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Abstract

Introduction: Digital health is rapidly expanding due to surging healthcare costs, deteriorating
health outcomes, and the growing prevalence and accessibility of mobile health (mHealth) and
wearable technology. Data from Biometric Monitoring Technologies (BioMeTs), including
mHealth and wearables, can be transformed into digital biomarkers that act as indicators of
health outcomes and can be used to diagnose and monitor a number of chronic diseases
and conditions. There are many challenges faced by digital biomarker development, including
a lack of regulatory oversight, limited funding opportunities, general mistrust of sharing per-
sonal data, and a shortage of open-source data and code. Further, the process of transforming
data into digital biomarkers is computationally expensive, and standards and validation meth-
ods in digital biomarker research are lacking. Methods: In order to provide a collaborative,
standardized space for digital biomarker research and validation, we present the first compre-
hensive, open-source software platform for end-to-end digital biomarker development: The
Digital Biomarker Discovery Pipeline (DBDP). Results:Here, we detail the general DBDP frame-
work as well as three robust modules within the DBDP that have been developed for specific
digital biomarker discovery use cases.Conclusions:The clear need for such a platformwill accel-
erate the DBDP’s adoption as the industry standard for digital biomarker development and will
support its role as the epicenter of digital biomarker collaboration and exploration.

Introduction

The digital health landscape has seen rapidly expanding growth due to the number of chronically
ill patients and health system utilization in the USA at an all-time high [1]. Mobile devices and
wearables, otherwise known as Biometric Monitoring Technologies (BioMeTs), have facilitated
continuous monitoring beyond clinic visits and have enabled significant developments in
personalized medicine and mobile health (mHealth) [2,3]. Digital biomarkers are digitally col-
lected data from BioMeTs (e.g., glucose levels) from a continuous glucose monitor (CGM) that
are transformed into indicators of health outcomes (e.g., diabetic state). They can be used to pro-
vide biomedical insights or improve health decision-making (e.g., encourage healthy lifestyle
changes). Research in digital biomarker development spans fields and disease states, from
movement-related disorders [4] to breast cancer [5] to Alzheimer’s disease [6], and can conceiv-
ably be applied to any area of health, wellness, and medicine. In the past decade, the number of
digital biomarker studies indexed in PubMed has increased by 325% (Supplementary Fig. 1).
Because only 13% of all research articles published are open access, and even fewer provide their
code and/or data, there is a critical need to build an open-source community for digital biomarker
development [7]. Currently, digital biomarker development processes are siloed, resulting in
numerous studies with digital biomarkers that are not validated properly [8] or are duplicates
of already existing digital biomarkers. Open-source digital biomarker development is necessary
to broaden the validation of digital biomarkers, reduce duplication, and expedite innovation.

Mobile and wearable devices continue to gain popularity. Currently, 81% of Americans and
45% of the global population have a smartphone [9,10]. Given the ubiquity of smartphones,
mHealth is expected to reach a market size of $236B by 2026 [11]. There are over 300,000
mHealth apps available on the major platforms, and over 60% of people with smartphones have
downloaded at least onemHealth app [12]. The popularity of wearable devices is also at an all-time
high: by 2021, it is expected that 121 million Americans will use wearable devices [13].
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The accessibility of mobile and wearable technology affords an
unprecedented opportunity to provide mHealth care globally, and
particularly to populations with limited healthcare accessibility,
including low-income and rural populations that stand to benefit
most from mHealth. mHealth monitoring and interventions are
promising because they can improve the health monitoring of
patients who are unable to make frequent visits to a health care
facility.

The combined market growth in healthcare and mobile and
wearable technologies has prompted BioMeT manufacturers to
develop algorithms to process raw sensor data and aggregate this
data into various health-related metrics. For example, while most
wearable BioMeT manufacturers do not provide sample-level
sensor accelerometry data, they instead provide aggregate metrics
like “activity intensity/duration” or “step count.” For example,
Apple recently developed an Food and Drug Administration-
cleared algorithm for binary (yes/no) detection of atrial fibrillation
using the AppleWatch wrist-based electrocardiogram (ECG) [14].
These aggregate metrics may themselves act as digital biomarkers,
or the metrics may be used and combined by researchers and cli-
nicians to develop composite digital biomarkers. One of the major
challenges faced by the research and medical communities is that
the manufacturer-developed algorithms are nearly always propri-
etary and information about the verification and validation process
of BioMeTs and digital biomarkers is not released to the public [8].
For robust and reproducible digital biomarkers, openness and
transparency surrounding the evaluation of these digital tools is
critical [8,15–18].

mHealth and wearables data present unique bioinformatic
challenges. Providing open-source tools that can be validated
by the digital biomarker community would not only make
discovering digital biomarkers more accessible but would also
instill confidence in their translation into clinical and research set-
tings. Open resources that bridge the stages of digital biomarker
development will also enable those with different skill sets
(i.e., computational expertise or clinical domain knowledge) to col-
laborate toward new digital biomarker discovery. Further, tools
that allow for collaboration in improving algorithms, validating
known digital biomarkers, and discovering new digital biomarkers

will enable much-needed standardization and interoperability in
this space.

In the past two decades, the field of high-throughput biomolec-
ular analysis set a focus on developing data standards and open
platforms for sharing code and data and validating bioinformatic
pipelines, which accelerated the pace of research in the genomics
community [19,20] and cultivated research in this area [19,21–23].
Similarly, we aim to develop a standardized, open-source data and
software platform for the field of digital biomarkers that will facili-
tate rapid research progress and collaboration.

To address the need for an open resource of computational
digital biomarker development tools, here, we present the Digital
Biomarker Discovery Pipeline (DBDP), an open-source software to
transform mHealth data into digital biomarkers for disease detec-
tion, monitoring, and prevention. From the input of sensor data to
the development of statistical modeling, machine learning, and
deep learning algorithms, the DBDP provides tools for each step
of the digital biomarker discovery process (Fig. 1). The DBDP
abides by the findable, accessible, interoperable, reusable (FAIR)
guiding principles to make data and code Findable, Accessible,
Interoperable, and Reusable [24]. The DBDP has already been used
to support 10 studies with several more currently underway
[15,25–28]. Currently, the DBDP supports the development of
new digital biomarkers through a general pipeline with extensible
modules consisting of preprocessing and exploratory data analysis
(EDA) tools to make the development of new digital biomarkers
standardized and replicable. Currently, DBDP modules calculate
and utilize resting heart rate (RHR), glycemic variability, insulin
sensitivity status, exercise response, inflammation, heart rate vari-
ability, activity, sleep, and circadian patterns to predict health out-
comes, and then we plan to integrate new digital biomarker
modules relating to BioMeT data harmonization, pre-processing,
EDA, predictive model building, and cardiometabolic disease
research into the DBDP. The DBDP is a resource for the digital
biomarker community that provides open-source modules in
order to widen the scope of digital biomarker validation with stan-
dard frameworks, reduce duplication by comparing the existing
digital biomarkers, and stimulate innovation through community
outreach and education.

Fig. 1. The DBDP.
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Methods

Software Specifications

The DBDP is an open-source software resource published in
GitHub with Apache 2.0 licensing. We have developed aWiki page
with a user guide explaining on how to use the DBDP. We also
provided complete instructions for contributing to the DBDP.
We have adopted the Contributor Covenant (v2.0) [29] code of
conduct. Code packages and digital biomarker modules are devel-
oped using a variety of programming languages that are integrated
through containerization. The software is required to have specific
documentation in order to be adopted into the DBDP. The DBDP
is available at dbdp.org.

DBDP Landscape

DBDP modules have been developed to enable the discovery
of new digital biomarkers and the comparison of the existing
digital biomarkers. Additionally, the DBDP has been configured
in amodular framework in order for code to be extensible to a vari-
ety of digital biomarker development studies and applications.
Currently, DBDP modules calculate and utilize RHR, glycemic
variability, insulin sensitivity status, exercise response, inflamma-
tion, heart rate variability, activity, sleep, and circadian patterns to
predict health outcomes (Fig. 2) using statistics, data analytics, and
machine learning algorithms such as regressions, random forests,
and long-short-term memory models. The DBDP currently
supports CGMs, ECG, and wearable watches Empatica E4,
Garmin vivofit, and vivosmart, Apple Watch, Biovotion, Xiaomi
Miband, and Fitbit. The EDA, RHR, heart rate variability, and
glucose variability modules are currently device agnostic, and other
modules are currently being configured to be device agnostic.

While there are many challenges to using ground truthmeasure-
ments and they are not always available, particularly for new types of
measurements, when they are available, they are necessary to verify
and validate the digital biomarkers in the DBDP [8].

Using the DBDP

The DBDP is intended to be used by researchers, clinicians,
and anyone with an interest in exploring digital biomarkers.
The DBDP is available as a general pipeline for wearables data
pre-processing and conducting EDA with generic settings and
recommendations for best practices. Individual modules can be
tailored and combined to meet specific digital biomarker discovery
applications and use cases. Additionally, users can submit a request
for DBDP developers to build new biomarkers, features, or device
pre-processing modules as detailed in the DBDP User Guide. The
DBDP development team will work closely with users who have
new devices to integrate into the DBDP pre-processing module.
Detailed specifications for each algorithm andmodule are available
in the DBDP to facilitate their use and adoption. The Digital
Biomarker Development Resources Guide in the DBDP includes
resources on choosing a wearable sensor, data handling, validation
of data, and digital medicine in general.

Contributing to the DBDP

In order to contribute to the DBDP, there are requirements for for-
matting and documentation that are available in our Contributing
Guidelines. DBDP modules and algorithms are not automatically
accepted and are subject to a rigorous review by the DBDP
development team to ensure that the algorithm functions as
documented. When contributing to the DBDP, an “Issue” is
created. DBDP development team members will be assigned to

Fig. 2. Current DBDP landscape.
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the issue and will review it. In this way, the original developer will
be openly reviewed and will be required to make any changes to
their software before being accepted into the DBDP.

Results

The DBDP provides generic and adaptable modules for
pre-processing data and conducting EDA. The goal of the general
pipeline is to allow for new digital biomarker development through
a modular framework with tools for pre-processing and EDA that
are extensible to a variety of digital biomarkers. Additionally, the
DBDP contains multiple modules for specific digital biomarkers
and research use cases (Fig. 2). These specific modules can be
adapted to new digital biomarker research or can be used to com-
pare new digital biomarkers to the pre-existing digital biomarkers.
This enables researchers to compare their own digital biomarkers
with pre-existing digital biomarkers, reducing duplication and
stimulating innovation. We plan to further validate these modules
and provide the module and a reference dataset as a resource to the
community for digital biomarker benchmarking. Below, we will
explore the general pipeline and three specific digital biomarkers
included in the DBDP. We have chosen these specific modules
because they showcase the diversity of the DBDP modules and
provide end-to-end solutions that have been utilized in a number
of projects. Additionally, they highlight the performance of the
pipeline with different devices and use cases.

General DBDP

The goal of the general DBDP is to provide a set of extensible
tools for the development of new digital biomarkers. This general

framework provides a standard framework for pre-processing and
exploring data for digital biomarker development.

Our pre-processing module is developed to be device agnostic.
We have processing and signal alignment modules for numerous
wearable sensors. When comparing multimodal signals, signals
that have different resolutions, or sampling frequencies can be
difficult to align. Our EventDTW method allows for this signal
alignment in our pre-processing module [29].

EDA is an important step in the pipeline of digital biomarker
development. EDA can uncover structure and trends in large
mHealth datasets, including outliers, missingness [25], and rela-
tionships between variables, and can be helpful to visualize the data
(e.g., Fig. 3) [25]. EDA is not a strictly defined process, and there-
fore resources are often sporadic. Our goal with the EDAmodule is
to pool the commonmHealth EDAmethods that we and others use
into one cohesive architecture, and to iterate over them to optimize
and standardize mHealth EDA. Our primary goal with the EDA
module is to standardize the process of EDA to enable structured
mHealth data exploration.

DBDP Module 1: RHR

RHR characterizes several health conditions, such as type 2 diabe-
tes (T2D) and cardiovascular diseases. The DBDP provides a per-
sonalized, accessible, and transparent method for estimating RHR
from photoplethysmography-based wearable devices (e.g., Fitbit)
data. To date, there has not been a comprehensive evaluation of
how to best characterize RHR, which varies differently over time
and between individuals with different activities and rest habits.
Current methods for obtaining RHR require hands-on clinical
measurements or utilize proprietary methods based on wearable

Fig. 3. Missing data visualization available in the DBDP EDAmodule. This figure shows the percent of wearable data present per day and per hour for six study participants during
a 10-day influenza exposure study [25].
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device data. We have developed this module in order to increase
the accessibility and transparency of RHR as a digital biomarker
and to move toward a standardized and consistent RHR calcula-
tion method. This novel estimation model [30] (1) considers an
individual’s heart rate data, (2) finds the subset of low exercise/step
intensity heart rate data corresponding to a minimal rolling sum of
steps (n) within a window size ofmminutes, (3) searches for opti-
mal values of parameters n and m by minimizing a standard
deviation penalty function which quantifies the difference in varia-
tion between the distributions, and (4) outputs the RHR estimate as
the median of the optimal low exercise/step intensity subset of per-
sonal heart rate data. This method has been validated against RHR
clinical data through the STRONG-D study using Fitbits for type II
diabetic adults (Fig. 4) [31]. This method is currently also being
validated on infectious disease data collected using the Empatica
E4 wearable wristband [32]. The RHR module is our first step
toward developing a community standard RHR calculation
method for digital biomarker development. It showcases the
RHR metric, which is commonly used but is calculated in a variety
of different ways. Within the DBDP, RHR definitions can be iter-
ated over by the community, bringing together diverse needs to
develop a robust and well-accepted method for RHR calculation
in digital biomarkers.

DBDP Module 2: Sleep and Circadian Rhythms

Accurate sleep detection is necessary to determine the circadian
rhythm and to discover relationships between circadian rhythm
and sleep and wake characteristics. Currently, many sleep detec-
tion algorithms are available to consumers depending on either
manual entry of sleep times or assumed sleep clock schedules.
Such algorithms would fail to detect abnormal sleep times, espe-
cially for shift workers. The sleep detection algorithm in this
DBDP module is developed to address this and expand on the
applicability of currently available algorithms. This algorithm
(1) identifies likely sleep and wake periods, (2) trains several differ-
ent models to predict sleep and wake periods based on heart rate
and activity measurements, and (3) chooses a method, that is,
logistic regression, support vector machine to assign sleep/wake
labels to periods [26]. This algorithm has been validated in wear-
able data from shift workers against participant-recorded sleep
schedules and wearable-reported sleep times (Fig. 5). This module
was developed because the commercial sleep detection algorithm
does not accurately detect when the participant recorded that they
were sleeping but the DBDP algorithm, based on heart rate and
activity measurements, does accurately detect sleep. The Sleep and
Circadian Rhythms module showcases an end-to-end solution that
improves upon currently existing sleep detection algorithms
[33,34]. We have included this module to show an end-to-end sol-
ution that is evolving as researchers contribute their findings.

DBDP Module 3: cgmquantify for CGM Data

Glucose and glycemic variability are indicative of hyperglycemia,
hypoglycemia, and risk for developing prediabetes andT2D.
They are also indicators of glycemic control, which is an important
metric when evaluating the health of both type 1 diabetes and T2D
patients. To our knowledge, there are currently no existing open-
source software modules in Python that calculate these metrics
from interstitial CGMs. The cgmquantify package we have devel-
oped includes 25þ summary metrics of glucose and glycemic vari-
ability [28]. The cgmquantify package also provides a
comprehensive set of visualizations and statistical analyses to
examine CGM data over time (individual) and provides resources
for longitudinal studies with CGM (Fig. 6). As more researchers
and clinicians begin utilizing CGM data to answer questions relat-
ing to prediabetes, T1D, and T2D, the need for a validated, stand-
ardized resource is necessary. As we have seen with the Open APS
community, analysis of CGM data is not limited to researchers and
clinicians but includes patients themselves [35]. By providing the
DBDP cgmquantify module as an open-source resource, we hope
to encourage patients to interact with their own data, determine
personalized insights, and make meaningful contributions to the
digital health landscape. Cgmquantify is a comprehensive func-
tion-based software tool that demonstrates how a deployedmodule
from the DBDP may be used and recycled across a variety of
research aims. Cgmquantify is a published Python package that
has been developed as an MD2K Cerebral Cortex algorithm [28].

DBDP for Education

The DBDP is currently being utilized for education on digital
health and to spread community awareness on the digital
biomarker discovery process. As a part of the Duke University
Biomedical Engineering and Biostatistics and Bioinformatics
undergraduate and graduate curriculums, the DBDP is being
employed for students to learn and expand upon existing
mHealth data science projects. The DBDP is also being utilized
in the Rhodes Information Initiative Dataþ Summer Research
program for undergraduate students in a project on human activity
recognition. One of the primary goals of this project is for students
to develop their own modules within the DBDP. In the upcoming
conferences, including theWomen in Data Science Conference, we
will be presenting DBDP workshops and tutorials. Based on our
experiences using the DBDP for education, we have put together
a Wiki with tutorials on how to adapt the DBDP in a variety
of educational settings, including classrooms, workshops, case
studies, and student projects. The DBDP is being utilized widely
for multidisciplinary education, and we encourage its use for edu-
cational purposes in addition to research and development.

Discussion

The growth in BioMeTs, including mHealth and wearables, has
driven a surge in digital biomarker research. However, the lack
of standardization and open-source computational tools has lim-
ited collaborative research and has resulted in numerous digital
biomarkers in use that have not been validated [8,15]. Proprietary
algorithms from wearable manufacturers do not provide informa-
tion on their verification and validation processes, making it diffi-
cult to confirm the validity of aggregate metrics and digital
biomarkers [8,36]. Additionally, this limits the accessibility of dig-
ital biomarker discovery research to only researchers with strong
computational skills which may prevent experts with relevant

Fig. 4. RHR module available in the DBDP. Clinical validation of our RHR algorithm
against clinical data [8,30].
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domain knowledge from entering the field. Creating the DBDP, an
open-source software platform for collaborative efforts in the dig-
ital biomarker space, with detailed documentation and user train-
ing, supports exploration and validation of digital biomarkers and
enables multidisciplinary collaboration.

Much like in the field of genomics two decades ago, the
mHealth technology renaissance has produced rapid expansion
in digital health data. In order to balance this growth with an
appropriate level of evaluation, we must develop standards and
open-source resources to encourage the continued expansion of
digital biomarker discovery like the open-source infrastructure
driving genomics research [21–23]. The DBDP is an open-source
software tool for making sense of data derived from BioMeTs and
for discovering digital biomarkers from mHealth and wearables
data. The DBDP currently enables the development of new digital
biomarkers and the comparison of existing digital biomarkers. We
are currently working toward rigorous validation of DBDP mod-
ules in order to provide them as a resource to the community for
digital biomarker benchmarking.

In order to increase the reach of the DBDP and enable collab-
orations across the field of digital biomarker research, we plan
to integrate the DBDP with the Open mHealth interoperable data
collection architecture. Open mHealth has a large community

with over 6500 developers. The Open mHealth tools for data
collection are standards in industry [37]. Open mHealth is
focused on collecting and storing wearable and mHealth data
based on an open reference standard that is currently under ballot
to become an official IEEE global standard [38]. Open mHealth
tools include Shimmer, a data aggregator for mobile sensors
(i.e., iHealth, GoogleFit). While Open mHealth’s syntactic and
semantic standards facilitate interoperability, they do not address
the clinical validity of the represented biomarker. To address
clinical validity, we aim to integrate the Open mHealth frame-
work into the DBDP. Specifically, we are currently creating a
pipeline to automatically format the JSON outputs of Open
mHealth’s Shimmer tool to function as direct inputs into the
DBDP. In addition to outreach and education, we plan to inte-
grate 100 new digital biomarker modules relating to BioMeT data
harmonization, pre-processing, EDA, predictive model building,
and cardiometabolic disease research into the DBDP by the
end of 2022.

We also encourage the digital biomarker community to contrib-
ute open-access code, algorithms, and benchmarking datasets to
the DBDP following the FAIR principles. In order to facilitate the
verification and validation, and continued exploration of digital bio-
marker applications, the DBDP provides resources, a platform, and

Fig. 5. Sleep detection and disruption module available in the DBDP. Validation of sleep detection algorithm. Blue dots denote heart rate values at a point in time.
Orange-shaded area is the reported sleep period by the proprietary commercial algorithm from the device manufacturer, and red rectangles indicate periods of sleep detected
using this module.

Fig. 6. cgmquantify Python package available in the DBDP. Example of an LOWESS-smoothed visualization created using the cgmquantify package. LOWESS, locally weighted
scatterplot smoothing.
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an online community to make this a reality. We envision the DBDP
becoming a standard for the digital biomarker community and an
epicenter of digital health collaboration and exploration.

Code Availability

The DBDP is available at http://dbdp.org. The DBDP is open
source, licensed with Apache 2.0, with no restrictions and is avail-
able at https://github.com/Big-Ideas-Lab/DBDP. Contributions
must follow the Contributor Covenant v2 code of conduct.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/cts.2020.511.
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