COUNTABLE COMPACTIFICATIONS

KENNETH D. MAGILL, JR.

1. Introduction. It is assumed that all topological spaces discussed in this paper are Hausdorff. By a compactification αX of a space X we mean a compact space containing X as a dense subspace. If, for some positive integer $n, \alpha X - X$ consists of n points, we refer to αX as an n-point compactification of X, in which case we use the notation $\alpha_n X$. If $\alpha X - X$ is countable, we refer to αX as a countable compactification of X. In this paper, the statement that a set is countable means that its elements are in one-to-one correspondence with the natural numbers. In particular, finite sets are not regarded as being countable. Those spaces with n-point compactifications were characterized in (3). From the results obtained there it followed that the only n-point compactifications of the real line are the well-known 1- and 2-point compactifications and the only *n*-point compactification of the Euclidean N-space, E^{N} (N > 1), is the 1-point compactification. In this paper, we characterize those spaces that are locally compact and have countable compactifications. As a consequence, we obtain the fact that no Euclidean N-space has a countable compactification.

Let βX denote the Stone-Čech compactification of a completely regular space X, let card (Y) denote the cardinal number of a set Y, and finally, let c denote the cardinal number of the continuum. Since every compactification of a completely regular space X is a continuous image of βX , we conclude that card (αX) \leq card (βX) for every compactification αX of X. Now it is shown in (1; p. 131, 9.3) that card ($\beta R - R$) = 2^c where R denotes the space of real numbers. The same technique yields the result that card ($\beta E^N - E^N$) = 2^c for each Euclidean N-space E^N . Thus, if one wishes to assume the Generalized Continuum Hypothesis, one may conclude that if αR is any compactification of R, then card ($\alpha R - R$) is 1, 2, c, or 2^c and if αE^N is any compactification of E^N (N > 1), then card ($\alpha E^N - E^N$) is 1, c, or 2^c.

We take this opportunity to acknowledge a considerable debt to the referee for his helpful suggestions, which resulted in the final form of Theorem (2.1)as well as a simpler proof of that theorem.

2. The Main Theorem and its corollaries.

THEOREM (2.1). The following statements concerning a space X are equivalent: (2.1.1). X is locally compact and $\beta X - X$ has an infinite number of components (maximal connected sets).

Received February 22, 1965.

(2.1.2). X is locally compact and there exists a compactification αX of X such that $\alpha X - X$ is infinite and totally disconnected.

(2.1.3). X is locally compact and has a countable compactification.

(2.1.4). X has an n-point compactification for each positive integer n.

Proof. $(2.1.1) \Rightarrow (2.1.2)$. Let

$$\beta X - X = \bigcup \{H_a : a \in \Lambda\}$$

where $\{H_a : a \in \Lambda\}$ is the family of components of $\beta X - X$. Let $\alpha X = X \cup \Lambda$ and define a function *h* from βX onto αX by

$$h(p) = \begin{cases} p & \text{if } p \in X, \\ a & p \in H_a. \end{cases}$$

Endow αX with the quotient topology induced by *h*. Then αX , being the continuous image of a compact space, is compact. In order to show that αX is Hausdorff, there are three cases to consider for distinct points *p* and *q*:

- (1) p and q both belong to X,
- (2) $p \in X$ and $q \in \alpha X X$,
- (3) p and q both belong to $\alpha X X$.

The first case follows easily using the fact that X is locally compact and therefore an open subset of any compactification. This implies that any open subset of X is also an open subset of βX and hence also of αX . For the second case, we again use the local compactness condition of X to conclude that there exists an open subset G of X and a compact subset K of X such that $p \in G \subset K \subset X$. It follows that G and $\alpha X - K$ are disjoint, open subsets of αX containing p and q respectively. Now let us consider the third case. H_p and H_q are distinct components (and hence closed subsets of) $\beta X - X$, which is compact. Therefore, H_p and H_q are disjoint, closed subsets of βX and there are disjoint, open subsets G_p and G_q of βX containing H_p and H_q respectively. By (1, Theorem 16.15), the component of a point in a compact space is the intersection of all open-and-closed sets containing it. This implies that H_p is the intersection of all open-and-closed sets (relative to $\beta X - X$) containing it. Since $\beta X - X$ is compact and $G_p \cap [\beta X - X]$ is an open subset of $\beta X - X$ which contains H_{p} , it follows that the intersection of a finite number of the open-and-closed sets is contained in $G_p \cap [\beta X - X]$. Denote this intersection by V_p . Then V_p is an open-and-closed subset of $\beta X - X$ and

$$H_p \subset V_p \subset G_p \cap [\beta X - X].$$

Because V_p is both open and closed, it is the union of all H_a contained in it. Moreover,

$$V_p = V_p^* \cap [\beta X - X]$$

for some open subset V_p^* of βX where $V_p^* \subset G_p$. It follows that

$$V_p^* = V_p \cup [V_p^* \cap X].$$

https://doi.org/10.4153/CJM-1966-060-6 Published online by Cambridge University Press

There exist sets V_q and V_q^* related to H_q in the same manner. Therefore V_p^* and V_q^* are disjoint. Now let

$$U_p = [V_p^* \cap X] \cup \{a : H_a \subset V_p\}, \qquad \qquad U_q = [V_q^* \cap X] \cup \{a : H_a \subset V_q\}.$$

Then $h^{-1}[U_p] = V_p^*$ and $h^{-1}[U_q] = V_q^*$. Since the latter are open subsets of βX and αX was given the quotient topology induced by h, it follows that U_p and U_q are disjoint, open subsets of αX containing p and q respectively. This proves that αX is a Hausdorff space. It follows easily that X is dense in αX ; hence αX is indeed a compactification of X. In order to verify that $\alpha X - X$ is totally disconnected, we note that $U_p \cap [\alpha X - X]$ is open in $\alpha X - X$. Moreover,

$$h^{-1}[U_p \cap [\alpha X - X]] = V_p^* \cap [\beta X - X] = V_p$$

which is a closed subset of βX . This implies that $U_p \cap [\alpha X - X]$ is a closed subset of αX and therefore also of $\alpha X - X$. Hence p and q do not belong to the same component. Since p and q were any two distinct points of $\alpha X - X$, we conclude that the latter is totally disconnected.

 $(2.1.2) \Rightarrow (2.1.3)$. Since X is locally compact, $\alpha X - X$ is an infinite, compact totally disconnected space and thus, by (1, Theorem 16.17), has a basis of open-and-closed sets. Therefore, there exists a countable family $\{H_n\}_{n=1}^{\infty}$ of non-empty mutually disjoint subsets of $\alpha X - X$ which are both open and closed in $\alpha X - X$. Set

$$H_0 = [\alpha X - X] - \bigcup \{H_n\}_{n=1}^{\infty}.$$

Then $H_0 \neq \emptyset$ since $\alpha X - X$ is compact. Now define a function h from αX onto

$$X \cup \{n\}_{n=0}^{\infty} = \gamma X$$

by

$$h(p) = \begin{cases} n & \text{for } p \in H_n, \\ p & p \in X. \end{cases}$$

Endow γX with the quotient topology induced by *h*. One can show as in the previous discussion that γX is Hausdorff and that X is dense in γX . Thus γX is a countable compactification of X.

 $(2.1.3) \Rightarrow (2.1.4)$. Now suppose that X is locally compact and that γX is a countable compactification of X. Assume p and q are distinct points belonging to some connected subset H of $\gamma X - X$. Because $\gamma X - X$ is completely regular, there exists a continuous function f from $\gamma X - X$ into the closed unit interval I such that f(p) = 0 and f(q) = 1. Then f[H] is connected and must be all of I since it contains both 0 and 1. This, of course, contradicts the cardinality of $\gamma X - X$; hence $\gamma X - X$ is totally disconnected. Again, since X is locally compact, $\gamma X - X$ is compact and we appeal once more to (1, Theorem 16.17) to conclude that $\gamma X - X$ has a basis of open-and-closed sets. Thus, for any positive integer n, there are n non-empty mutually disjoint subsets of

 $\gamma X - X$ that are both open and closed and whose union is all of $\gamma X - X$. Denote these sets by $\{H_i\}_{i=1}^n$ and define a function h from γX onto

$$X \cup \{1, 2, 3, \ldots, n\} = \alpha_n X$$

by

$$h(p) = \begin{cases} i & \text{for } p \in H_i \\ p \in X. \end{cases}$$

Let $\alpha_n X$ have the quotient topology induced by h. One shows as in previous cases that $\alpha_n X$ is indeed a (Hausdorff) compactification of X.

 $(2.1.4) \Rightarrow (2.1.1)$. Let any positive integer *n* be given and let $\alpha_n X$ be an *n*-point compactification of *X*. Then $\beta X - X$ must have at least *n* components since there exists a continuous function mapping it onto $\alpha_n X - X$. Since this is true for every positive integer, $\beta X - X$ must have infinitely many components. Finally, any space with a finite compactification is locally compact and the proof is complete.

(3, Theorem (2.6)) states that if every compact subset of X is contained in a compact subset whose complement has at most N components, then X has no *n*-point compactification for n > N. This fact and Theorem (2.1) of this paper result in

COROLLARY (2.2). Suppose X is locally compact and there exists a positive integer N such that every compact subset of X is contained in a compact subset whose complement has at most N components. Then X has no countable compactification.

(3, Theorem (2.9)) states that if (X, d_1) and (Y, d_2) are two unbounded, connected metric spaces such that for all points $x_0 \in X$ and $y_0 \in Y$ and every positive number r, the sets

 $\{x \in X : d_1(x, x_0) \leq r\}$ and $\{y \in Y : d_2(y, y_0) \leq r\}$

are compact, then $X \times Y$ has no *n*-point compactification for n > 1. This and Theorem (2.1) of this paper yield

COROLLARY (2.3). Let (X, d_1) and (Y, d_2) be two unbounded, connected, locally compact metric spaces and suppose that for all points $x_0 \in X$ and $y_0 \in Y$ and every positive number r, the sets

$$\{x \in X : d_1(x, x_0) \leqslant r\} \quad and \quad \{y \in Y : d_2(y, y_0) \leqslant r\}$$

are compact. Then $X \times Y$ has no countable compactification.

It follows from these corollaries that no Euclidean N-space has a countable compactification. The space

$$X = I - [\{0\} \cup \{1/n\}_{n=1}^{\infty}]$$

(as before, I denotes the closed unit interval) is an example of a locally compact subspace of R that has a countable compactification; namely, I itself. X, of course, is not connected. Indeed, Corollary (2.2) implies that no connected subspace of R will have a countable compactification. There are, however, locally compact, connected subspaces of the Euclidean plane E^2 that have countable compactifications. For example, let

$$Y_n = \{ (x, y) \in E^2 : y = x/n, x \ge 0, \text{ and } x^2 + y^2 < 1 \}.$$

Let

$$Y = \left[\bigcup \{ Y_n \}_{n=1}^{\infty} \right] \cup \{ (x, 0) : 0 \le x < 1 \},$$

and finally, let

$$K = \{(1,0)\} \cup \{(x,y) : y = x/n \text{ and } x^2 + y^2 = 1\}_{n=1}^{\infty}$$

Then Y is a locally compact, connected subspace of E^2 and $K \cup Y$ is a countable compactification of Y.

By (3, Theorem (2.1)), a space X has an *n*-point compactification if and only if it is locally compact and contains a compact subset K whose complement consists of *n* mutually disjoint open subsets $\{G_i\}_{i=1}^n$ such that $K \cup G_i$ is not compact for each *i*. This, in conjunction with Theorem (2.1) of this paper, results in

COROLLARY (2.4). A locally compact space X has a countable compactification if and only if for each positive integer n it contains a compact subset K_n whose complement is the union of n mutually disjoint open subsets $\{G_{n,i}\}_{i=1}^{n}$ with the property that $K_n \cup G_{n,i}$ is not compact for each i.

We conclude with

COROLLARY (2.5). Suppose X is locally compact and is the union of an infinite number of mutually disjoint open subsets. Then X has a countable compactification. In particular, every infinite discrete space has a countable compactification.

Proof. We make use of the previous corollary. For any positive integer n, let $K_n = \emptyset$. Since X can be regarded as the union of n mutually disjoint open noncompact subsets, the proof is complete.

References

1. L. Gillman and M. Jerison, Rings of continuous functions (New York, 1960).

2. J. L. Kelley, General topology (New York, 1955).

3. K. D. Magill, Jr., N-point compactifications. Amer. Math. Monthly 72 (1965), 1075-1081.

State University of New York at Buffalo

620