Geometrical Proof of $\frac{\tan \frac{1}{2}(B-C)}{\tan \frac{1}{2}(B+C)}=\frac{b-c}{b+c}$.

Consider triangle $A B C$.
From $A C$ cut off $A D=A B$; join $B D$: draw $A E$ perpendicular to $B D$ and produce to meet $B C$ in F; draw $E G$ parallel to $B C$. Then, by Geometry, E and G are mid-points of $B D$ and $D C$ respectively; $A \widehat{B} D=A \widehat{D} B=\frac{1}{2}(B+C)$ since \widehat{A} common to triangles $A B D$ and $A B C ; E \widehat{B} F=B-\frac{1}{2}(B+C)=\frac{1}{2}(B-C)$.

$$
\begin{aligned}
& \frac{\tan \frac{1}{2}(B-C)}{\tan \frac{1}{2}(B+C)}=\frac{E F / B E}{E A / B E}=\frac{E F}{E A}=\frac{G C}{G A}=\frac{\frac{1}{2}(b-c)}{\frac{1}{2}(b+c)}=\frac{b-c}{b+c} \\
& \text { Alex. D. Russele. }
\end{aligned}
$$

Angles between the Medians and Sides of a Triangle.

Fig. 1.

1. Let $A B C$ be a triangle, $A D$ joining A to a point D in $B C$ such that $B D: D C=m: n$. Let $\angle C A D=\alpha_{1}$ and $-B A D=\alpha_{2}$. Draw $B M$ and $D N \perp^{r} A C$.

$$
\begin{align*}
\cot \alpha_{1} & =\frac{A \bar{N}}{D N}=\frac{A M}{D N}+\frac{M N}{D N}=\frac{(m+n) A M}{n B M}+\frac{m N C}{n D N} \\
& =\frac{(m+n)}{n} \cot A+\frac{m}{n} \cot C=\frac{m}{n}(\cot A+\cot C)+\cot A \ldots \tag{1}
\end{align*}
$$

Similarly, $\cot \alpha_{n}=\frac{n}{m}(\cot A+\cot B)+\cot A$.
$\therefore n \cot \alpha_{1}-m \cot \alpha_{2}=m \cot C-n \cot B$
$\cot A D C=-\cot \left(\alpha_{1}+C\right)=\frac{1-\cot \alpha_{1} \cot C}{\cot \alpha_{1}+\cot C}$

$$
=\frac{1-\left[\frac{m}{n}(\cot A+\cot C)+\cot A\right] \cot C}{\frac{m}{n}(\cot A+\cot C)+\cot A+\cot C}
$$

$$
\begin{equation*}
=\frac{\frac{1-\cot A \cot C}{\cot A+\cot C}-\frac{m}{n} \cot C}{\frac{m}{n}+1}=\frac{n \cot B-m \cot C}{m+n} \tag{3}
\end{equation*}
$$

$\therefore(m+n) \cot A D C=m \cot \alpha_{2}-n \cot \alpha_{1}$.

Fig. 2.
2. Suppose three concurrent lines $A D, B E, C F$ be drawn to the sides $B C, C A, A B$, dividing them in the ratios $m: n, p: q, r: s$, and intersecting at G, and making angles α_{1} and a_{2}, β_{1} and β_{2}, γ_{t} and γ_{2} with the sides.
$\cot D G C=\cot \left(\alpha_{1}+\gamma_{2}\right)=\frac{\cot \alpha_{1} \cot \gamma_{2}-1}{\cot \alpha_{1}+\cot \gamma_{2}}$
$=\frac{\left[\frac{m}{n}(\cot A+\cot C)+\cot A\right]\left[\frac{s}{r}(\cot C+\cot A)+\cot C\right]-1}{\frac{m}{n}(\cot A+\cot C)+\cot A+\frac{s}{r}(\cot C+\cot A)+\cot C}$
$=\frac{\frac{m}{n} \cdot \frac{s}{r}(\cot A+\cot C)+\frac{s}{r} \cot A+\frac{m}{n} \cot C-\cot B}{\frac{m}{n}+\frac{s}{r}+1}$
3. If $A D, B E, C F$ are the medians of $\triangle A B C$,
(1) becomes $\cot \alpha_{1}=2 \cot A+\cot C$.
$\therefore \cot \alpha_{1}+\cot \beta_{1}+\cot \gamma_{1}=\cot \alpha_{2}+\cot \beta_{2}+\cot \gamma_{2}$

$$
=3(\cot A+\cot B+\cot C)=3 \cot \omega
$$

(2) becomes $\cot \alpha_{1}-\cot \alpha_{2}=\cot C-\cot B$.

This may be proved as follows: Let $D N$ and $D L$ (Fig. 1) be \perp^{r} to $C A$ and $A B$.

Then $A D^{2}-D C^{2}=A D^{2}-D B^{2} \quad \therefore A N^{2}-N C^{2}=A L^{2}-L B^{2}$.
$\therefore(A N-N C) A C=(A L-L B) A B . \quad$ But $\triangle A D C=\triangle A D B$.
$\therefore A B . D L=A C . D N$. Hence $\frac{A N-N C}{D N}=\frac{A L-L B}{D L}$.
$\therefore \cot \alpha_{1}-\cot C=\cot \alpha_{2}-\cot B$.
(3) becomes $\cot A D C=\frac{\cot B-\cot C}{2}=\frac{\cot \alpha_{2}-\cot \alpha_{1}}{2}$.
$\therefore \cot A D C+\cot B E A+\cot C F B=0$.
(4) becomes $\cot D G C=\frac{2 \cot A+2 \cot C-\cot B}{3}$.
$\therefore \cot D G C+\cot E G A+\cot F G B=\cot D G B+\cot E G C$ $+\cot F G A=\cot A+\cot B+\cot C=\cot \omega$, and $\cot D G C-\cot D G B=\cot C-\cot B=\cot \alpha_{1}-\cot \alpha_{2}=2 \cot A D B$.

Several of these results will be found in Hobson's "Trigonometry," Chap. XII.
A. G. Burgess.

An Area Proof of the Proposition

"If $A B$ is divided equally at C and unequally at D, then $A D^{2}+D B^{2}=2 A C^{2}+2 C D^{2} . "$

