CONJUGACY CLASSES IN ALGEBRAIC MONOIDS II

MOHAN S. PUTCHA

ABSTRACT. Let M be a connected linear algebraic monoid with zero and a reductive unit group. We show that there exist reductive groups G_1, \ldots, G_t , each with an automorphism, such that the conjugacy classes of M are in a natural bijective correspondence with the twisted conjugacy classes of G_i , $i = 1, \ldots, t$.

Introduction. The objects of study in this paper are connected linear algebraic monoids M with zero. This means by definition that the underlying set of M is an irreducible affine variety and that the product map is a morphism (*i.e.* a polynomial map). We will assume further that the unit group G is a reductive group. In an earlier paper [6], the author found affine subsets M_1, \ldots, M_k , reductive groups G_1, \ldots, G_k with respective automorphisms $\sigma_1, \ldots, \sigma_k$, and surjective morphisms $\theta_i: M_i \to G_i$ such that: (1) Every element of M is conjugate to an element of some M_i , and (2) If $a, b \in M_i$, then a is conjugate to b in M if and only if there exists $x \in G_i$ such that $x\theta_i(a) \sigma_i(x)^{-1} = \theta_i(b)$. However it can happen that an element in M_i is conjugate to an element in M_i with $i \neq j$. We were not at that time able to handle this situation. Indeed the problem has baffled us since then. Finally we are able to give a complete solution. We show that in the above situation, every element of M_i is conjugate to an element of M_j , and every element of M_j is conjugate to an element of M_i . We also find necessary and sufficient conditons within the Weyl group or the Renner monoid, for this to happen. As an application we show that if $e = e^2 \in M$ and $a, b \in eMe$, then a is conjugate to b in M if and only if a is conjugate to b in eMe.

1. **Preliminaries.** Throughout this paper \mathbb{Z}^+ will denote the set of all positive integers. Let *G* be a connected linear algebraic group defined over an algebraically closed field. The *radical* R(G) is the maximal closed connected normal solvable subgroup of *G* and the *unipotent radical* $R_u(G)$ is the group of unipotent elements of R(G). We will assume that *G* is a *reductive group*, *i.e.* $R_u(G) = 1$. Then $R(G) \subseteq C(G)$, the center of *G*. Moreover $G = R(G)G_0$ where $G_0 = (G,G)$ is a semisimple group, *i.e.* $R(G_0) = 1$. Also G_0 is a product of simple closed normal subgroups of *G*. We refer to [1], [2] for details. If σ is an automorphism of *G*, then we say that $a, b \in G$ are σ -conjugate if $b = xa\sigma(x)^{-1}$ for some $x \in G$.

Research partially supported by NSF Grant DMS-9200077.

Received by the editors November 16, 1992.

AMS subject classification: 20G99, 20M10.

[©] Canadian Mathematical Society 1994.

Fix a pair of opposite Borel subgroups B, B^- of G so that $T = B \cap B^-$ is a maximal torus. Let $W = W(G) = N_G(T)/T$ denote the *Weyl group* of G. Let S denote the fundamental generating set of reflections of W. Then the following axioms of Tits are valid [2; Section 29.1]:

(T1)
$$\theta B\sigma \subseteq B\sigma B \cup B\theta\sigma B$$
 for all $\sigma \in W, \ \theta \in S$

(T2)
$$\theta B\theta \neq B$$
 for all $\theta \in S$.

For $I \subseteq S$, $P_I = BW_IB$ and $P_I^- = B^-W_IB^-$ are a pair of standard opposite parabolic subgroups, where W_I is the subgroup of W generated by I. $L_I = P_I \cap P_I^-$ is a reductive group, called a standard Levi subgroup of G. We have, $W(P_I) = W(P_I^-) = W(L_I) = W_I$. Subgroups of G containing a Borel subgroup, *i.e.* a conjugate of B, are called parabolic subgroups. If P is a parabolic subgroup of G containing T, then there is a unique opposite parabolic subgroup P^- of G containing T such that $L = P \cap P^-$ is a reductive group. Then L is a Levi factor of P and $P = LR_u(P)$, $L \cap R_u(P) = 1$, where $R_u(P)$ is the unipotent radical of P. This is called a Levi decomposition of P. If B_1 , B_2 are Borel subgroups of G containing T, then G is expressible as the following disjoint union:

$$G=\bigsqcup_{\sigma\in W}B_1\sigma B_2.$$

This is called the *Bruhat decomposition* of *G*.

LEMMA 1.1. Let P_1, P_2 be parabolic subgroups of G with Levi decompositions $P_1 = L_1U_1, P_2 = L_2U_2$ such that $T \subseteq L_1 \cap L_2$. Suppose $a \in U_1, b \in L_1, \sigma \in W$ such that $ab \in P_2\sigma$. Then $a \in P_2$.

PROOF. Let $\sigma = nT$. Then $n \in P_2P_1$. There exist $\theta_1, \theta_2 \in W, I, J \subseteq S$, such that $P_1 = \theta_1^{-1}P_I\theta_1$ and $P_2 = \theta_2^{-1}P_J\theta_2$. Then

$$P_2P_1 = \theta_2^{-1}(BW_JB\theta_2\theta_1^{-1}B)W_IB\theta_1$$

= $\theta_2^{-1}BW_J\theta_2\theta_1^{-1}BW_IB\theta_1$, by (T1)
= $\theta_2^{-1}BW_J\theta_2\theta_1^{-1}W_IB\theta_1$, by (T1).

Since $n \in P_2P_1$, we see by the Bruhat decomposition that $\theta_2 \sigma \theta_1^{-1} \in W_J \theta_2 \theta_1^{-1} W_I$. So

$$\sigma \in \theta_2^{-1} W_J \theta_2 \cdot \theta_1^{-1} W_I \theta_1 = W(L_2) \cdot W(L_1).$$

Hence there exists $m \in N_G(T) \cap L_1$ such that $abm \in P_2$. Since $a \in U_1$ and $bm \in L_1$, we see by [6; Fact 1.3] that $a, bm \in P_2$.

LEMMA 1.2. Let $I \subseteq S$, $L = L_I$. Let $\sigma_1, \ldots, \sigma_t, \theta_1, \ldots, \theta_t \in W$ such that $\bigcap_{i=1}^t \sigma_i L \theta_i \neq \emptyset$. \emptyset . Then $\bigcap_{i=1}^t \sigma_i W_I \theta_i \neq \emptyset$.

PROOF. Let $B_i = \sigma_i^{-1} B \sigma_i \cap L$, $B'_i = \theta_i B \theta_i^{-1} \cap L$, i = 1, ..., t. All of these are Borel subgroups of *L* containing *T*. By the Bruhat decomposition for *L*,

$$L = B_i W_I B'_i \subseteq \sigma_i^{-1} B \sigma_i W_I \theta_i B \theta_i^{-1}, \quad i = 1, \dots, t.$$

Hence

$$\sigma_i L \theta_i \subseteq B \sigma_i W_I \theta_i B, \quad i = 1, \dots, t.$$

Thus

$$\emptyset \neq \bigcap_{i=1}^t \sigma_i L \theta_i \subseteq \bigcap_{i=1}^t B \sigma_i W_I \theta_i B.$$

By the Bruhat decomposition for G, $\bigcap_{i=1}^{t} \sigma_i W_I \theta_i \neq \emptyset$.

Now for monoids. By a (linear) *algebraic monoid*, we mean a monoid M such that the underlying set is an affine variety and the product map is a morphism. The identity component of M will be denoted by M^c . We will use the same notation for an algebraic group. We will assume that M is connected (*i.e.* $M = M^c$) and that M has a zero. We will further assume that the unit group G is reductive. We call such a monoid a *reductive monoid*. Typically such monoids arise by taking lined Zariski closures of linear representations of reductive groups. We refer to [5] for the general theory of algebraic monoids. We will let \mathcal{R} , \mathcal{L} , \mathcal{J} , \mathcal{H} denote the usual Green's relations on M. If $a, b \in M$, then $a\mathcal{R}b$ if aM = bM, $a\mathcal{L}b$ if Ma = Mb, $a\mathcal{J}b$ if MaM = MbM, $\mathcal{H} = \mathcal{R} \cap \mathcal{L}$. If $X \subseteq M$, then

$$E(X) = \{e \in X \mid e^2 = e\}$$

will denote the set of idempotents in *X*. If $e \in E(M)$, then by the author [3], [4],

$$C_G^r(e) = \{g \in G \mid ge = ege\}$$

 $C_G^l(e) = \{g \in G \mid eg = ege\}$

are opposite parabolic subgroups of G with common Levi factor $C_G(e)$. We will let

$$\tilde{G}_e^r = R_u \Big(C_G^r(e) \Big), \quad \tilde{G}_e^l = R_u \Big(C_G^l(e) \Big)$$

denote the unipotent radicals of $C_G^r(e)$ and $C_G^l(e)$ respectively. Then

$$ilde{G}_e^r e = \{e\}, \quad e ilde{G}_e^l = \{e\} \ C_G^r(e) = C_G(e) \cdot ilde{G}_e^r, C_G^l(e) = C_G(e) \cdot ilde{G}_e^l.$$

Let

$$\hat{G}_e = \{g \in G \mid ge = e = eg\} \triangleleft C_G(e), \quad G_e = \hat{G}_e^c.$$

By [6; Fact 1.1], [5; Corollary 4.34] we have,

$$C_G(e) = G_e \cdot C_G(G_e)$$

 $\hat{G}_e \subseteq G_e \cdot C(C_G(e)), \quad C_G(\hat{G}_e) = C_G(G_e).$

By [6; Fact 1.3], we have,

LEMMA 1.3. Let $e, f \in E(\overline{T})$. Then

$$C^r_G(e) \cap C^l_G(f) = [\tilde{G}^l_f \cap C_G(e)][C_G(e,f)][\tilde{G}^r_e \cap C_G(f)][\tilde{G}^r_e \cap \tilde{G}^l_f].$$

For $e \in E(\tilde{T})$, $\sigma = nT \in W$, let $e^{\sigma} = n^{-1}en$. This is clearly independent of the choice of *n*. Let

$$W(e) = W(C_G(e)) = C_W(e) = \{\sigma \in W \mid e^{\sigma} = e\}.$$

We also let

$$W_e = \{ \sigma \in W \mid f^{\sigma} = f \text{ for all } f \in E(\overline{T}) \text{ with } f \leq e \}$$
$$= \{ nT \mid n \in N_G(T) \cap G_e \} \cong W(G_e).$$

Here $f \le e$ means ef = fe = f. Note that T_e , rather than T, is a maximal torus of G_e . By [6; Facts 1.1, 1.2, 1.3, Lemma 1.6], we have

LEMMA 1.4. Let $e_1, ..., e_t \in E(\bar{T}), V = C_G(e_1, ..., e_t)$. Then

$$V = C_G(G_{e_1}, \dots, G_{e_t}) \cdot V_{e_1} \cdots V_{e_t}$$
$$C_G(T_{e_1}, \dots, T_{e_t}) = C_G(G_{e_1}, \dots, G_{e_t}) \cdot T.$$

For $e_1, \ldots, e_t \in E(\overline{T})$, we let

$$W(e_1,\ldots,e_t)=W(e_1)\cap\cdots\cap W(e_t)=W(C_G(e_1,\ldots,e_t)).$$

By the author [3], the semigroup way of viewing the Borel subgroup B is via the *cross-section lattice*:

$$\Lambda = \Lambda(B) = \big\{ e \in E(\overline{T}) \mid B \subseteq C_G^r(e) \big\}.$$

Then $|\Lambda \cap J| = 1$ for each \mathcal{I} -class (= $G \times G$ orbit) J and for all $e, f \in \Lambda, f \in MeM$ if and only if $e \ge f$.

The monoid analogue of the Weyl group W(G) is the *Renner monoid*,

$$\operatorname{Ren}(M) = \overline{N_G(T)}/T.$$

Ren(*M*) is a finite fundamental inverse monoid with idempotent set $E(\overline{T})$ and unit group *W*. By Renner [7], *M* is the disjoint union:

$$M = \bigsqcup_{r \in \operatorname{Ren}(M)} BrB.$$

For more recent advances in this direction, we refer to Renner [9], where in particular an exciting new \mathcal{H} -cross-section submonoid O is found. This new monoid is related to the minimum length right and left coset representatives of W_I in W.

2. **Main section.** Let *M* be a reductive monoid with unit group *G*. Call two elements $a, b \in M$ conjugate if $b = a^x = x^{-1}ax$ for some $x \in G$. We are interested in the conjugacy classes in *M*. Renner [8] has shown that the conjugacy class of an element is closed if and only if the element lies in the closure of a torus. In general the conjugacy classes in *M* (as opposed to the full matrix monoid) can be very complicated. For example in general the number of conjugacy classes of nilpotent elements in *M* is infinite. None the less, major progress was made by the author [6]. The story begins with the following affine subset of *M*, for $e \in E(\overline{T}), \sigma \in W$:

$$M_{e,\sigma} = eC_G(e^{\delta} \mid \delta \in \langle \sigma \rangle)\sigma$$

where $\langle \sigma \rangle$ denotes the cyclic group generated by σ . In general $e\sigma = e\tau$ does not imply $M_{e,\sigma} = M_{e,\tau}$. See Example 2.2. Clearly

$$M^{\pi}_{e,\sigma}=\pi^{-1}M_{e,\sigma}\pi=M_{e,\sigma^{\pi}} \quad ext{for all } \pi\in W(e).$$

Now $V = C_G(e^{\delta} \mid \delta \in \langle \sigma \rangle)$ is a reductive group with a closed normal subgroup

$$V' = \prod_{\delta \in \langle \sigma
angle} \hat{V}_{e^{\delta}}$$

where as usual $\hat{V}_f = \{x \in V \mid xf = fx = f\}$. Then $G_{e,\sigma} = V/V'$ is a reductive group and σ induces an automorphism $\bar{\sigma}$ of $G_{e,\sigma}$. Clearly there is a natural surjective morphism $\xi: M_{e,\sigma} \to G_{e,\sigma}$ given by $\xi(exn) = xV'$ for $x \in V, \sigma = nT$. Following is the main result of [6].

THEOREM 2.1. Every element of M is conjugate to an element of some $M_{e,\sigma}$, $e \in \Lambda$, $\sigma \in W$. If $a, b \in M_{e,\sigma}$, then a is conjugate to b in M if and only if a is conjugate to b by an element of V if and only if $\xi(a)$ and $\xi(b)$ are $\bar{\sigma}$ -conjugate in $G_{e,\sigma}$.

If $a \in M_{e,\sigma}$, $b \in M_{f,\theta}$, $e, f \in \Lambda$, and if *a* is conjugate to *b* in *M*, then clearly e = f. However it need not be that $\sigma = \theta$. So the main question left open in [6] was the consideration of the situation when $M_{e,\sigma}$ and $M_{e,\theta}$ have conjugate elements. Complicated by the fact that unequal $M_{e,\sigma}$'s can have non-empty intersection, the solution evaded us for five years. Finally we are able to give a complete solution. We begin by introducing a new closed subset $N_{e,\sigma}$ of $M_{e,\sigma}$ (see Lemma 1.4):

$$egin{aligned} N_{e,\sigma} &= eC_G(T_{e^{\delta}} \mid \delta \in \langle \sigma
angle) \sigma \ &= eC_G(G_{e^{\delta}} \mid \delta \in \langle \sigma
angle) T \sigma \ &= eC_G(G_{e^{\delta}} \mid \delta \in \langle \sigma
angle) \sigma. \end{aligned}$$

Clearly

$$N_{e,\sigma}^{\pi} = \pi^{-1} N_{e,\sigma} \pi = N_{e,\sigma^{\pi}}$$
 for all $\pi \in W(e)$.

Let $\pi \in W_e$. Then $\pi = mT$ for some $m \in G_e \cap N_G(T)$. Let $a \in N_{e,\sigma}$. Then a = egn for some $g \in C_G(G_{e^{\delta}} | \delta \in \langle \sigma \rangle)$, $n \in N_G(T)$ with $\sigma = nT$. Then for all $i \ge 0$, $n^i g n^{-i} \in C_G(G_e)$ and hence is centralized by m. Thus we see by induction on i that

$$(mn)^{i}g(mn)^{-i} = mn^{i}gn^{-i}m^{-1} = n^{i}gn^{-i} \in C_{G}(G_{e}).$$

Hence $g \in C_G(G_{e^{\delta}} | \delta \in \langle \pi \sigma \rangle)$. So

$$egn = emgn = egmn \in N_{e,\pi\sigma}.$$

So $N_{e,\sigma} \subseteq N_{e,\pi\sigma}$. Similarly $N_{e,\pi\sigma} \subseteq N_{e,\sigma}$. Hence

$$N_{e,\sigma} = N_{e,\pi\sigma}$$
 for all $\pi \in W_e$.

Thus $N_{e,\sigma}$ depends only on the element $e\sigma$ in Ren(*M*). For this reason we write $N_{e\sigma}$ for $N_{e,\sigma}$.

EXAMPLE 2.2. Let *M* denote the multiplicative monoid of all 5×5 matrices over an algebraically closed field. Let

	٢1	0	0	0	ך 0		[O]	0	1	0	ן 0		٢O	0	1	0	ך 0	
	0	1	0	0	0		0	0	0	1	0		0	0	0	1	0	
e =	0	0	0	0	0,	$\sigma =$	1	0	0	0	0	, $\theta =$	0	1	0	0	0	
	0	0	0	0	0		0	1	0	0	0		0	0	0	0	1	
	0	0	0	0	0		0	0	0	0	1		1	0	0	0	0.	

Then $M_{e,\sigma}$ consists of matrices of the form

On the other hand $e\sigma = e\theta$ and $M_{e,\theta} = N_{e\sigma} = N_{e\theta}$ consists of matrices of the form

THEOREM 2.3. (i) If $r, s \in \text{Ren}(M)$ with $N_r \cap N_s \neq \emptyset$, then $N_r = N_s$.

- (*ii*) If $\theta \in W(e^{\delta} \mid \delta \in \langle \sigma \rangle)$, then $N_{e\theta\sigma} \subseteq M_{e,\sigma}$ and $N_{e\theta\sigma} = N_{e\sigma}^{\pi}$ for some $\pi \in W(e^{\delta} \mid \delta \in \langle \sigma \rangle)$.
- (iii) Any element of $M_{e,\sigma}$ is conjugate to some element of $N_{e\sigma}$.
- (iv) Any element of M is conjugate to an element of $N_{e\sigma}$ for some $e \in \Lambda$, $\sigma \in W$.
- (v) The map $\xi: M_{e,\sigma} \to G_{e,\sigma}$ remains surjective when restricted to $N_{e\sigma}$. Hence the conjugacy classes in $N_{e\sigma}$ are in a natural bijective correspondence with the $\bar{\sigma}$ -conjugacy classes of $G_{e,\sigma}$.

PROOF. (i) Let $r = e\sigma$, $e \in E(\overline{T})$, $\sigma \in W$. Then $e\mathcal{R}s$ and hence $s = e\theta$ for some $\theta \in W$. Let $a \in N_r \cap N_s$. Then there exist $g \in C_G(G_{e^{\delta}} | \delta \in \langle \sigma \rangle)$, $h \in C_G(G_{e^{\delta}} | \delta \in \langle \theta \rangle)$, $m, n \in N_G(T)$, such that $\sigma = nT$, $\theta = mT$ and a = egn = ehm. Then $a \perp n^{-1}en$ and $a \perp m^{-1}em$. Hence $n^{-1}en = m^{-1}em$. So $nm^{-1} \in C_G(e)$. Thus gn = zhm for some $z \in \hat{G}_e$.

Let $x \in C_G(G_{e^{\delta}} | \delta \in \langle \sigma \rangle)$. Since *n* normalizes $C_G(G_{e^{\delta}} | \delta \in \langle \sigma \rangle)$, so does gn = zhm. Hence for all $i \ge 0$, $(zhm)^i x(zhm)^{-i} \in C_G(G_e)$. Since $z \in \hat{G}_e$ and $C_G(G_e) = C_G(\hat{G}_e)$, we see by induction that for all i > 0,

$$(hm)^i x(hm)^{-i} = (zhm)^i x(zhm)^{-i} \in C_G(G_e).$$

Now

$$(hm)^{i} = h(mhm^{-1})(m^{2}hm^{-2})\cdots(m^{i-1}hm^{1-i})m^{i}$$

and $m^{i}hm^{-i} \in C_{G}(G_{e})$ for all $j \geq 0$. It follows that $m^{i}xm^{-i} \in C_{G}(G_{e})$ for all $i \geq 0$. Hence $x \in C_{G}(G_{e^{\delta}} \mid \delta \in \langle \theta \rangle)$. Thus $C_{G}(G_{e^{\delta}} \mid \delta \in \langle \sigma \rangle) \subseteq C_{G}(G_{e^{\delta}} \mid \delta \in \langle \theta \rangle)$. So

$$exn = egn \cdot (n^{-1}g^{-1}xn) = ehm \cdot (n^{-1}g^{-1}xn) = eh \cdot m(n^{-1}g^{-1}xn)m^{-1}.$$

and $m(n^{-1}g^{-1}xn)m^{-1} \in C_G(e^{\delta} | \delta \in \langle \theta \rangle)$. Thus $exn \in N_{e\theta}$. So $N_{e\sigma} \subseteq N_{e\theta}$. Similarly $N_{e\theta} \subseteq N_{e\sigma}$ and $N_{e\sigma} = N_{e\theta}$.

(ii) By Lemma 1.4, $\theta = pT$, $p = p_0 \cdots p_s q$ with $p_i \in V_{e^{\sigma^i}} \cap N_G(T)$, where $V = C_G(e^{\delta} \mid \delta \in \langle \sigma \rangle)$ and $q \in V_0^c \cap N_G(T)$, where $V_0 = C_G(G_{e^{\delta}} \mid \delta \in \langle \sigma \rangle)$. Let $\theta_i = p_i T \in W_{e^{\sigma^i}} \cap W(e^{\delta} \mid \delta \in \langle \sigma \rangle)$, $\theta' = qT$. Then θ' commutes with each element of $W_{e^{\sigma^i}}$ for all *j*. By (i), $N_{e\sigma} = N_{e\theta'\sigma}$. Now $\theta_1 \cdots \theta_s \in W(e^{\delta} \mid \delta \in \langle \sigma \rangle)$,

$$\begin{aligned} (\theta_1 \cdots \theta_s)^{-1} (e\theta_0 \cdots \theta_s \theta' \sigma) (\theta_1 \cdots \theta_s) &= (\theta_1 \cdots \theta_s)^{-1} (e\theta_1 \cdots \theta_s \theta' \sigma) (\theta_1 \cdots \theta_s) \\ &= (\theta_1 \cdots \theta_s)^{-1} (\theta_1 \cdots \theta_s) e\theta' \sigma \theta_1 \cdots \theta_s \\ &= e\theta' \sigma \theta_1 \cdots \theta_s \\ &= e\theta'_1 \cdots \theta'_s \theta' \sigma \end{aligned}$$

where $\theta'_i = \sigma \theta_i \sigma^{-1} \in W_{e^{\sigma^{i-1}}} \cap W(e^{\delta} \mid \delta \in \langle \sigma \rangle)$, $i = 1, \ldots, s$. Inductively we see that $\pi(e\theta\sigma)\pi^{-1} = e\theta'\sigma$ for some $\pi \in W(e^{\delta} \mid \delta \in \langle \sigma \rangle)$. Hence

$$N_{e\theta\sigma} = N_{e\theta'\sigma}^{\pi} = N_{e\sigma}^{\pi} \subseteq M_{e,\sigma}^{\pi} = M_{e,\sigma}$$

(v) follows from Lemma 1.4 and then (iii), (iv) follow from Theorem 2.1. Let $a \in M_{e,\sigma}$, $b \in M_{e,\theta}$, $e^{\sigma} = f_1$, $e^{\theta} = f_2$. Then $e\mathcal{R}_a \mathcal{L} f_1$, $e\mathcal{R}_b \mathcal{L} f_2$.

Let $a \in M_{e,\sigma}$, $b \in M_{e,\theta}$, $e^* = f_1$, $e^* = f_2$. Then $e \wedge aLf_1$, $e \wedge bLf_2$.

LEMMA 2.4. Let $e, f_1, f_2 \in E(\overline{T})$, $a, b \in M$ such that $e \mathcal{R} a \bot f_1$, $e \mathcal{R} b \bot f_2$. If a and b are conjugate in M, then there exists $\pi \in W(e)$ such that $f_1^{\pi} = f_2$.

PROOF. There exists $x \in G$ such that $xax^{-1} = b$. Then

$$xex^{-1}\mathcal{R}xax^{-1}=b\mathcal{R}e.$$

So $x \in C_G^r(e)$. Now

$$xf_1x^{-1}\mathcal{L}xax^{-1} = b\mathcal{L}f_2$$

Hence by [5; Chapter 6], f_1 and f_2 are conjugate in $\overline{C_G^r(e)}$. Hence there exists $m \in N_G(T) \cap C_G^r(e) = N_G(T) \cap C_G(e)$ such that $m^{-1}f_1m = f_2$. So $\pi = mT \in W(e)$ and $f_1^{\pi} = f_2$.

In preparation for our main theorem, we prove the following technical lemma.

LEMMA 2.5. Let $e, f \in E(\overline{T})$. Define a relation \equiv on G as: $g_1 \equiv g_2$ if there exist $x \in C_G(e, f), a \in \tilde{G}_f^l \cap C_G(e), b \in \tilde{G}_e^r \cap C_G(f)$ such that $axg_1 = g_2xb$. Then

(*i*) \equiv *is an equivalence relation on G.*

(ii) If $\sigma = nT \in W$, $e^{\sigma} = f$, $k \in \mathbb{Z}^+$, $x, y \in C_G(e^{\sigma^j} \mid j = 0, ..., k-1)$, $x \in \tilde{G}_{e^{\sigma^k}}^l$, then $xyn \equiv yn$.

(iii) Let $\theta = mT \in W$, $e^{\theta} = f$, $u \in C_G(G_{e^{\delta}} | \delta \in \langle \theta \rangle)$, $z \in G_e$. Then there exists $\sigma = nT \in W$, $v \in C_G(e^{\delta} | \delta \in \langle \sigma \rangle)$, such that $zum \equiv vn$ and $\theta = \pi_0 \cdots \pi_t \sigma$ for some $\pi_i \in W_{e^{\sigma^i}} \cap W(e^{\sigma^i} | 0 \le j \le i)$, $i = 0, \ldots, t$.

PROOF. (i) Suppose $g_1, g_2 \in G$ with $g_1 \equiv g_2$. Then there exist $a \in \tilde{G}_f^l \cap C_G(e)$, $x \in C_G(e, f), b \in \tilde{G}_e^r \cap C_G(f)$ such that $axg_1 = g_2xb$. Then

$$(x^{-1}a^{-1}x)x^{-1}g_2 = g_1x^{-1}(xb^{-1}x^{-1})$$

with $x^{-1}a^{-1}x \in \tilde{G}'_f \cap C_G(e)$, $x \in C_G(e, f)$, $xb^{-1}x^{-1} \in \tilde{G}^r_e \cap C_G(f)$. Thus \equiv is symmetric. Clearly \equiv is reflexive. Next let $g_1, g_2, g_3 \in G$ such that $g_1 \equiv g_2 \equiv g_3$. Then there exist $a, c \in \tilde{G}^r_f \cap C_G(e)$, $x, y \in C_G(e, f)$, $b, d \in \tilde{G}^r_e \cap C_G(f)$ such that

$$axg_1 = g_2xb$$
, $cyg_2 = g_3yd$.

Then

$$c(yay^{-1})(yx)g_1 = g_3(yx)(x^{-1}dx)b$$

with $c(yay^{-1}) \in \tilde{G}_f^l \cap C_G(e)$, $yx \in C_G(e, f)$, $(x^{-1}dx)b \in \tilde{G}_e^r \cap C_G(f)$. Thus $g_1 \equiv g_3$ and \equiv is an equivalence relation on G.

(ii) We prove by induction on k. If k = 1, then $x \in C_G(e) \cap \tilde{G}_f^l$ and the result is clear. So let k > 1. Then $x \in C_G(e, f)$, $nxn^{-1} \in C_G(e^{\sigma^j} \mid j = 0, ..., k - 2) \cap \tilde{G}_{e^{\sigma^{k-1}}}^l$. Hence $y(nxn^{-1})y^{-1} \in C_G(e^{\sigma^j} \mid j = 0, ..., k - 2) \cap \tilde{G}_{e^{\sigma^{k-1}}}^l$. Thus by the induction hypothesis,

$$xyn \equiv ynx = y(nxn^{-1})y^{-1}$$
. $yn \equiv yn$.

(iii) Suppose inductively that

$$y \in H = \prod_{i=0}^{k} [C_G(e^{\theta^i} \mid j = 0, ..., k) \cap G_{e^{\theta^i}}].$$

Then by [6; Facts 1.1, 1.2, 1.3], *H* is a reductive group and $P \cap H$ is a parabolic subgroup of *H* for all parabolic subgroups *P* of *G* with $T \subseteq P$. Further, $T_o = T_e \cdots T_{e^{\theta^k}}$ is a maximal torus of *H*. Now $P_1 = C_G^l(e^{\theta^{k+1}})$ and $P_2 = C_G^r(\theta e^{\theta^{-1}})$ are parabolic subgroups of *G* containing *T*. Hence $P_1 \cap H$ and $P_2 \cap H$ are parabolic subgroups of *H* containing T_0 . By the Bruhat decomposition for *H*, there exists $p \in N_G(T) \cap H$ such that $y \in (P_1 \cap H)p(P_2 \cap H)$. So there exist $y_1 \in P_1 \cap H$, $y_2 \in P_2 \cap H$ such that $y = y_1py_2$. By [6; Fact 1.3], $y_2 = y_3y_4$ for some $y_3 \in H \cap C_G(\theta e^{\theta^{-1}})$, $y_4 \in H \cap \tilde{G}_{\theta e^{\theta^{-1}}}$. So by [6; Facts 1.1, 1.2, 1.3],

$$m^{-1}y_3m \in \prod_{i=1}^{k+1} [C_G(e^{\theta^i} \mid j=0,\ldots,k+1) \cap G_{e^{\theta^i}}]$$
$$m^{-1}y_4m \in C_G(f) \cap \tilde{G}_e^r.$$

Hence

$$yum = y_1 p y_2 um$$

= $y_1 u p y_2 m$
= $y_1 u p m (m^{-1} y_3 m) (m^{-1} y_4 m)$
 $\equiv (m^{-1} y_3 m) y_1 u p m.$

Now $y_1 = y_5 y_6$ for some $y_5 \in H \cap \tilde{G}_{e^{0^{k+1}}}^l$, $y_6 \in H \cap C_G(e^{0^{k+1}})$. Hence by [6; Facts 1.1, 1.2, 1.3], $(m^{-1}y_3m)y_1 = y_7 y_8$, where

$$y_7 = (m^{-1}y_3m)y_5(m^{-1}y_3m)^{-1} \in \tilde{G}^l_{e^{\theta^{k+1}}}$$
$$y_8 = (m^{-1}y_3m)y_6 \in \prod_{i=0}^{k+1} [C_G(e^{\theta^i} \mid j=0,\ldots,k+1) \cap G_{e^{\theta^i}}].$$

Let $\sigma = pm$. We see by induction that for all $i \ge 0$,

$$(pm)^{-i}u(pm)^{i}=m^{-i}um^{i}\in C_{G}(G_{e}).$$

Hence $u \in C_G(G_{e^{\delta}} | \delta \in \langle \sigma \rangle)$. We claim that $e^{\sigma^j} = e^{\theta^j}$ for j = 0, ..., k + 1. We prove this by induction. For j = 0, this is obvious. So assume $e^{\theta^j} = e^{\sigma^j}, j \leq k$. Now $\pi = pT \in C_W(e^{\theta^j})$ and $\sigma = \pi\theta$. So

$$e^{\sigma^{j+1}} = (e^{ heta^j})^\sigma = (e^{ heta^j})^{\pi heta} = (e^{ heta^j})^ heta = e^{ heta^{j+1}}.$$

Now by (ii),

$$yum \equiv (m^{-1}y_3m)y_1upm$$
$$= y_7(y_8u)pm$$
$$\equiv y_8upm.$$

Now $\pi = \pi_0 \cdots \pi_k$, with $\pi_i \in W_{e^{\sigma^i}} \cap W(e, \ldots, e^{\sigma^k}), i = 0, \ldots, k$.

Thus starting with y = z and k = 0, and proceeding inductively to k = |W|, we find $\sigma = nT \in W$, $y \in C_G(e^{\delta} \mid \delta \in \langle \sigma \rangle$ such that $u \in C_G(G_{e^{\delta}} \mid \delta \in \langle \sigma \rangle)$, $\theta = \pi_0 \cdots \pi_t \sigma$ with $\pi_i \in W_{e^{\sigma^i}} \cap W(e, \ldots, e^{\sigma^i})$, $i = 0, \ldots, t$, and $zum \equiv yun$. This completes the proof. We are now ready to prove our main theorem.

THEOREM 2.6. The following conditions are equivalent for $e \in \Lambda$ and $\sigma, \theta \in W$:

- (i) There exists an element of $M_{e,\sigma}$ that is conjugate to an element of $M_{e,\theta}$.
- (ii) Every element of $M_{e,\sigma}$ is conjugate to an element of $M_{e,\theta}$ and every element of $M_{e,\theta}$ is conjugate to an element of $M_{e,\sigma}$.
- (iii) There exists $\gamma \in W$ with $\theta = \pi_0 \cdots \pi_t \gamma$ and $\pi_i \in W_{e^{\gamma_i}} \cap W(e, \ldots, e^{\gamma^i})$, $i = 0, \ldots, t$, such that

$$\bigcap_{i\geq 0}\gamma^i W(e)\sigma^{-i}\neq\emptyset.$$

(iv) There exists $\gamma \in W$ with $e\theta$ conjugate to $e\gamma$ in Ren(M), such that

$$\bigcap_{i\geq 0}\gamma^i W(e)\sigma^{-i}\neq\emptyset.$$

(v) $N_{e\sigma}^{\pi} = N_{e\theta}$ for some $\pi \in W(e)$.

PROOF. (i) \Rightarrow (iii) Let $f = e^{\sigma}$. By Lemma 2.4 there exists $\eta \in W(e)$ such that $f^{\eta} = e^{\theta}$. We can replace θ by $\eta\theta\eta^{-1}$. Then having found the appropriate $\pi_0, \ldots, \pi_t, \gamma$ with respect to $\eta\theta\eta^{-1}$, we can replace them by $\eta^{-1}\pi_0\eta, \ldots, \eta^{-1}\pi_t\eta, \eta^{-1}\gamma\eta$, respectively. Thus without loss of generality, we can assume that $e^{\theta} = f$.

There exists $A_1 \in M_{e,\sigma}$ that is conjugate to some $A_2 \in M_{e,\theta}$. By Theorem 2.3, we can assume that $A_2 \in N_{e\theta}$. So there exist $u \in C_G(e^{\delta} | \delta \in \langle \sigma \rangle)$, $v \in C_G(G_{e^{\delta}} | \delta \in \langle \theta \rangle)$ such that $A_1 = eun, A_2 = evm, \sigma = nT, \theta = mT$. There exists $X \in G$ such that $XA_1X^{-1} = A_2$. Since $A_1, A_2, \in eMf, X \in C_G^r(e) \cap C_G^l(f)$. By Lemma 1.3,

$$C_G^r(e) \cap C_G^l(f) = [C_G(e) \cap \tilde{G}_f^l][C_G(e,f)][C_G(f) \cap \tilde{G}_e^r][\tilde{G}_e^r \cap \tilde{G}_f^l].$$

Since $A_1, A_2 \in eMf$, we can assume without loss of generality that

$$X \in [C_G(e) \cap \tilde{G}_f^l][C_G(e,f)][C_G(f) \cap \tilde{G}_e^r].$$

So there exist $a \in C_G(e) \cap \tilde{G}'_f$, $x \in C_G(e, f)$, $b \in C_G(f) \cap \tilde{G}^r_e$ such that X = axb. From $XA_1 = A_2X$, we get

Since $e^{\sigma} = e^{\theta}$, $nm^{-1} \in C_G(e)$. Hence

$$(axun)(vmxb)^{-1} = axu(nb^{-1}x^{-1}n^{-1})nm^{-1}v \in C_G(e).$$

Hence

for some $z \in \hat{G}_e$. Since $\hat{G}_e \subseteq C(C_G(e)) \cdot G_e$, we can assume without loss of generality (by changing *u* appropriately), that $z \in G_e$. In the notation of Lemma 2.5, $un \equiv zvm$. By Lemma 2.5 (iii), we can change θ, m, v appropriately, so that $un \equiv vm$ with $v \in C_G(e^{\delta} \mid \delta \in \langle \theta \rangle)$. Let us therefore assume that

$$axun = vmxb.$$

Note that now $A_2 \in M_{e,\theta}$ and not $N_{e\theta}$. By (2),

$$ax = vmxbn^{-1}u^{-1}$$

= vmxbm^{-1}(mn^{-1}u^{-1}nm^{-1})mn^{-1} \in C_G^r(\theta e \theta^{-1})\theta \sigma^{-1}

Since $a \in \tilde{G}_f^l$ and $x \in C_G(f)$, we see by Lemma 1.1 that $a, xnm^{-1} \in C_G^r(\theta e \theta^{-1})$. By [6; Fact 1.3], we can factor

(3)
$$a = c_1 a_1$$
 for some $c_1 \in \tilde{G}'_{\theta e \theta^{-1}}$ and $a_1 \in C_G(e, \theta e \theta^{-1}) \cap \tilde{G}'_f$.

Similarly we can factor

(4)
$$x = y_1 x_1$$
 for some $y_1 \in \tilde{G}^r_{\theta e \theta^{-1}}, x_1 \in C_G(\theta e \theta^{-1}) m n^{-1} = \theta C_G(e) \sigma^{-1}.$

Since $y_1(x_1nm^{-1}) = xnm^{-1} \in C_G(e,f)\sigma\theta^{-1}$, we see by Lemma 1.1 that $y_1 \in C_G(e,f)$. Hence

$$(5) x_1 \in C_G(e,f).$$

By (2)

$$c_1a_1y_1x_1un = vmy_1x_1b_1$$

Hence

$$wa_1x_1un = vmy_1x_1$$

where by (3), (4),

$$w = vmy_1x_1n^{-1}u^{-1}x_1^{-1}a_1^{-1}$$

= $c_1a_1y_1x_1unb^{-1}n^{-1}u^{-1}x_1^{-1}a_1^{-1}$
= $c_1 \cdot a_1 \cdot y_1 \cdot (x_1nm^{-1})[m(n^{-1}un)b^{-1}(n^{-1}un)^{-1}m^{-1}](x_1nm^{-1})^{-1} \cdot a_1^{-1} \in \tilde{G}_{\theta e \theta^{-1}}^r.$

Suppose inductively that for $k \in \mathbb{Z}^+$,

$$(7) x = y_1 \cdots y_k x_k$$

where

(8)
$$y_i \in \tilde{G}^r_{\theta^i e \theta^{-i}}, \quad i = 1, \dots, k$$

 $x_k \in \bigcap_{j=-1}^k \theta^j C_G(e) \sigma^{-j}.$

Further assume that there exist

(9)
$$w_i \in C_G(\theta^j e \theta^{-j} \mid i+1 \le j \le k) \cap \tilde{G}^r_{\theta^j e \theta^{-i}}, \quad i = 1, \dots, k$$
$$a_k \in C_G(\theta^j e \theta^{-j} \mid j = 0, \dots, k) \cap \tilde{G}^l_f$$

such that

(10)
$$w_k \cdots w_1 a_k x_k u n = v m y_k x_k.$$

By (3)–(6) we see that (7)–(10) are valid for k = 1, since

$$C_G(f) = \theta^{-1} C_G(e) \theta = \theta^{-1} C_G(e) \sigma \theta^{-1} \cdot \theta = \theta^{-1} C_G(e) \sigma.$$

Since $x_k \in \theta^j C_G(e) \sigma^{-j}$ for $-1 \le j \le k$, we see that

(11)
$$x_k n^j m^{-j} \in C_G(\theta^j e \theta^{-j}), \quad -1 \le j \le k.$$

Hence

$$w_k \cdots w_1 a_k x_k = v m y_k x_k n^{-1} u^{-1}$$

= $v \cdot m (y_k x_k n^k m^{-k}) m^{-1} \cdot m^{k+1} (n^{-k-1} u^{-1} n^{k+1}) m^{-k-1}$
 $\cdot m^{k+1} n^{-k-1} \in C_G^r(\theta^{k+1} e^{\theta^{-k-1}}) \theta^{k+1} \sigma^{-k-1}.$

By (9), (11) and the repeated use of Lemma 1.1, we see that

(12)
$$w_1, \dots, w_k, a_k, x_k n^{k+1} m^{-k-1} \in C_G^r(\theta^{k+1} e^{\theta^{-k-1}}).$$

Hence we can factor by [6; Fact 1.3],

(13)
$$x_{k} = y_{k+1} x_{k+1} \text{ with } y_{k+1} \in \tilde{G}_{\theta^{k+1}e\theta^{-k-1}}^{r} \text{ and} x_{k+1} \in C_{G}(\theta^{k+1}e\theta^{-k-1})m^{k+1}n^{-k-1} = \theta^{k+1}C_{G}(e)\sigma^{-k-1}.$$

By (11), (13) and Lemma 1.1,

$$y_{k+1} \in C_G(\theta^j e \theta^{-j}), \quad -1 \le j \le k.$$

Hence by (11), (13),

(14)
$$x_{k+1} = y_{k+1}^{-1} x_k \in C_G(\theta^j e \theta^{-j}) \theta^j \sigma^{-j} = \theta^j C_G(e) \sigma^{-j}, \quad -1 \le j \le k.$$

By (13), (14),

(15)
$$x_{k+1} \in \bigcap_{j=-1}^{k+1} \theta^j C_G(e) \sigma^{-j}.$$

By (9), (12) and [6; Fact 1.3], we can factor

(16)
$$a_{k} = c_{k+1}a_{k+1}, \quad c_{k+1} \in \tilde{G}^{r}_{\theta^{k+1}e\theta^{-k-1}},$$
$$a_{k+1} \in C_{G}(\theta^{j}e\theta^{-j} \mid 0 \le j \le k) \cap \tilde{G}^{l}_{f}$$

and for $i = 1, \ldots, k$,

(17)
$$w_i = q_i w'_i, \quad q_i \in \tilde{G}^r_{\theta^{k+1}e\theta^{-k-1}}, \\ w'_i \in C_G(\theta^j e \theta^{-j} \mid i+1 \le j \le k+1) \cap \tilde{G}^r_{\theta^j e \theta^{-i}}.$$

Now

(18)
$$p = \nu m y_k m^{-1} \nu^{-1} \in \tilde{G}^r_{\theta^{k+1} e \theta^{-k-1}}$$

and by (10), (13), (16), (17),

$$(q_k w'_k) \cdots (q_1 w'_1) (c_{k+1} a_{k+1}) y_{k+1} x_{k+1} un = v m y_k x_k$$

= $p v m x_k$
= $p v m y_{k+1} x_{k+1}$.

.

MOHAN S. PUTCHA

Since $q_1, \ldots, q_k, c_{k+1}, y_{k+1}, p \in \tilde{G}^r_{\theta^{k+1}e\theta^{-k-1}}$ and since $a_{k+1}, w'_1, \ldots, w'_k \in C_G(\theta^{k+1}e\theta^{-k-1})$ we see that

$$w'_{k+1}w'_k\cdots w'_1a_{k+1}x_{k+1}un = vmy_{k+1}x_{k+1}$$

for some $w'_{k+1} \in \tilde{G}^r_{\theta^{k+1}e\theta^{-k-1}}$. This completes the induction step. In particular (15) is valid for k = |W|. Hence by Lemma 1.2,

$$\bigcap_{j\geq 0} \theta^{j} W(e) \sigma^{-j} = \bigcap_{j=1}^{k} \theta^{j} W(e) \sigma^{-j} \neq \emptyset.$$

(iii) \Rightarrow (iv) We show that $e\theta$ is conjugate to $e\gamma$ in Ren(*M*). We do this by induction on t. If t = 0, then $e\theta = e\gamma$. So let t > 0. Then $e\theta = e\pi_1 \cdots \pi_t \gamma = \pi_1 \cdots \pi_t e\gamma$ is conjugate in Ren(*M*) to $e\gamma\pi_1 \cdots \pi_t = e\pi'_1 \cdots \pi'_t\gamma$, where

$$\pi'_i = \gamma \pi_i \gamma^{-1} \in W_{e^{\gamma^{i-1}}} \cap W(e, \ldots, e^{\gamma^{i-1}}), \quad i = 1, \ldots, t.$$

By the induction hypothesis, $e\theta$ is conjugate to $e\sigma$ in Ren(*M*).

(iv) \Rightarrow (v) If $e\theta$ and $e\gamma$ are conjugate in Ren(*M*), then they are conjugate by an element of *W*(*e*). Thus without loss of generality we can assume that $\gamma = \theta$. Let

$$\pi \in \bigcap_{i\geq 0} \theta^i W(e) \sigma^{-i}.$$

Then $\pi \sigma^i \theta^{-i} \in W(\theta^i e \theta^{-i})$ for all $i \ge 0$. Now

$$\pi(e\sigma)\pi^{-1} = e\pi\sigma\pi^{-1} = e(\pi\sigma\pi^{-1}\theta^{-1})\theta.$$

Clearly $\pi N_{e\sigma}\pi^{-1} = N_{e\pi\sigma\pi^{-1}}$. Now for all $i \in \mathbb{Z}^+$,

$$\pi \sigma \pi^{-1} \theta^{-1} = (\pi \sigma^i \theta^{-i}) \theta (\theta^{i-1} \sigma^{i-1} \pi^{-1}) \theta^{-1} \in W(\theta^i e \theta^{-i}) \cdot \theta W(\theta^{i-1} e \theta^{1-i}) \theta^{-1}$$
$$= W(\theta^i e \theta^{-i}).$$

It follows that $\pi \sigma \pi^{-1} \theta^{-1} \in W(e^{\delta} | \delta \in \langle \theta \rangle)$. By Theorem 2.3(ii), $N_{e\pi\sigma\pi^{-1}}$ is conjugate to $N_{e\theta}$ by an element of $W(e^{\delta} | \delta \in \langle \theta \rangle)$. It follows that $N_{e\theta}$ is conjugate to $N_{e\sigma}$ by an element of W(e).

 $(v) \Rightarrow (ii)$ follows from Theorem 2.3, and $(ii) \Rightarrow (i)$ is obvious.

By Theorems 2.3 and 2.6, we have,

COROLLARY 2.7. There exist reductive groups G_1, \ldots, G_t with respective automorphisms $\sigma_1, \ldots, \sigma_t$, such that the conjugacy classes of M are in a natural bijective correspondence with the σ_i -conjugacy classes of G_i , $i = 1, \ldots, t$.

COROLLARY 2.8. Let $\sigma = nT$, $\theta = mT \in W$, $e \in E(\overline{T})$ such that en and em are conjugate in M. Then there exists $\pi = pT \in W$ such that en and ep are conjugate by an element in $C_G(e^{\delta} \mid \delta \in \langle \sigma \rangle)$, and $e\theta$ and $e\pi$ are conjugate in Ren(M).

The following answers affirmatively [6; Conjecture 2.7].

COROLLARY 2.9. Let $e \in E(M)$, $a, b \in eMe$. Then a and b are conjugate in eMe if and only if a and b are conjugate in M.

PROOF. We can assume that $e \in \Lambda$. Now $eC_G(e)$ is the unit group of eMe. Thus if a and b are conjugate in eMe, then they are conjugate in M by an element in $C_G(e)$. Assume conversely that a and b are conjugate in M. We need to show that they are conjugate by an element in $C_G(e)$. By Theorem 2.1 applied to eMe, we can assume that $a \in M_{h,\sigma}$, $b \in M_{h,\theta}$ for some $h \in e\Lambda$ and $\sigma, \theta \in W(e)$. By Lemma 2.4, h^{σ} and h^{θ} are conjugate in $\overline{C_G(h)}$. By [5; Chapter 6], h^{σ} and h^{θ} are conjugate in $e\overline{C_G(h)}e$. It follows that h^{σ} and h^{θ} are conjugate by an element in W(e, h). Thus without loss of generality we can assume that $h^{\sigma} = h^{\theta} = h'$. By Theorem 2.6, a and b are conjugate by an element in $C_G(h, h')$. Now $hC_G(h) = hC_G(e, h)$ and $h'C_G(h') = h'C_G(e, h')$. Hence

$$C_G(h) = G_h \cdot C_G(e, h) = G_h \cdot C_G(e, G_h)$$
$$C_G(h') = G_{h'} \cdot C_G(e, h') = G_{h'} \cdot C_G(e, G_{h'}).$$

By [6; Facts 1.1, 1.2],

$$C_G(h, h') \subseteq C_G(e)[G_h \cap G_{h'}].$$

Since $a, b \in hMh'$, it follows that a and b are conjugate by an element in $C_G(e)$.

REFERENCES

1. R. W. Carter, Finite groups of Lie type: Conjugacy classes and complex characters, Wiley, 1985.

2. J. E. Humphreys, Linear algebraic groups, Springer-Verlag, 1981.

3. M. S. Putcha, A semigroup approach to linear algebraic groups, J. Algebra 80(1983), 164-185.

4. _____, Determinant functions on algebraic monoids, Comm. Algebra 11(1983), 695-710.

5. _____, *Linear algebraic monoids*, London Math. Soc. Lecture Note Series 133, Cambridge Univ. Press, 1988.

6. _____, Conjugacy classes in algebraic monoids, Trans. Amer. Math. Soc. 303(1987), 529-540.

7. L. E. Renner, Analogue of the Bruhat decomposition for algebraic monoids, J. Algebra 101(1986), 303–338.

8. _____, Conjugacy classes of semisimple elements, and irreducible representations of algebraic monoids, Comm. Algebra 116(1988), 1933–1943.

9. _____, Analogue of the Bruhat decomposition for algebraic monoids II. The length function and the trichotomy, to appear.

Department of Mathematics North Carolina State University Raleigh, North Carolina 27695-8205 U.S.A.