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FINITE ARITHMETIC SUBGROUPS OF GL,, V
YOSHIYUKI KITAOKA

Abstract. Let K be a finite Galois extension of the rational number field Q
and G a Gal(K/Q)-stable finite subgroup of GL,(Ok). We have shown that
G is of A-type in several cases under some restrictions on K. In this paper, we
show that it is true for n = 2 without any restrictions on K.

Let K be a finite Galois extension of the rational number field Q with
Galois group I" and let G be a I'-stable finite subgroup of GL,(Ok). Here
Ok stands for the ring of integers in K and we define the action of o € T’
on g = (gi5) € GLn(Ok) by o(g) := (0(gij)). G being I'-stable means
that o(g) € G for every o € I" and every g € G. To state the property of
such a group, we introduce the notion of A-type. Let H be a subgroup of
GL,(Ok). We denote by L = Zey,...,e,] a free module over Z and we
make h = (hi;) € H act on OgL by h(e;) = 37_; hije;. If there exists a
decomposition L = éBi-“:lLi such that for every h € H, we can take roots of
unity €;(h) (1 <4 < k) and a permutation s(h) so that €;(h)hL; = Lyp)q)
fori=1, 2,...,k, then we say that H is of A-type.

We have shown in [4] that if T is nilpotent, then G is of A-type. The
aim of this paper is to show the following

THEOREM. Let K be a finite Galois extension of the rational num-
ber field Q with Galois group I' and let G be a T'-stable finite subgroup of
GL2(Ok). Then G is of A-type.

Through this paper, algebraic number fields are finite over the rational
number field Q. For an algebraic number field K, we denote the ring of
integers in K by Og. When K is the rational number field Q, we use Z
instead of OQq, as usual. An algebraic number field is called abelian if it is a
Galois extension over Q with abelian Galois group. Let K be an algebraic
number field and p an integral ideal of K, and let G be a subgroup of
GL,(Ok). Then we set

G(p):={9 € G|g=1lnmodp},
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where 1,, stands for the identity matrix of size n. For elements g, h in a
group, we set

l9,h] := ghg 'h™t.

§1.

In this section, we give the proof of the theorem except the proof of
Lemma 1.6, which is given in the succeeding sections.

LEMMA 1.1. (Theorem 1 in [3]) Let K be an abelian extension of Q
with Galois group T'. Then a T'-stable finite subgroup of GL,(Ok) 1is of
A-type.

LEMMA 1.2. (Lemma 3 in [3]) Let K/Q be a Galois extension with
Galois group T' and G a T'-stable finite subgroup of GL,(Ok). Let T' be
the commutator subgroup of I' and K’ the mazimal abelian subfield of K
corresponding to I. Suppose the following conditions:

1. If a proper subfield F' of K is a Galois extension of Q, then G N
GL,(F) C GL,(K').
2. At least two rational primes ramify in K.

Then G is of A-type.

We prove the theorem by induction on [K : Q). By virtue of Lemmas
1.1, 1.2, we may assume that the number of prime numbers ramified in K
is one.

LEMMA 1.3. Let K be an algebraic number field and suppose that
g € GL,(Ok) is of finite order and g = 1, mod p for a prime ideal p of K.
Then the order of g is a power of the prime number p which lies below p.

Proof. Let K, be the completion of K at p and 7 a prime element of
Ky. Suppose that the order of g is divided by a prime number ¢ different
from p. Let h be a power of g whose order is q. We write h = 1, + 7" A,
where A is an integral matrix and m~!A is not integral. Then we have

q
ln=hl=1,+3 (Z) (n" A,
k=1
and hence
gn" A = 0 mod 7.

Since ¢ # 0 mod w, A # 0 mod w and r > 0, it is a contradiction. 1
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LEMMA 1.4. (Lemma 1 in [4]) Let F' be an abelian extension of Q with
Galois group T', and p a prime ideal. Let G be a T'-stable finite subgroup
of GL,(OF). Then there exists an integral matrizc T € GL,(Z) such that
{TgT~'| g€ G,g=1,mod p} consists of diagonal matrices.

LEMMA 1.5. Let K be a Galois extension of Q with Galois group T,
and let G be a I'-stable commutative finite subgroup of GLy(Og). Then G
is contained in GLo(K'), where K' is the mazimal abelian subfield of K.

Proof. 1f G consists of scalar matrices, the assertion is clear, and hence
we assume that G contains a non-scalar matrix. Let m be the exponent of
G and it is obvious that we have only to prove the assertion for K (11/™)
instead of K. So we may assume 1/ € K then there is a matrix T €
GLy(K) so that T~'GT consists of diagonal matrices. Take any non-scalar

element g € G and put
G 0 -1
=T T .
I ( 0 G

Take o € I' and set

U= T*IU(T) = ( Uy Yz ) ;

. . O'(Cl) 0 m 0
th € G implies u = u for some roots of
eno(g) impli ( 0 o(C) ) ( 0 )

unity 71, 12, and hence u10(¢1) = uim, uz0((2) = uan, uzo((1) = uzne and
ug0({2) = ugne. Suppose ujug # 0; then we have o({1) = 1, and o({3) = m,
which contradict ¢; # (2. Thus we have ujus = 0. Suppose ugug # 0; then
we have o((1) = n2 and o({2) = 12, which are the contradiction, similarly.
Thus we have ujus = uguqs = 0 and hence

-1 _ _ U1 0 0 u9
T U(T)—u—<0 u4>0r<u3 0).

(75} 0

U(T):T( 0

By setting

F()IZ{UGF

) for some u1,uq € K},

Ug
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the index [I" : Tp] is at most 2 and Ty contains the commutator subgroup
of I'. Let F be the subfield corresponding to I'g; then F' C K’. Set

a b
r-(20).
We divide the proof into the three cases.

(i) The case of ¢ = 0.

For o € T'y, we have

(a(a) o(b)>:<a b)(ul o)
0 O’(d) 0 d 0 Ug ’

and so o(b/d) = b/d. Hence t := b/d is in the field F. Then we have, for
roots of unity 1, y2,

vy O ~1_ [ a dt v O a”l! —a7lt
(3 a)m-(09)06 ) (v &
[ ay1 dtye a ! —a ¢
L0 dy 0 d!
= ( B (72 —71)t ) S GLQ(K’)

Thus G is in GLy(K').
(ii) The case of d = 0.

For o € T'y, we have

(a(a) a(b))_;(a b)(ul O)
o(c) O c 0 0 wug )’

and so o(a/c) = a/c and hence t := a/c belongs to F. Then we have, for
roots of unity 1, Yo,

¥y 0 —1_ [ ct b v 0 0 1
T<0 72)T _<c 0)<0 v )\ b7t bl
_ ctyr by 0 ¢!
“\enm O b=l —b 1t

_ (m1—72)t /
~<02 17172 )eGLQ(K).
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Hence G is contained in GLy(K').
(iii) The case of ed # 0.

For o € 'y, we have

(a(a) a(b)):(a b)<u1 0)
o(e) o(d) c d 0 wug )’

and so o(a/c) = a/c, o(b/d) = b/d and hence t; := a/c, ty :=b/d are in F.
Then we have, for roots of unity v1, 2,

(™M 0 71
0 7

Thus we have shown G C GLo(K').

LEMMA 1.6. Let p be a prime number and let K be a Galois extension
of Q with Galois group 1" where p is the only rational prime number ramified
in K, and let Py,...,p, be all the prime ideals in K lying above p. Let G be
a T'-stable finite subgroup of GL2(Ok). Then the subgroup of G generated
by G(p1),...,G(pg) is commutative.

The proof for an odd prime p (resp. 2) is given in the second (resp. third)
section.

LEMMA 1.7. Letp be a prime number, and K a Galois extension of Q
with Galois group I where p is the only prime number ramified in K, and let
P1,...,Pg be the prime ideals in K lying above p. Let G be a I'-stable finite
subgroup of GL2(Ok). Then we have G(p1) = --- = G(py) C GL2(K'),
where K' is the mazimal abelian subfield of K.

Proof. By Lemma 1.6, the subgroup H generated by G(p1),...,G(Pg)
is an abelian [-stable subgroup of GLy(Ok). By Lemma 1.5, H is con-
tained in GLa(K'). Let p be the unique prime ideal of K’ lying above p;
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then G(p;) C (G N GL2(K'))(p) follows from the fact p; N K’ = p. The
inclusion (G N GLy(K'))(p) C G(p;) is obvious and so we have G(p;) =
(GNGLy(K"))(P). 0

LEMMA 1.8. Let p be a prime number and K a Galois extension of
Q with Galois group I'. We suppose that p is the only prime number that
ramifies in K, and let py,...,py be the prime ideals of K lying above p.
Let G be a T'-stable finite subgroup of GL,(Ok) and suppose that G(p,) =
- =G(pg) is in GLp(K') where K’ is the mazimal abelian subfield of K.
Then G is of A-type.

Proof. Let g € G and set A, := o(g)g~! for ¢ € T'; we have, for

o,pel
A;wg = ,ua(g) = M(Aag) = “(AG)AMQ

and hence A,, = u(As)A,. Since K’ is abelian over Q, the prime ideal p
in K’ lying above p is uniquely determined and pi, ...,y lie above p. By
the assumption G(p1) = -+ = G(Ppg) C GL,(K'), we have G(p1) C (GN
GL,(K"))(p). Therefore, by Lemma 1.4, there exists a matrix 7' € GL,(Z)
such that {TgT~! | g € G(p1)} consists of diagonal matrices. Considering
TGT~! instead of G, we may assume that G(p1) and hence all G(p;) consist
of diagonal matrices without loss of generality. Let V; be the inertia group
for the prime ideal p;. For o € V;, we have o(g)g~! = 1,, mod p; and hence
Ay, € G(p;) is diagonal. Since p is the only rational prime that ramifies
in K, V1,...,V, generate I' and so for every o € I', A, is diagonal. By
Lemma 1 in [3], there exists a diagonal matrix A € GL,(K) such that
A, =0(A7)A and AV € GL,(Q), where w is the number of roots of unity
in K. Thus we have 0(g)g~! = A, = 0(A™!)A and hence o(Ag) = Ag for
every o € I'. Therefore Ag is in GL,(Q) and we write Ag = Dh, where
D,h € GL,(Q), D is diagonal and the greatest common divisor of entries of
each row of h is one. Then g = (A™1D)h implies A~'D € GL,(Ok), since
the entries of each row of h and g are relatively prime. Now (A™'D)¥ =
(A¥)~1D¥ € GL,(Q) yields that the diagonal entries of A='D are roots of
unity. Thus we have g = (A~!D)h € GL,(K') and hence G C GL,(K").
By Lemma 1.1, G is of A-type. ]

Under the postposition of the proof of Lemma 1.6, we have completed
the proof of the theorem.

Remark. To generalize the theorem to an arbitrary size of matrices,
it is enough to generalize Lemmas 1.5, 1.6.
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§2. The proof of Lemma 1.6 for odd prime numbers

In this section, p is an odd prime number and K is a Galois extension
of Q with Galois group I' such that p is the only prime number ramified
in K, and G is a I'-stable finite subgroup of GL2(Ok). We remark that if
a root of unity € is congruent to 1 modulo a prime ideal of K lying above
p, the order of ¢ is a power of p, and that if [g, h] = ghg~*h™! is scalar for
g,h € GLy(K), then [g, h] = £15.

LEMMA 2.1.  Let p be a prime ideal of K lying above p. Then G(p)
is commutative.

Proof. Suppose that G(p) is not commutative. By regarding it as a
representation of degree 2, it is an irreducible representation and so the cen-
ter Z of G(p) consists of scalar matrices by Schur’s lemma. The assumption
implies G(p) # Z and the order of G(p) is a power of the prime number
p by Lemma 1.3. Hence G(p)/Z is a non-trivial p-group, and we can take
h € G(p)\ Z so that h gives a non-trivial center of G(p)/Z. Then we have,

for g € G(p)

l9,h] € Z,
and hence there exists s € K* such that [g,h] = sly with s = £1. On
the other hand, slz = [g,h] € G(p) yields that the order of s is a power
of p. Hence we have s = 1. This means that h is a center of G(p), which
contradicts h ¢ Z. 0

LEMMA 2.2.  Let Py, p2 be prime ideals in K lying above p. Then the
elements in G(p1) and G(P2) are commutative.

Proof. (i) The case that G(p1) N G(p2) contains a non-scalar matrix g.

By the previous lemma, G(p1) is commutative and hence there ex-
ists a complex regular matrix T such that TG (p;)T consists of diagonal

¢ 0
0 ¢

mutative, we have gh = hg for h € G(p2). Putting h :=T ( ch b ) Tt

d
Ga Gb ) _ [ Ga b
Goc Cod CGe Gd |’

matrices and put g =T’ ( ) T~ with ¢; # (3. Since G(p2) is com-

we have
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and hence b = ¢ = 0 by virtue of (; # (2. Hence T~1G(p2)T also consists of
diagonal matrices, and so the elements of G(p1) and G(p2) are commutative.

(ii) The case that G(p1) N G(P2) consists of scalar matrices.

Take g; € G(pi) (i = 1,2); then [g1, 92] = 919207 92 € G(p1) N G(p2)
is clear and there exists s € K* such that [g1, go] = slo with s = +1. By
[91, 92] € G(p1), the order of [g1, g2] and hence of s is a power of p. Hence
we have s = 1. Thus ¢1, g2 are commutative. O

Thus Lemma 1.6 has been proved for odd primes.

§3. The proof of Lemma 1.6 for p = 2

Through this section, K is a Galois extension of Q with Galois group
I" such that 2 is the only prime number ramified in K, and G is a I'-stable
finite subgroup of GL3(Ok). F» denotes Z/2Z. We remark that the group
of automorphisms of a vector space over Fy of dimension 2 is isomorphic to
the symmetric group &3 of degree 3.

LEMMA 3.1. Let h := T< %1 (? ) T~ be a regular matriz, where
2
(1 # (2, €1(2 # 0 and a matriz T is reqular. Let g :=T ( Z (bl )T‘l be a

regular complexr matriz.

If [g, h] = 12, then we have g = T( g 2 ) T

If [g,h] = —12, then we have (1 = —(2 andng( 2 8 >T_1.

Proof. Since

ghzT(aCl bC2>T_1 hng(aCl bC1>T—1

cC1 d¢ cC2 dGe
l9,h] = 12 implies b = ¢ = 0, and [g,h] = —13 implies a = d = 0, and so
b # 0 and then we have (; = —(s. U

LEMMA 3.2.  Let p be a prime ideal of K lying above 2. Suppose that
G(p) is not commutative. Then the center Z of G is equal to the center of
G(p) and it consists of the scalar matrices in G, and one of the following
properties holds:
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1. G(p)/Z = F, & F5 and for g € G(p) \ Z,tr(g) = 0 holds. Moreover,
for h1, ha € G(p) \ Z we have [h1, ha] = —1p if hiZ # hoZ.

2. The order of the center of G(p)/Z is two and a commutative subgroup
G’ of G(p) of index 2 is unique.

Proof. By regarding G(p) itself as a representation of degree 2, it
is irreducible, since G(p) is not commutative. Hence its center Z(G(p))
consists of scalar matrices. Similarly, the center Z of G consists of scalar
matrices. The inclusion Z(G(p)) C Z is clear. Suppose g = €lp € Z. Since
g is of finite order, € is a root of unity and 2 is the only prime number which
ramifies in K, the order of € is a power of 2. Let P be the unique prime
ideal of the maximal abelian subfield of K lying below p; then € = 1 mod ‘3,
which means g = €l € G(*8) C G(p). Thus we have shown Z(G(p)) = Z.
By virtue of Lemma 1.3, the orders of the elements of G(p) are powers
of 2 and hence G(p)/Z is a 2-group. Therefore we can choose an element
h € G(p) \ Z so that hZ is a non-trivial center of G(p)/Z. This yields
lg,h] € Z for g € G(p), and hence

[g,h] = £14 for every g € G(p).

Setting
Go:={g € G(p) | [g, ] = 12},
we have [G(p) : Go] < 2. We take a regular matrix T so that

hi 0
h:T(Ol h4)T‘1 (h1 # hy).

Lemma 3.1 yields that T~'GT consists of diagonal matrices and hence G
is commutative. Since G(p) is not commutative, we have G(p) # Go and

SO
(1) [G(p) : Go] =2
and hence there exists an element g € G(p) so that [g,h] = —12. Then

Lemma 3.1 yields that

We divide the proof into two cases.
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(i) The case that there exists an element ¢ € G(p) which gives a center
of G(p)/Z, but is not in Gp.

The property [c,h] = —15 implies ¢ = T CO c()2 )T‘l by virtue

3
of Lemma 3.1. Then {Z,hZ,cZ hcZ} is a subgroup of G(p)/Z and is
isomorphic to F» @ Fy. It is easy to see [c,h] = [c,hc] = [h,he] = —1a.

Once [G(p) : Z] = 4 has been proved, this case (i) gives the first case in
the lemma. By virtue of (1), we have only to prove [Go : Z] = 2, and as a
matter of fact we show

Go=ZUhZ.
Gy D ZUhZ is clear. Let us take f € Gy. By virtue of Lemma 3.1, we

have f =T {)1 ](") T1. Since c gives a center of G(p)/Z, there is a
4

complex number s so that [¢, f] = slp with s = £1. By noting that

-1 -1
_ 0 ¢ fi 0O 0 ¢ fi O -1
en=r(o5)(5 a)(a5) (84)
_ fa/fi O -1
_T( / fl/f4)T |

if the condition s = 1 holds, then f; = f4 and hence f € Z. The condition
s = —1 implies fy = —f1 and so f € hZ. Thus we have shown Gy = ZUhZ
and complete the case (i).

(ii) The case that every element ¢ € G(p) which gives a center of G(p)/Z
is contained in Gj.

First, we show that the center of G(p)/Z is {Z,hZ}. Let c € G(p)
give a center of G(p)/Z. We must show ¢ € Z U hZ. The assumption
(&1 0

implies [¢,h] = 12 and hence ¢ = T 0 e

) T-! by Lemma, 3.1. Take

an element g € G(p) \ Go; then [g,h] = ~1, yields g =T ( 0 %2 > ~

g3 0
Since c gives a center of G(p)/Z, i.e., [g,c] € Z, we have [g,c| = sly with
s = £1. On the other hand, from [g,c] =T er/er 0 T follows
0 61/04

that ¢4 = %c;, which means ¢ € Z or hZ. Thus we have shown that {Z, hZ}
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contains the center of G(p)/Z. The converse inclusion is clear, and hence
the center of G(p)/Z is {Z,hZ}.

We recall that Gy is a commutative subgroup of G(p) with [G(p) :
Go) = 2. Let S be a commutative subgroup of G(p) with [G(p) : S] = 2, and
suppose S # Go. We show [G(p) : Z] < 4. The canonical homomorphism
¢ : Go/G1+— G(p)/S is clearly injective, where we put G; := GoNS. By the
assumption, Gy /Gy # {1} and [G(p) : S] = 2 hold and so ¢ is isomorphism.
Thus we have [Gy : G;] = 2 and hence [G(p) : G1] = 4. We take g €
G(p)\ Go, g € Go\ Gy; then G(p) = G1Ug'G1 UgG1Ugg'Gy is trivial. On
the other hand, S # G and [S : G1] = 2 imply S = G1UgG; or G1Ugg' G;.
Neither g nor g¢’ is contained in Gy. Putting f = g or g¢’, we have S =
G1U fGy1 and f € G(p) \ Go. Lemma 3.1 yields f = T( ]23 ];2 )T‘l
by [f,h] = —15. Take an element b € G;. Since b is commutative with
bl 0
0 by
hand, S is commutative and so b, f € S implies [b, f] = 13, which implies
by = by, i.e., b€ Z. Thus G; C Z follows and then [G(p) : G1] = 4 implies
[G(p) : Z] < 4. Thus G(p)/Z is commutative. As we have shown that the
center of G(p)/Z is equal to {Z,hZ}, we have [G(p) : Z] = 2. It yields that
G(p) is commutative, which contradicts our assumption. Thus this case
gives the second case in the lemma. ]

h by virtue of b € Gy, we can write b =T T~1. On the other

LEMMA 3.3.  Let p be a prime ideal of K lying above 2. Suppose that
G(p) is not commutative. Then the case (2) in Lemma 3.2 does not occur.

Proof. Let Z be the center of G(p), and suppose that the case (2)
occurs; then the order of the center of G(p)/Z is two and a commutative
subgroup Gg of G(p) of index 2 is uniquely determined and is equal to
{9 € G(p) | [g,h] = 12} as in the proof of Lemma 3.2, where h € G(p)
is an element such that hZ is the unique non-trivial center of G(p)/Z.
Since G(p) is a normal subgroup of G, the mapping = — grg~! induces
an automorphism of G(p)/Z for every g € G. Hence g(hZ)g~! is the non-

trivial center of G(p)/Z and so we have
ghg ' € hZ  for every g € G,

which implies [g, h] € Z, and by virtue of Lemma 3.2, Z consists of scalar
matrices, and hence we have

(1) [g,h] = £12 for every g € G.
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For o € T', we put

Gy :={g| g €a(G(p)),lg,h] = 12},

which is commutative by Lemma 3.1. We show
GU = O'(G()).

The inequality [0(G(p)) : G5] < 2 follows from (1). If [0(G(p)) : G5] = 1,
then o(G(p)) is commutative, which contradicts the non-commutativity of
G(p). Hence we have [0(G(p)) : Go] = 2, and 07}(G,) is a commutative
subgroup of G(p) of index 2, and hence 071(G,) = Go. Thus we have
shown the claim.

We can take a matrix T so that T~'GoT consists of diagonal matrices and

put h = T< %1 CO )T“l. Since o(h) (€ 0(Go) = G,) is commutative
2
with h for o € T, there exist 11, n2 such that o(h) =T 73 7;) )T—l.
2

Therefore the set {o(h) | o € '} generates a I'-stable abelian finite subgroup
G' of GLy(Ok). Hence Lemma 1.5 yields that G’ C GL2(K'), where K’ is
the maximal abelian subfield of K. Since there exists a matrix S € GL2(Z)
such that S™'G’S consists of diagonal matrices by Lemma 1.4, we may
assume that (h €) G’ consists of diagonal matrices without loss of generality,
hi 0
0 hg
commutativity of G(p) implies the existence of an element g € G(p) so that
[9,h] = —153, noting (1) and Lemma 3.1. By the same lemma, we have
0 g2
g3 O
proof. 0

considering S7!GS instead of G. So, put h := , and the non-

g= , which contradicts g € G(p). Thus we have completed the

LEMMA 3.4. Let p be a prime ideal of K lying above 2. Suppose that
G(p) is not commutative. Denote the center of G by Z. If the mapping
z — gzg~! for g € G induces the trivial automorphism of G(p)/Z, then we
have g € G(p).

Proof. By virtue of Lemmas 3.2, 3.3, we can take hy,hy € G(p) so
that G(p)/Z = {Z,mZ,hoZ, h3Z} with h3 := hphg. Suppose that the
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inner automorphism by g € G induces the trivial automorphism of G(p)/Z;
then
ghig™*hit ez fori=1,2,3.

Define ¢, = £1 by [g,hi] = €1a. Moreover hg = hjhy implies €3 =
€1€9. If € = e5 = €3 = 1, and g is not scalar, then Lemma 3.1 im-
plies that T~'h,T is diagonal, taking a matrix T so that T 1¢T is di-
agonal. Hence G(p) is commutative, which is a contradiction. Thus we

may assume €] = 1,e3 = €3 = —1 without loss of generality. We can put
h/
hi =Ty ( 01 (l)z’ ) T; ! by Lemma 3.2; then by [g, h1] = 13 and Lemma
—h

0
0 Tl_l. If g1 = g4, then g is scalar and so
9 € Z C G(p). Suppose g1 # ga; then [g, hg] = —12 and Lemma 3.1 implies
tr(g) = 0 and hence g4 = —g; and ghl—1 is scalar and so ghl—1 € Z C G(p),

which implies g € G(p), too. Thus we have completed the proof. U

3.1, we see g = T} ( 9

LEMMA 3.5. Let p be a prime ideal of K lying above 2. Suppose that
G(p) is not commutative. Then G(p) is I'-stable.

Proof. Let Z be the center of G; then Z C G(p) and G(p)/Z = Fod F;.
Define the automorphism ¢(g) of G(p)/Z for g € G by ¢(g)(zZ) = gzg~'Z.
By the previous lemma, we have ker(¢) = G(p). Then G/G(p) is isomorphic
to a subgroup of the symmetric group G35 of degree 3. We divide the proof
into three cases.

(i) The case that the order of ¢(G) is odd.

In this case, G(p)/Z is the unique 2-Sylow subgroup of G/Z. Since for
o el 0(G(p))/Z is also a 2-Sylow subgroup of G/Z, we have o(G(p)) =
G(p) for o €T

(ii) The case that the order of ¢(G) is 2.

We show that this case does not happen. Take an element H € G\G(p);
then the assumption yields G/G(p) = {G(p), HG(p)}. ¢(H) is a non-trivial
automorphism of order 2 of G(p)/Z, and so we can take hi,ho € G(p) \ Z
so that

HhoH '€ hiZ, HhH '€ hyZ.

Then the representatives of G/Z are {1, hy, ho, h1hy, H,h1H, ho H,hyhoH}.
The equalities [h1hg, h1]Z = [hiha, h2]Z = [hihe, H|Z = Z imply that
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hiheZ is a center of G/Z. [H,h;|Z = hihaZ for i = 1,2 yield that the
center of G/Z = {Z,h1haZ}. Let 0 € T'; then o induces an automorphism
of G/Z, and hence we have

(1) O'(hlhg)Z = hthZ.

Hence {Z U h1hoZ} is a I'-stable finite abelian subgroup of GL2(Ok). By

Lemma 1.5, (1) yields that hihe € GL2(K’), where K’ is the maximal

abelian subfield of K. Since hihy € G(p) N GLy(K'), as in the proof

of Lemma 3.3, we may assume that hjho is diagonal and we see that

[h1, hihg] = —12 follows from Lemma 3.2 and so Lemma 3.1 yields that
0 =

hy = 0

€ G(p), which is a contradiction. Thus this case does not

happen.
(iii) The case of ¢(G) = Gs.

We can take generators A, B(€ G) of G/G(p) so that A% € G(p),
B3 € G(p), ABA™! € B2?G(p). Then the 2-Sylow subgroups of G/Z
are {AZ/Z, G(p)/Z}, {BAB~Z/Z, G(p)/Z} = {ABZ/Z, G(p)/Z} and
{B?AB~2Z/Z,G(p)/Z} = {AB?Z/Z, G(p)/Z}. Thus G(p)/Z is the inter-
section of all 2-Sylow subgroups of G/Z. Take o € I'. Then o induces an
automorphism of G/Z and so o(G(p)) = G(p), that is G(p) is I-stable. []

LEMMA 3.6. Let p be a prime ideal of K lying above 2. Then G(p)
18 commutative.

Proof. Suppose that G(p) is not commutative; then G(p) is I'-stable
by the previous lemma. Denote the center of G by Z. Every element ¢ € T’
induces an automorphism of G(p)/Z = F5 & Fy, and so, by putting

To:={o]|0(9Z) = gZ for every g € G(p)},

['/Ty is isomorpic to a subgroup of G3. Denote the subfield of K corre-
sponding to I'g by H. We divide the proof into four cases.

(i) The case of I' = I'y.

We take hi, ho € G(p) so that the set {12, h1, ha, h1ho} is a set of the
representatives of G(p)/Z. We may assume that K contains a sufficiently
many roots of unity whose orders are powers of 2, and then we may assume

(10
m@_T(O_ﬁ)T
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for some T' € GLy(K) by Lemmas 3.1 and 3.2. The condition I' = T’y
implies o(h1h2) = €;h1hs for some ¢, € K. Comparing the determinants,
we have ¢, = £1. Putting

I'y:={oceTl'|o(hihy) = h1h2}>

we have [I' : T';] < 2. Hence the entries of hihy belong to a quadratic
field. Let K’ be the maximal abelian subfield of K; then by Lemma 1.1,
we may assume that the elements of G(p) N GLo(K') are diagonal and
hence hihs is diagonal. By Lemmas 3.1, 3.2 and [hy, h1hg] = —12, we have

0

hi = , which contradicts hy € G(p).

ES
0

(ii) The case of I'/T'y & Z/2Z.

We take an element o € I"\ I'g; then o induces an automorphism of
G(p)/Z of order 2. Therefore there exists hi,he € G(p) so that o(hy) €
heZ and o(hg) € h1Z, and that the set {11, h1, ho, hiho} is a set of the
representatives of G(p)/Z. Hence we have o(hihs) € hihaZ, and so h1hyZ
is I'-stable. This is the contradiction as in the previous case.

(iii) The case of I'/T'g = Z /3Z.

The assumption yields that the field L corresponding to I'y is a cyclic
extension of Q with [L : Q] = 3. But 2 is the only prime which ramifies in
K and hence in L, which implies that [L : Q] is a power of 2. Thus we have
a contradiction and this case does not happen.

(iv) The case of I'/Ty = Gs.

Let L be the subfield of K corresponding to I'g; then 2 is the only
prime which ramifies in L. A quadratic field M in L is Q(v/~1), Q(v/~2)
or Q(v/2), and in such a field, the norm of the unique prime ideal lying
above 2 is 2 and the class number is 1. The class field theory tells us that
the degree of an abelian extension of M is a power of 2. This contradicts
[L : M] = 3. Thus this case does not happen either. U

LEMMA 3.7.  Let p1,po be distinct prime ideals of K lying above 2.
Suppose that G(p1) N G(p2) consists of scalar matrices. If there exists g; €
G(p;) 1 = 1,2 such that [g1, g2] # 12, then we have G(p1) = ZU 1Z and
G(p2) = ZUgaZ, where Z is the subgroup consisting of the scalar matrices
in G.
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Proof. Since [g1,g2] = 919297 *97° € G(p1) N G(P2), [g1,92] is scalar
and hence is equal to £1s. Moreover [g1, ga] # 12 implies that g;, g2 are
not scalar and that [g1, g2] = —12. By Lemma 3.1, we can write

gsz(g _0<>T_1, 92=T(3 g)T‘l,

and the commutativity of G(p;) yields that T-*G(p;)T consists of diagonal
matrices. For g € G(p;1), we have [g, g2] € G(p1)NG(P2) and hence [g, g2] =
a 0
0 d

9,92] =T ( a,(/)d d(/)a ) T,

and hence a = +d. If a = d, then g = aly. Otherwise, we have g = a(!g;.

+1,. Putg=T T~ then we have

Thus we have G(p1) C Z U g1Z, and the converse inclusion is clear and
hence G(p1) =ZU g1 Z. }

LEMMA 3.8. Let p1,po be distinct prime ideals of K lying above 2.
Then G(p1) and G(p2) are element-wise commutative.

Proof. Let 2™ be the order of G(p1) and we may assume that K con-
tains a primitive 2"th root of unity without loss of generality. We divide
the proof into two cases.

(i) The case that G(p1) N G(P2) contains a non-scalar matrix.

Take a non-scalar matrix g € G(p1) N G(p2) and write

G 0 -1
=T T .
7 ( 0 ¢
Since (1 # (2 and G(p1), G(p2) are commutative, respectively, Lemma 3.1

yields that both T-'G(p;)T and T~ G(p2)T consist of diagonal matrices.
Thus elements of G(p1) and G(p2) are commutative.

(ii) The case that G(p1) N G(p2) consists of scalar matrices.

Denote the subgroup consisting of scalar matrices in G by Z. Suppose
that h; € G(p1), he € G(p2) are not commutative. By [h1,ha] € G(p1) N
G(p2), [h1, ha] is scalar and so [hy, he] = —15. Since G(p1) is commutative,
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there exists T € GL2(K) so that T~*G(p1)T consists of diagonal matrices.
By Lemma 3.1, we may assume

_ ¢ 0 1 _ 0 B -1
hl_T(O _C)T , h2_T(7 O)T .

Since (15 is in Z, we may assume { = 1 for h;. By the previous lemma, we
have G(p1) = ZU h1Z and G(p2) = Z U haZ. Now we claim that if p is a
prime ideal of K lying above 2, then G(p) is one of the following:

(1) {(ZUMZ}, {ZUhZ}, {ZUhhaZ}.

Let p be a prime ideal lying above 2. Since there exists an element ¢ € I’
such that G(p) = G(o(p1)) = o(G(p1)), we have [G(p) : Z] = 2, and the
trace of every element of G(p) \ Z equals 0.

Suppose that G(p) and G(p1) are element-wise commutative; by virtue
of Lemma 3.1, T~1G(p)T consists of diagonal matrices, since G(p) is com-
mutative with hi. Hence [G(p) : Z] = 2 implies G(p) = Z U hZ for some
h =T g Oa T-! = ahy. h, hy € G implies al, € G and hence
aly € Z. Thus G(p) = G(p1) follows.

Suppose that G(p) and G(p1) are not commutative; then we have
G(p) # G(p1) and let G(p) = ZUhZ; then we have [h, h1] € G(p)NG(p1) =
Z, and hence [h, hq] = —15, which implies h = T 2 g )T‘l. If G(p)
and G(p2) are commutative, then G(p) = G(p2) follows as above. So, we
may assume that G(p) and G(p2) are not commutative. Then we have
[h, ha] = —15 similarly as above, and hence by = —@¢c. Thus we obtain

0 g
—y 0
Thus we have shown the claim (1).

By virtue of o(G(p)) = G(o(p)) for o € I, T" acts on the set {G(p) | p

is a prime ideal lying above 2}, which consists of the three elements in (1).

h = —cy T T! = —cy 'hihy, and so G(p) = Z U h1haZ.

Denote by I'y the set of elements of I which induce the trivial permutation;
then T'/T'y is isomorphic to a subgroup of G3. Since there is no Galois
extension of Q whose Galois group is isomorphic to Z/3Z or Gg if 2 is
the only ramified prime number, as in the proof of Lemma 3.6, we have
[[': Tg] < 2. Therefore I'/Ty has a fixed point as an action on the three
elements in (1), and let it be {Z U hyZ}, say. Thus we have o(hy) € hhZ
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for every o € I'. Therefore G(p1) = {Z U h1Z} is a I'-stable abelian finite
subgroup of GL3(Ok) and hence we may assume that h; is diagonal and

then [hq, hg] = —12 and Lemma 3.1 imply kg = < S ;; . This contradicts
hy € G(p2). Thus we have incuced the contradiction, assuming that G(p;)
and G(p2) are not commutative. 0

Thus we have completed the proof of Lemma 1.6 in the case of p = 2.
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