy the relations
of the operad NA 2,N.

Proof. Indeed, μN(a1, . . . , aN) = 0 when at least one of ai is not of odd degree.
Also, in the case when all the elements ai are of odd degree, the element μN(a1, . . . , aN)
is of even degree. We immediately conclude that the operation μN ◦i μN is identically
zero. �

REMARK 4.1. For the condition of being a reduced A2,N-algebra in the sense of [21]
(which is similar to the one used in this paper but includes congruences modulo 3)
relevant for the concept of ‘piecewise-Koszul algebras’, one can show in the exact same
way as that the corresponding algebras carry canonical NA 2,N-algebra structures.
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COROLLARY 4.1. For every weight-graded algebra A concentrated in degree zero, we
consider the vector space E whose component of degree k is defined as

Ek =
{

AN k
2
, if k is even

AN k−1
2 +1, if k is odd

.

The operations μ2 and μN given by the product on A by

μ2 :

⎧⎪⎨
⎪⎩

AiN ⊗ AjN → A(i+j)N

AiN+1 ⊗ AjN → A(i+j)N+1

AiN ⊗ AjN+1 → A(i+j)N+1

,

μN : Ak1N+1 ⊗ · · · ⊗ AkN N+1 → A(k1+···+kN+1)N

and defined to be zero for all other choices of arguments, endow E with a NA 2,N-algebra
structure.

Proof. It is clear, since this algebra is easily seen to be a reduced A2,N-algebra. �
COROLLARY 4.2. For every N-Koszul algebra, the operations on its Yoneda A∞-

algebra satisfy the relations of the operad NA 2,N.

Proof. Indeed, by Theorem 2.2, the Yoneda A∞-algebra of an N-Koszul algebra A
is the algebra E obtained from the algebra A∨ by the construction that we have just
described above. �

REMARK 4.2. The Yoneda A∞-algebra of the algebra �〈x, y | x2 = xy = yN = 0〉
turns out to be a NA 2,N-algebra which is not reduced as an A2,N-algebra (in any sense
of the word ‘reduced’ used in the literature), contrary to the feeling that the previous
statements might create. This example suggests that the notion of a NA 2,N-algebra is
well suited for the generalisation of the N-Koszul duality theory, including relations
of weight 2 and N. This algebra is indeed 2-N-Koszul in the sense of Green and
Marcos [11]. We shall explore this observation further in a sequel paper.

It turns out that Yoneda A∞-algebras of N-Koszul algebras admit compact
presentations as algebras over the operad NA 2,N . In order to prove this, we shall
study the operad NA 2,N in more detail, exhibiting its reduced Gröbner basis. In what
follows, we use the path-lexicographic ordering on tree monomials, assuming that μ2

is greater than μN lexicographically.

THEOREM 4.1. The reduced Gröbner basis of the operad NA 2,N is obtained from
its defining relations (5), (6) and (7) by adjoining, for each k ≥ 1 and for each i =
1, . . . , N − 1, the relation

μN ◦i
(
μ

(k)
2 ◦k+1 μN

) = (−1)N(i−1)(μN ◦N (μ2 ◦2 μN)) ◦i μ
(k−1)
2 , (8)

with the operations μ
(k)
2 defined inductively by μ

(0)
2 = id, μ

(k+1)
2 = μ2(id, μ

(k)
2 ).

Proof. By Theorem 3.1, it is enough to prove that all S-polynomials coming from
small common multiples of leading terms of the given relations can be reduced to
zero using the same system of relations. We shall explain how the proof goes, and
demonstrate it in the case of low arities, since in further arities all the computations
that one has to perform are modelled on those for low arities.
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The S-polynomial that arises from the small common multiple of the leading
term μ2 ◦1 μ2 of the relation μ2 � μ2 = 0 with itself can be reduced to zero using
just that relation; this can be interpreted in many different ways, including the setup
of the MacLane coherence axiom for monoidal categories; see [18, Section 8.1] for
details. The S-polynomial that arises from the small common multiple of the leading
terms μ2 ◦1 μ2 and μ2 ◦1 μN of the relations μ2 � μ2 = 0 and μ2 � μN + μN � μ2 = 0
respectively can well be reduced to zero using only those operations and nothing else;
this is a result of a more tedious but straightforward computation. However, the leading
term μ2 ◦1 μN of the relation μ2 � μN + μN � μ2 = 0 forms n small common multiples
with the relation μN ◦i μN , and the corresponding S-polynomials cannot be reduced
using only the defining relations of NA 2,N ; that is where new elements of the reduced
Gröbner basis start showing up. We shall exhibit here the first steps of the respective
computations, the further steps being completely analogous. In what follows, we use
the notation Ri,k (k ≥ 1, i = 1, . . . , N − 1) for the relation given by formula (8).

For the small common multiple μ2 ◦1 μN ◦1 μN, the corresponding S-polynomial
can be, using the relation μN ◦i μN = 0, reduced to

(−1)N(μ2 ◦2 μN) ◦1 μN − μN ◦1 μ2 ◦1 μN = (−1)N+N2
(μ2 ◦1 μN) ◦N+1 μN−

− μN ◦1 μ2 ◦1 μN → (−1)N(μN ◦N μ2) ◦N+1 μN − (−1)N(μN ◦1 μ2) ◦2 μN,

where the first equality comes from the graded associativity of the operad composition,
and the second equality uses reductions modulo the defining relations (6) and (7). For
1 < i ≤ N, the small common multiple μ2 ◦1 μN ◦i μN gives rise to the S-polynomial

μN ◦i−1 (μ2 ◦2 μN) − μN ◦i (μ2 ◦1 μN), (9)

which can be reduced modulo the defining relations (6) and (7) to

μN ◦i−1 (μ2 ◦2 μN) − (−1)NμN ◦i (μ2 ◦2 μN). (10)

Altogether these elements can be reduced to zero using the relations

μN ◦i (μ2 ◦2 μN) = (−1)N(i−1)μN ◦N (μ2 ◦2 μN),

which are precisely the relation Ri,1 of what we want to prove to be the reduced
Gröbner basis. The S-polynomials corresponding to the small common multiples of
the monomial relations μN ◦i μN = 0 and μN ◦j μN = 0 are trivially zero, so there is
nothing to check.

All the S-polynomials corresponding to the small common multiples of the leading
terms of the defining relations have now been treated. Let us now study the small
common multiples of the leading terms of the defining relations with the leading terms
of relation (8).

All the small common multiples of the leading terms of relation Ri,1 with the
monomial relation μN ◦j μN can be easily reduced to zero without using any new
relations, as well as the small common multiple (μN ◦i (μ2 ◦2 μN)) ◦i μN of the leading
term of relation Ri,1 with the leading term of μ2 � μN + μN � μ2 = 0.

It is also easy to see that there are no new relations needed to reduce all S-
polynomials arising from the small common multiples of the leading terms of relations
Ri,1 and Rj,1. Indeed, there are two combinatorially different kinds of small common
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multiples of that sort. The small common multiple

(μN ◦i (μ2 ◦2 μN)) ◦j+N (μ2 ◦2 μN) = (−1)N(μN ◦j (μ2 ◦2 μN)) ◦i (μ2 ◦2 μN)

for 1 ≤ i < j ≤ N − 1 leads to the S-polynomial

(−1)N(i−1)(μN ◦N (μ2 ◦2 μN)) ◦j+N (μ2 ◦2 μN)

−(−1)N+N(j−1)(μN ◦N (μ2 ◦2 μN)) ◦i (μ2 ◦2 μN),

which can be reduced to zero modulo the relation Rk,1 for various k (taking into the
account the graded associativity of operad composition). The small common multiple

(μN ◦i (μ2 ◦2 μN)) ◦i+j (μ2 ◦2 μN)

for 1 ≤ i ≤ j ≤ N − 1 leads to the S-polynomial

(−1)N(i−1)(μN ◦N (μ2 ◦2 μN)) ◦i+j (μ2 ◦2 μN)

−(−1)N(j−1)μN ◦i (μ2 ◦2 (μN ◦N (μ2 ◦2 μN))),

where the second term is immediately reduced to

(−1)N(j−1)+N(i−1)+N(i−1)μN ◦N (μ2 ◦2 (μN ◦N (μ2 ◦2 μN))) =
= (−1)N(j−1)μN ◦N (μ2 ◦2 (μN ◦N (μ2 ◦2 μN)))

using the relation Ri,1 twice, while the first term is reduced to the same result through
a lengthier sequence of reductions (depending on i + j being less than, equal to or
greater than N).

The small common multiple (μN ◦i (μ2 ◦2 μN)) ◦i μ2 of the leading term of the
relation Ri,1 with the leading term μ2 � μ2 = 0 creates an S-polynomial that can be
reduced to Ri,2, and hence can be reduced to zero using all the elements that we have.

The last computation at this stage is that for the S-polynomial coming from a
yet another small common multiple of leading terms of relations Ri,1 and μ2 � μN +
μN � μ2 = 0, that is μ2 ◦1 μN ◦i (μ2 ◦2 μN). However, it is true that this S-polynomial
can be reduced completely using the defining relations of the operad together with the
relations Ri1 and Ri,2.

The way the elements Ri,3 etc. arise is exactly similar, and our system of elements
can be shown to be sufficient to reduce to zero all arising S-polynomials. �

COROLLARY 4.3. A basis for the operad NA 2,N can be defined inductively is as
follows. The identity map id ∈ NA 2,N(1) is a basis element, for every basis element b,
μ2(id, b) is a basis element, and also for each choice of non-negative integers i1, . . . , iN−1,
μN(μ(i1)

2 , μ
(i2)
2 , . . . , μ

(iN−1)
2 , μ2(id, b)) is a basis element.

Proof. Indeed, these are precisely the normal tree monomials with respect to the
leading terms of the elements of the Gröbner basis we computed. �

5. Generators and relations for the Yoneda A∞-algebras of N-Koszul algebras.
In this Section, we use the aforementioned operadic notions to provide a natural
framework to describe the Koszul dual algebras of N-Koszul algebras functorially via
generators and relations.
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THEOREM 5.1. Let A = T(V )/(R) be a finitely generated N-homogeneous algebra.
Then

A! ∼= NA 2,N(V∗)/(μ2(V∗, V∗), μN(R⊥)) (11)

as NA 2,N-algebras, where μN(R⊥) is viewed as a subspace of μN(V∗, V∗, . . . , V∗).

Proof. Let us first prove a particular case of this result, and then use it as the
general case.

LEMMA 5.1. This theorem holds for R = V⊗N.

Proof. Let us remark that, in this case, the algebra on the right-hand side of (11) is
the algebra D := NA 2,N(V∗)/(μ2(V∗, V∗)) of which all the algebras of the right-hand
side of (11) for various R are quotients. Applying the methods that we have explained
at the end of Section 3, we shall study the corresponding extension NA 2,N � D. If
we fix some basis e1, . . . , ek of V∗, the relations needed to present the extension are
μ2(ei, ej) = 0. The small common multiple of the associativity relation μ2 � μ2 = 0
and the relation μ2(ei, ej) = 0 produces the relation μ2(ei, μ2(ej, id)) = 0. This extra
relation has no small common multiples with other relations.

Applying Theorem 3.2, in the view of Theorem 4.1 and Corollary 4.3, we
immediately conclude that a basis for the algebra D can be defined inductively as
follows. It has even and odd elements, all generators e1, . . . , ek are odd basis elements,
for every even basis element b, and each 1 ≤ j ≤ k, the element μ2(ej, b) is an odd basis
element, and also for each odd basis element b, and for each 1 ≤ i1, . . . , iN−1 ≤ k,
the element μN(ei1 , ei2 , . . . , eiN−1 , b) is an even basis element. In other words, our
algebra has non-zero elements only of weight divisible by N or congruent to 1
modulo N, and for each such weight there exists exactly one type of basis element
of that weight. Combinatorially, the corresponding trees are alternating ‘towers’ of
operations with all the compositions using the last slot of an operation only. This gives a
vector space identification of D ∼= V∗ ⊕ μN(V∗, . . . , V∗) ⊕ (μ2 ◦2 μN)(V∗, . . . , V∗) ⊕
· · · with the Yoneda A∞-algebra A! = V∗ ⊕ V∗⊗N ⊕ V∗⊗(N+1) ⊕ · · · of the algebra
A = T(V )/(V⊗N). Comparing the operations of D with those given by Corollary 4.1,
we see that the corresponding NA 2,N-algebras are isomorphic. �

Let us prove the theorem for a general set of relations R. In the proof above
for the case of algebra D, corresponding to R = V⊗N , we obtained a basis where we
alternate operations μ2 and μN , computing all compositions at the last slot, and then
substitute into the resulting operation an arbitrary word in e1, . . . , ek. Now, the defining
relation μ2 � μN + μN � μ2 = 0, together with the vanishing of all the elements (8), (9)
and (10), means that in our alternating towers, the only operation that we plug in at
each level can be freely moved between the slots. If we now impose the additional
relations μN(R⊥) = 0 and use the identification D ∼= V∗ ⊕ V∗⊗N ⊕ V∗⊗(N+1) ⊕ · · ·
discussed above, it becomes clear that the underlying vector space of the quotient
that we are studying is the direct sum of appropriate homogeneous components of
algebra A∨ = T(V∗)/(R⊥). The isomorphism of NA 2,N-algebras follows, yet again,
from Corollary 4.1. �

COROLLARY 5.1. An N-homogeneous algebra A = T(V )/(R) is N-Koszul if and only
if the Yoneda A∞-structure on its Ext-algebra factors through the operad NA 2,N, and

Ext•A(�, �) ∼= NA 2,N(V∗)/(μ2(V∗, V∗), μN(R⊥))

as NA 2,N-algebras.
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Proof. This is a direct corollary of Theorems 2.2 and 5.1. �

6. Higher Koszul duality theory. This section provides a conceptual framework
for the main constructions and statements of the N-Koszul duality theory. It proves
the equivalence between finding a resolution of the trivial A-module and finding a
quasi-free algebra resolution of A.

6.1. Koszul morphism. Let (C, δ2, δN) be an A2,N-coalgebra and let (A, μ) be an
algebra. The following constructions are particular cases of Ph.D. thesis of Prouté [23,
Chapter 3].

DEFINITION 6.1. The convolution A2,N-algebra is defined by the space Hom(C, A)
of linear maps from C to A endowed with the following operations

�2(f, g) := C
δ2−→ C ⊗ C

f ⊗g−−→ A ⊗ A
μ−→ A ,

�N(f1, . . . , fN) := C
δN−→ C⊗N f1⊗···⊗fN−−−−−→ A⊗N μ(N−1)

−−−→ A ,

where μ(N−1) stands for any N − 1 iterations of the associative product μ : A ⊗ A → A.

DEFINITION 6.2. Inside the convolution A2,N-algebra, we consider the Maurer–
Cartan equation:

�2(α, α) + �N(α, . . . , α) = 0 .

Solutions of degree −1 to the Maurer–Cartan equation are called twisting morphisms.
The associated set is denoted by Tw(C, A).

Let α : C → A be a linear map of degree −1. We consider the degree −1 derivation
dα := d2 + dN on the free right A-module C ⊗ A, where

d2 := C ⊗ A
δ2⊗A−−→ C ⊗ C ⊗ A

C⊗α⊗A−−−−→ C ⊗ A ⊗ A
C⊗μ−−→ C ⊗ A ,

dN := C ⊗ A
δN⊗A−−−→ C⊗N ⊗ A

C⊗α⊗(N−1)⊗A−−−−−−−→ C ⊗ A⊗N μN−1⊗C−−−−→ C ⊗ A .

LEMMA 6.1. If α ∈ Tw(C, A), then dα
2 = 0.

Proof. By straightforward computation. �
DEFINITION 6.3. The chain complex

C ⊗α A := (C ⊗ A, dα)

associated to a twisting morphism α is called a twisted tensor product. When this chain
complex is acyclic, the twisting morphism α is called a Koszul morphism. The set of all
Koszul morphisms is denoted by Kos(C, A).

6.2. Cobar constructions. The data of an A2,N-coalgebra is equivalent to a
square-zero derivation d on the free algebra T(s−1C), on the homological desuspension
of C, such that the components of the restriction d|s−1C : s−1C → ⊕

n≥1(s−1C)⊗n vanish
for n �= 2, N.
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DEFINITION 6.4. We denote this quasi-free dg algebra by �∞C := (T(s−1C), d)
and call it the cobar construction of C.

Because of the universal property of free algebras, defining a morphism of graded
algebras from T(s−1C) to A is equivalent to defining a degree −1 map of graded
vector spaces from C to A. Inside the space Homgr alg

(
T(s−1C), A

)
of all morphisms

of graded algebras, there is a subspace Homdg alg (�∞C, A) consisting of morphisms
of dg algebras. It includes an even smaller subspace QIdg alg (�∞C, A) consisting of
quasi-isomorphisms of dg algebras.

THEOREM 6.1. Suppose that both C and A are connected with respect to weight
grading. Under the identification Homgr alg

(
T(s−1C), A

) ∼= Hom(C, A)−1, we have

Homgr alg
(
T(s−1C), A

) ∼= Hom(C, A)−1

⋃ ⋃
Homdg alg (�∞C, A) ∼= Tw(C, A)

⋃ ⋃
QIdg alg (�∞C, A) ∼= Kos(C, A) .

Proof. We denote the unique morphism of graded algebras associated to a degree
−1 linear map α : C → A by gα : T(s−1C) → A. It is easy to check that it commutes
with the differential of cobar construction if and only if α is a twisting morphism.

Let us prove the last equivalence. First, any A(2,N)-coalgebra (C, δ2, δN) admits a
canonical twisting morphism

ι : C → s−1C ↪→ �∞C = (T(s−1C), d) .

It satisfies the following universal property: Any twisting morphism α ∈ Tw(C, A)
factors through it

�∞C
gα

����������

C
α ��

ι

����������
A .

Hence, the tensor product of the map gα with an identity map on C is a map of chain
complexes

C ⊗ι �∞C
gα⊗C−−−→ C ⊗α A .

Under the connectedness assumptions, we can apply the same arguments as the
comparison lemma for twisted tensor products [18, Lemma 2.5.1]. The twisted tensor
product C ⊗ι �∞C is acyclic by [23, Theorem (3.19)]. Therefore, the map gα is a
quasi-isomorphism if and only if the twisted tensor product C ⊗α A is acyclic. �

This theorem demonstrates that the existence of a quasi-free algebra resolution
�∞C

∼−→ A of an algebra A is equivalent to the existence of a free A-module resolution
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C ⊗α A
∼−→ � of the ground field �. So, given an algebra A, for instance an N-

homogeneous algebra, one has to look for an A2,N-coalgebra C (or more generally
an A∞-coalgebra) together with a Koszul morphism α : C → A to solve these two
questions.

The bar construction BA provides a functorial dg coalgebra which induces
functorial resolutions.

PROPOSITION 6.1 [14]. For any augmented algebra A, the bar–cobar construction
�BA

∼−→ A is a functorial resolution. The twisted tensor product BA ⊗π A
∼−→ �,

associated to the twisting morphism π : BA = Tc(sĀ) � sĀ → A, is a resolution of
the ground field �.

This general idea to reduce to size of these two resolutions is to consider the
underlying homology groups H•(BA) instead of the bar construction BA together
with the transferred A∞-coalgebra structure. This is precisely what the higher Koszul
duality does, by proposing a candidate for H•(BA).

6.3. Higher Koszul duality theory. Let A = T(V )/(R) be an N-homogeneous
algebra. We view A¡ as a A2,N-coalgebra dual to the algebra obtained in Theorem 5.1.

DEFINITION 6.5. We consider the degree −1 linear map κ : A¡ → A defined by

κ : A¡ � A¡
1

∼= V ↪→ A .

LEMMA 6.2. The map κ ∈ Hom(A¡, A)−1 is a twisting morphism.

Proof. Since A¡
2 = 0, we automatically have �2(κ, κ) = 0. The image of A¡

N = R
under �N(κ, . . . , κ) is equal to zero, since the following composite vanishes

A¡
N = R

δN−→ V⊗N μN−1

−−→ A .

For weight grading reasons, the other components of �2(κ, κ) + �N(κ, . . . , κ) vanish,
which concludes the proof. �

The twisting morphism κ can be used to explain the particular form of the Koszul
complex introduced by Berger in [2].

PROPOSITION 6.2. The twisted tensor product A¡ ⊗κ A := (A¡ ⊗ A, dκ ) coincides with
the Koszul complex described in Section 2.1.

Proof. By straightforward computation. �
THEOREM 6.2. The morphism of dg algebras gκ : �∞A¡ → A is a quasi-isomorphism

if and only if the Koszul complex A¡ ⊗κ A is acyclic.

Proof. This is a direct corollary of Theorem 6.1. �
This theorem demonstrates that the Koszul dual A2,N-coalgebra construction of

Theorem 5.1 provides a good candidate to get a ‘small’ quasi-free algebra resolution of
an N-homogeneous algebra A and to get an equally ‘small’ free A-module resolution
of the ground field �. In the Koszul duality theory, this latter resolution is used to
compute Tor and Ext functors, (see [22]) and to establish equivalence between derived
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categories, see, e. g. [1, 16]. The data of a quasi-free algebra resolution is used in the
Homotopy Transfer Theorem [18, Section 10.3].
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21. J. F. Lü, J. W. He and D. M. Lu, Piecewise–Koszul algebras, Sci. China Ser. A Math.
50(12) (2007), 1795–1804.

22. S. B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39–60.
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