CONJUGACY CLASSES IN ALGEBRAIC MONOIDS II

MOHAN S. PUTCHA

Abstract

Let M be a connected linear algebraic monoid with zero and a reductive unit group. We show that there exist reductive groups G_{1}, \ldots, G_{t}, each with an automorphism, such that the conjugacy classes of M are in a natural bijective correspondence with the twisted conjugacy classes of $G_{i}, i=1, \ldots, t$.

Introduction. The objects of study in this paper are connected linear algebraic monoids M with zero. This means by definition that the underlying set of M is an irreducible affine variety and that the product map is a morphism (i.e. a polynomial map). We will assume further that the unit group G is a reductive group. In an earlier paper [6], the author found affine subsets M_{1}, \ldots, M_{k}, reductive groups G_{1}, \ldots, G_{k} with respective automorphisms $\sigma_{1}, \ldots, \sigma_{k}$, and surjective morphisms $\theta_{i}: M_{i} \rightarrow G_{i}$ such that: (1) Every element of M is conjugate to an element of some M_{i}, and (2) If $a, b \in M_{i}$, then a is conjugate to b in M if and only if there exists $x \in G_{i}$ such that $x \theta_{i}(a) \sigma_{i}(x)^{-1}=\theta_{i}(b)$. However it can happen that an element in M_{i} is conjugate to an element in M_{j} with $i \neq j$. We were not at that time able to handle this situation. Indeed the problem has baffled us since then. Finally we are able to give a complete solution. We show that in the above situation, every element of M_{i} is conjugate to an element of M_{j}, and every element of M_{j} is conjugate to an element of M_{i}. We also find necessary and sufficient conditons within the Weyl group or the Renner monoid, for this to happen. As an application we show that if $e=e^{2} \in M$ and $a, b \in e M e$, then a is conjugate to b in M if and only if a is conjugate to b in $e M e$.

1. Preliminaries. Throughout this paper \mathbb{Z}^{+}will denote the set of all positive integers. Let G be a connected linear algebraic group defined over an algebraically closed field. The radical $R(G)$ is the maximal closed connected normal solvable subgroup of G and the unipotent radical $R_{u}(G)$ is the group of unipotent elements of $R(G)$. We will assume that G is a reductive group, i.e. $R_{u}(G)=1$. Then $R(G) \subseteq C(G)$, the center of G. Moreover $G=R(G) G_{0}$ where $G_{0}=(G, G)$ is a semisimple group, i.e. $R\left(G_{0}\right)=1$. Also G_{0} is a product of simple closed normal subgroups of G. We refer to [1], [2] for details. If σ is an automorphism of G, then we say that $a, b \in G$ are σ-conjugate if $b=x a \sigma(x)^{-1}$ for some $x \in G$.
[^0]Fix a pair of opposite Borel subgroups B, B^{-}of G so that $T=B \cap B^{-}$is a maximal torus. Let $W=W(G)=N_{G}(T) / T$ denote the Weyl group of G. Let S denote the fundamental generating set of reflections of W. Then the following axioms of Tits are valid [2; Section 29.1]:

$$
\begin{gather*}
\theta B \sigma \subseteq B \sigma B \cup B \theta \sigma B \quad \text { for all } \sigma \in W, \theta \in S \tag{T1}\\
\theta B \theta \neq B \quad \text { for all } \theta \in S . \tag{T2}
\end{gather*}
$$

For $I \subseteq S, P_{I}=B W_{I} B$ and $P_{I}^{-}=B^{-} W_{I} B^{-}$are a pair of standard opposite parabolic subgroups, where W_{I} is the subgroup of W generated by $I . L_{I}=P_{I} \cap P_{I}^{-}$is a reductive group, called a standard Levi subgroup of G. We have, $W\left(P_{I}\right)=W\left(P_{I}^{-}\right)=W\left(L_{I}\right)=W_{I}$. Subgroups of G containing a Borel subgroup, i.e. a conjugate of B, are called parabolic subgroups. If P is a parabolic subgroup of G containing T, then there is a unique opposite parabolic subgroup P^{-}of G containing T such that $L=P \cap P^{-}$is a reductive group. Then L is a Levi factor of P and $P=L R_{u}(P), L \cap R_{u}(P)=1$, where $R_{u}(P)$ is the unipotent radical of P. This is called a Levi decomposition of P. If B_{1}, B_{2} are Borel subgroups of G containing T, then G is expressible as the following disjoint union:

$$
G=\bigsqcup_{\sigma \in W} B_{1} \sigma B_{2} .
$$

This is called the Bruhat decomposition of G.
LEMMA 1.1. Let P_{1}, P_{2} be parabolic subgroups of G with Levi decompositions $P_{1}=$ $L_{1} U_{1}, P_{2}=L_{2} U_{2}$ such that $T \subseteq L_{1} \cap L_{2}$. Suppose $a \in U_{1}, b \in L_{1}, \sigma \in W$ such that $a b \in P_{2} \sigma$. Then $a \in P_{2}$.

Proof. Let $\sigma=n T$. Then $n \in P_{2} P_{1}$. There exist $\theta_{1}, \theta_{2} \in W, I, J \subseteq S$, such that $P_{1}=\theta_{1}^{-1} P_{I} \theta_{1}$ and $P_{2}=\theta_{2}^{-1} P_{J} \theta_{2}$. Then

$$
\begin{aligned}
P_{2} P_{1} & =\theta_{2}^{-1}\left(B W_{J} B \theta_{2} \theta_{1}^{-1} B\right) W_{I} B \theta_{1} \\
& =\theta_{2}^{-1} B W_{J} \theta_{2} \theta_{1}^{-1} B W_{I} B \theta_{1}, \quad \text { by }(T 1) \\
& =\theta_{2}^{-1} B W_{J} \theta_{2} \theta_{1}^{-1} W_{I} B \theta_{1}, \quad \text { by }(T 1) .
\end{aligned}
$$

Since $n \in P_{2} P_{1}$, we see by the Bruhat decomposition that $\theta_{2} \sigma \theta_{1}^{-1} \in W_{J} \theta_{2} \theta_{1}^{-1} W_{I}$. So

$$
\sigma \in \theta_{2}^{-1} W_{J} \theta_{2} \cdot \theta_{1}^{-1} W_{I} \theta_{1}=W\left(L_{2}\right) \cdot W\left(L_{1}\right) .
$$

Hence there exists $m \in N_{G}(T) \cap L_{1}$ such that $a b m \in P_{2}$. Since $a \in U_{1}$ and $b m \in L_{1}$, we see by [6; Fact 1.3] that $a, b m \in P_{2}$.

Lemma 1.2. Let $I \subseteq S, L=L_{I}$. Let $\sigma_{1}, \ldots, \sigma_{t}, \theta_{1}, \ldots, \theta_{t} \in W$ such that $\cap_{i=1}^{t} \sigma_{i} L \theta_{i} \neq$ \emptyset. Then $\cap_{i=1}^{t} \sigma_{i} W_{l} \theta_{i} \neq \emptyset$.

Proof. Let $B_{i}=\sigma_{i}^{-1} B \sigma_{i} \cap L, B_{i}^{\prime}=\theta_{i} B \theta_{i}^{-1} \cap L, i=1, \ldots, t$. All of these are Borel subgroups of L containing T. By the Bruhat decomposition for L,

$$
L=B_{i} W_{I} B_{i}^{\prime} \subseteq \sigma_{i}^{-1} B \sigma_{i} W_{I} \theta_{i} B \theta_{i}^{-1}, \quad i=1, \ldots, t
$$

Hence

$$
\sigma_{i} L \theta_{i} \subseteq B \sigma_{i} W_{I} \theta_{i} B, \quad i=1, \ldots, t
$$

Thus

$$
\emptyset \neq \bigcap_{i=1}^{t} \sigma_{i} L \theta_{i} \subseteq \bigcap_{i=1}^{t} B \sigma_{i} W_{I} \theta_{i} B .
$$

By the Bruhat decomposition for $G, \bigcap_{i=1}^{t} \sigma_{i} W_{I} \theta_{i} \neq \emptyset$.
Now for monoids. By a (linear) algebraic monoid, we mean a monoid M such that the underlying set is an affine variety and the product map is a morphism. The identity component of M will be denoted by M^{c}. We will use the same notation for an algebraic group. We will assume that M is connected (i.e. $M=M^{c}$) and that M has a zero. We will further assume that the unit group G is reductive. We call such a monoid a reductive monoid. Typically such monoids arise by taking lined Zariski closures of linear representations of reductive groups. We refer to [5] for the general theory of algebraic monoids. We will let $\mathcal{R}, \mathcal{L}, \mathcal{I}, \mathcal{H}$ denote the usual Green's relations on M. If $a, b \in M$, then $a \mathcal{R} b$ if $a M=b M, a \mathcal{L} b$ if $M a=M b, a J b$ if $M a M=M b M, \mathcal{H}=\mathcal{R} \cap \mathcal{L}$. If $X \subseteq M$, then

$$
E(X)=\left\{e \in X \mid e^{2}=e\right\}
$$

will denote the set of idempotents in X. If $e \in E(M)$, then by the author [3], [4],

$$
\begin{aligned}
& C_{G}^{r}(e)=\{g \in G \mid g e=e g e\} \\
& C_{G}^{l}(e)=\{g \in G \mid e g=e g e\}
\end{aligned}
$$

are opposite parabolic subgroups of G with common Levi factor $C_{G}(e)$. We will let

$$
\tilde{G}_{e}^{r}=R_{u}\left(C_{G}^{r}(e)\right), \quad \tilde{G}_{e}^{l}=R_{u}\left(C_{G}^{l}(e)\right)
$$

denote the unipotent radicals of $C_{G}^{r}(e)$ and $C_{G}^{l}(e)$ respectively. Then

$$
\begin{gathered}
\tilde{G}_{e}^{r} e=\{e\}, \quad e \tilde{G}_{e}^{l}=\{e\} \\
C_{G}^{r}(e)=C_{G}(e) \cdot \tilde{G}_{e}^{r}, C_{G}^{l}(e)=C_{G}(e) \cdot \tilde{G}_{e}^{l} .
\end{gathered}
$$

Let

$$
\hat{G}_{e}=\{g \in G \mid g e=e=e g\} \triangleleft C_{G}(e), \quad G_{e}=\hat{G}_{e}^{c} .
$$

By [6; Fact 1.1], [5; Corollary 4.34] we have,

$$
\begin{gathered}
C_{G}(e)=G_{e} \cdot C_{G}\left(G_{e}\right) \\
\hat{G}_{e} \subseteq G_{e} \cdot C\left(C_{G}(e)\right), \quad C_{G}\left(\hat{G}_{e}\right)=C_{G}\left(G_{e}\right) .
\end{gathered}
$$

By [6; Fact 1.3], we have,

Lemma 1.3. Let $e, f \in E(\bar{T})$. Then

$$
C_{G}^{r}(e) \cap C_{G}^{l}(f)=\left[\tilde{G}_{f}^{l} \cap C_{G}(e)\right]\left[C_{G}(e, f)\right]\left[\tilde{G}_{e}^{r} \cap C_{G}(f)\right]\left[\tilde{G}_{e}^{r} \cap \tilde{G}_{f}^{l}\right] .
$$

For $e \in E(\bar{T}), \sigma=n T \in W$, let $e^{\sigma}=n^{-1} e n$. This is clearly independent of the choice of n. Let

$$
W(e)=W\left(C_{G}(e)\right)=C_{W}(e)=\left\{\sigma \in W \mid e^{\sigma}=e\right\} .
$$

We also let

$$
\begin{aligned}
W_{e} & =\left\{\sigma \in W \mid f^{\sigma}=f \text { for all } f \in E(\bar{T}) \text { with } f \leq e\right\} \\
& =\left\{n T \mid n \in N_{G}(T) \cap G_{e}\right\} \cong W\left(G_{e}\right) .
\end{aligned}
$$

Here $f \leq e$ means $e f=f e=f$. Note that T_{e}, rather than T, is a maximal torus of G_{e}. By [6; Facts 1.1, 1.2, 1.3, Lemma 1.6], we have

Lemma 1.4. Let $e_{1}, \ldots, e_{t} \in E(\bar{T}), V=C_{G}\left(e_{1}, \ldots, e_{t}\right)$. Then

$$
\begin{gathered}
V=C_{G}\left(G_{e_{1}}, \ldots, G_{e_{t}}\right) \cdot V_{e_{1}} \cdots V_{e_{t}} \\
C_{G}\left(T_{e_{1}}, \ldots, T_{e_{t}}\right)=C_{G}\left(G_{e_{1}}, \ldots, G_{e_{t}}\right) \cdot T .
\end{gathered}
$$

For $e_{1}, \ldots, e_{t} \in E(\bar{T})$, we let

$$
W\left(e_{1}, \ldots, e_{t}\right)=W\left(e_{1}\right) \cap \cdots \cap W\left(e_{t}\right)=W\left(C_{G}\left(e_{1}, \ldots, e_{t}\right)\right) .
$$

By the author [3], the semigroup way of viewing the Borel subgroup B is via the cross-section lattice:

$$
\Lambda=\Lambda(B)=\left\{e \in E(\bar{T}) \mid B \subseteq C_{G}^{r}(e)\right\}
$$

Then $|\Lambda \cap J|=1$ for each \mathcal{I}-class ($=G \times G$ orbit) J and for all $e, f \in \Lambda, f \in M e M$ if and only if $e \geq f$.

The monoid analogue of the Weyl group $W(G)$ is the Renner monoid,

$$
\operatorname{Ren}(M)=\overline{N_{G}(T)} / T .
$$

$\operatorname{Ren}(M)$ is a finite fundamental inverse monoid with idempotent set $E(\bar{T})$ and unit group W. By Renner [7], M is the disjoint union:

$$
M=\bigcup_{r \in \operatorname{Ren}(M)} B r B .
$$

For more recent advances in this direction, we refer to Renner [9], where in particular an exciting new \mathcal{H}-cross-section submonoid O is found. This new monoid is related to the minimum length right and left coset representatives of W_{I} in W.
2. Main section. Let M be a reductive monoid with unit group G. Call two elements $a, b \in M$ conjugate if $b=a^{x}=x^{-1} a x$ for some $x \in G$. We are interested in the conjugacy classes in M. Renner [8] has shown that the conjugacy class of an element is closed if and only if the element lies in the closure of a torus. In general the conjugacy classes in M (as opposed to the full matrix monoid) can be very complicated. For example in general the number of conjugacy classes of nilpotent elements in M is infinite. None the less, major progress was made by the author [6]. The story begins with the following affine subset of M, for $e \in E(\bar{T}), \sigma \in W$:

$$
M_{e, \sigma}=e C_{G}\left(e^{\delta} \mid \delta \in\langle\sigma\rangle\right) \sigma
$$

where $\langle\sigma\rangle$ denotes the cyclic group generated by σ. In general $e \sigma=e \tau$ does not imply $M_{e, \sigma}=M_{e, \tau}$. See Example 2.2. Clearly

$$
M_{e, \sigma}^{\pi}=\pi^{-1} M_{e, \sigma} \pi=M_{e, \sigma^{\pi}} \quad \text { for all } \pi \in W(e) .
$$

Now $V=C_{G}\left(e^{\delta} \mid \delta \in\langle\sigma\rangle\right)$ is a reductive group with a closed normal subgroup

$$
V^{\prime}=\prod_{\delta \in\langle\sigma\rangle} \hat{V}_{e^{\delta}}
$$

where as usual $\hat{V}_{f}=\{x \in V \mid x f=f x=f\}$. Then $G_{e, \sigma}=V / V^{\prime}$ is a reductive group and σ induces an automorphism $\bar{\sigma}$ of $G_{e, \sigma}$. Clearly there is a natural surjective morphism $\xi: M_{e, \sigma} \rightarrow G_{e, \sigma}$ given by $\xi(e x n)=x V^{\prime}$ for $x \in V, \sigma=n T$. Following is the main result of [6].

THEOREM 2.1. Every element of M is conjugate to an element of some $M_{e, \sigma}, e \in \Lambda$, $\sigma \in W$. If $a, b \in M_{e, \sigma}$, then a is conjugate to b in M if and only if a is conjugate to b by an element of V if and only if $\xi(a)$ and $\xi(b)$ are $\bar{\sigma}$-conjugate in $G_{e, \sigma}$.

If $a \in M_{e, \sigma}, b \in M_{f, \theta}, e, f \in \Lambda$, and if a is conjugate to b in M, then clearly $e=$ f. However it need not be that $\sigma=\theta$. So the main question left open in [6] was the consideration of the situation when $M_{e, \sigma}$ and $M_{e, \theta}$ have conjugate elements. Complicated by the fact that unequal $M_{e, \sigma}$'s can have non-empty intersection, the solution evaded us for five years. Finally we are able to give a complete solution. We begin by introducing a new closed subset $N_{e, \sigma}$ of $M_{e, \sigma}$ (see Lemma 1.4):

$$
\begin{aligned}
N_{e, \sigma} & =e C_{G}\left(T_{e^{\delta}} \mid \delta \in\langle\sigma\rangle\right) \sigma \\
& =e C_{G}\left(G_{e^{\delta}} \mid \delta \in\langle\sigma\rangle\right) T \sigma \\
& =e C_{G}\left(G_{e^{\delta}} \mid \delta \in\langle\sigma\rangle\right) \sigma .
\end{aligned}
$$

Clearly

$$
N_{e, \sigma}^{\pi}=\pi^{-1} N_{e, \sigma} \pi=N_{e, \sigma^{\pi}} \text { for all } \pi \in W(e) .
$$

Let $\pi \in W_{e}$. Then $\pi=m T$ for some $m \in G_{e} \cap N_{G}(T)$. Let $a \in N_{e, \sigma}$. Then $a=e g n$ for some $g \in C_{G}\left(G_{e^{\delta}} \mid \delta \in\langle\sigma\rangle\right), n \in N_{G}(T)$ with $\sigma=n T$. Then for all $i \geq 0, n^{i} g n^{-i} \in$ $C_{G}\left(G_{e}\right)$ and hence is centralized by m. Thus we see by induction on i that

$$
(m n)^{i} g(m n)^{-i}=m n^{i} g n^{-i} m^{-1}=n^{i} g n^{-i} \in C_{G}\left(G_{e}\right) .
$$

Hence $g \in C_{G}\left(G_{e^{\delta}} \mid \delta \in\langle\pi \sigma\rangle\right)$. So

$$
e g n=e m g n=e g m n \in N_{e, \pi \sigma} .
$$

So $N_{e, \sigma} \subseteq N_{e, \pi \sigma}$. Similarly $N_{e, \pi \sigma} \subseteq N_{e, \sigma}$. Hence

$$
N_{e, \sigma}=N_{e, \pi \sigma} \quad \text { for all } \pi \in W_{e} .
$$

Thus $N_{e, \sigma}$ depends only on the element $e \sigma$ in $\operatorname{Ren}(M)$. For this reason we write $N_{e \sigma}$ for $N_{e, \sigma}$.

EXAMPLE 2.2. Let M denote the multiplicative monoid of all 5×5 matrices over an algebraically closed field. Let

$$
e=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \quad \sigma=\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right], \quad \theta=\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 .
\end{array}\right]
$$

Then $M_{e, \sigma}$ consists of matrices of the form

$$
\left[\begin{array}{ccccc}
0 & 0 & a & b & 0 \\
0 & 0 & c & d & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \quad a d \neq b c .
$$

On the other hand $e \sigma=e \theta$ and $M_{e, \theta}=N_{e \sigma}=N_{e \theta}$ consists of matrices of the form

$$
\left[\begin{array}{ccccc}
0 & 0 & a & 0 & 0 \\
0 & 0 & 0 & b & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \quad a \neq 0, b \neq 0 .
$$

Theorem 2.3. (i) If $r, s \in \operatorname{Ren}(M)$ with $N_{r} \cap N_{s} \neq \emptyset$, then $N_{r}=N_{s}$.
(ii) If $\theta \in W\left(e^{\delta} \mid \delta \in\langle\sigma\rangle\right)$, then $N_{e \theta \sigma} \subseteq M_{e, \sigma}$ and $N_{e \theta \sigma}=N_{e \sigma}^{\pi}$ for some $\pi \in W\left(e^{\delta} \mid\right.$ $\delta \in\langle\sigma\rangle)$.
(iii) Any element of $M_{e, \sigma}$ is conjugate to some element of $N_{e \sigma}$.
(iv) Any element of M is conjugate to an element of $N_{e \sigma}$ for some $e \in \Lambda, \sigma \in W$.
(v) The map $\xi: M_{e, \sigma} \rightarrow G_{e, \sigma}$ remains surjective when restricted to $N_{e \sigma}$. Hence the conjugacy classes in $N_{e \sigma}$ are in a natural bijective correspondence with the $\bar{\sigma}$ conjugacy classes of $G_{e, \sigma}$.

Proof. (i) Let $r=e \sigma, e \in E(\bar{T}), \sigma \in W$. Then $e \mathcal{R} s$ and hence $s=e \theta$ for some $\theta \in W$. Let $a \in N_{r} \cap N_{s}$. Then there exist $g \in C_{G}\left(G_{e^{\delta}} \mid \delta \in\langle\sigma\rangle\right), h \in C_{G}\left(G_{e^{\delta}} \mid \delta \in\langle\theta\rangle\right)$, $m, n \in N_{G}(T)$, such that $\sigma=n T, \theta=m T$ and $a=e g n=e h m$. Then $a \mathcal{L} n^{-1} e n$ and $a \mathcal{L} m^{-1} e m$. Hence $n^{-1} e n=m^{-1} e m$. So $n m^{-1} \in C_{G}(e)$. Thus $g n=z h m$ for some $z \in \hat{G}_{e}$.

Let $x \in C_{G}\left(G_{e^{\delta}} \mid \delta \in\langle\sigma\rangle\right)$. Since n normalizes $C_{G}\left(G_{e^{\delta}} \mid \delta \in\langle\sigma\rangle\right)$, so does $g n=z h m$. Hence for all $i \geq 0,(z h m)^{i} x(z h m)^{-i} \in C_{G}\left(G_{e}\right)$. Since $z \in \hat{G}_{e}$ and $C_{G}\left(G_{e}\right)=C_{G}\left(\hat{G}_{e}\right)$, we see by induction that for all $i>0$,

$$
(h m)^{i} x(h m)^{-i}=(z h m)^{i} x(z h m)^{-i} \in C_{G}\left(G_{e}\right) .
$$

Now

$$
(h m)^{i}=h\left(m h m^{-1}\right)\left(m^{2} h m^{-2}\right) \cdots\left(m^{i-1} h m^{1-i}\right) m^{i}
$$

and $m^{i} h m^{-j} \in C_{G}\left(G_{e}\right)$ for all $j \geq 0$. It follows that $m^{i} x m^{-i} \in C_{G}\left(G_{e}\right)$ for all $i \geq 0$. Hence $x \in C_{G}\left(G_{e^{\delta}} \mid \delta \in\langle\theta\rangle\right)$. Thus $C_{G}\left(G_{e^{\delta}} \mid \delta \in\langle\sigma\rangle\right) \subseteq C_{G}\left(G_{e^{\delta}} \mid \delta \in\langle\theta\rangle\right)$. So

$$
e x n=e g n \cdot\left(n^{-1} g^{-1} x n\right)=e h m \cdot\left(n^{-1} g^{-1} x n\right)=e h \cdot m\left(n^{-1} g^{-1} x n\right) m^{-1} \cdot m
$$

and $m\left(n^{-1} g^{-1} x n\right) m^{-1} \in C_{G}\left(e^{\delta} \mid \delta \in\langle\theta\rangle\right)$. Thus exn $\in N_{e \theta}$. So $N_{e \sigma} \subseteq N_{e \theta}$. Similarly $N_{e \theta} \subseteq N_{e \sigma}$ and $N_{e \sigma}=N_{e \theta}$.
(ii) By Lemma 1.4, $\theta=p T, p=p_{0} \cdots p_{s} q$ with $p_{i} \in V_{e^{i}} \cap N_{G}(T)$, where $V=$ $C_{G}\left(e^{\delta} \mid \delta \in\langle\sigma\rangle\right)$ and $q \in V_{0}^{c} \cap N_{G}(T)$, where $V_{0}=C_{G}\left(G_{e^{\delta}} \mid \delta \in\langle\sigma\rangle\right)$. Let $\theta_{i}=p_{i} T \in$ $W_{e^{j^{i}}} \cap W\left(e^{\delta} \mid \delta \in\langle\sigma\rangle\right), \theta^{\prime}=q T$. Then θ^{\prime} commutes with each element of $W_{e^{j}}$ for all j. By (i), $N_{e \sigma}=N_{e \theta^{\prime} \sigma}$. Now $\theta_{1} \cdots \theta_{s} \in W\left(e^{\delta} \mid \delta \in\langle\sigma\rangle\right)$,

$$
\begin{aligned}
\left(\theta_{1} \cdots \theta_{s}\right)^{-1}\left(e \theta_{0} \cdots \theta_{s} \theta^{\prime} \sigma\right)\left(\theta_{1} \cdots \theta_{s}\right) & =\left(\theta_{1} \cdots \theta_{s}\right)^{-1}\left(e \theta_{1} \cdots \theta_{s} \theta^{\prime} \sigma\right)\left(\theta_{1} \cdots \theta_{s}\right) \\
& =\left(\theta_{1} \cdots \theta_{s}\right)^{-1}\left(\theta_{1} \cdots \theta_{s}\right) e \theta^{\prime} \sigma \theta_{1} \cdots \theta_{s} \\
& =e \theta^{\prime} \sigma \theta_{1} \cdots \theta_{s} \\
& =e \theta_{1}^{\prime} \cdots \theta_{s}^{\prime} \theta^{\prime} \sigma
\end{aligned}
$$

where $\theta_{i}^{\prime}=\sigma \theta_{i} \sigma^{-1} \in W_{e^{\sigma^{i-1}}} \cap W\left(e^{\delta} \mid \delta \in\langle\sigma\rangle\right), i=1, \ldots, s$. Inductively we see that $\pi(e \theta \sigma) \pi^{-1}=e \theta^{\prime} \sigma$ for some $\pi \in W\left(e^{\delta} \mid \delta \in\langle\sigma\rangle\right)$. Hence

$$
N_{e \theta \sigma}=N_{e \theta^{\prime} \sigma}^{\pi}=N_{e \sigma}^{\pi} \subseteq M_{e, \sigma}^{\pi}=M_{e, \sigma}
$$

(v) follows from Lemma 1.4 and then (iii), (iv) follow from Theorem 2.1.

Let $a \in M_{e, \sigma}, b \in M_{e, \theta}, e^{\sigma}=f_{1}, e^{\theta}=f_{2}$. Then $e \mathcal{R} a \mathcal{L} f_{1}, e \mathcal{R} b \mathcal{L} f_{2}$.
Lemma 2.4. Let $e, f_{1}, f_{2} \in E(\bar{T}), a, b \in M$ such that $e \mathcal{R} a \mathcal{L} f_{1}, e \mathcal{R} b \mathcal{L} f_{2}$. If a and b are conjugate in M, then there exists $\pi \in W(e)$ such that $f_{1}^{\pi}=f_{2}$.

Proof. There exists $x \in G$ such that $x a x^{-1}=b$. Then

$$
x e x^{-1} \mathcal{R} x a x^{-1}=b \mathcal{R} e .
$$

So $x \in C_{G}^{r}(e)$. Now

$$
x f_{1} x^{-1} \mathcal{L} x a x^{-1}=b \mathcal{L} f_{2} .
$$

Hence by [5; Chapter 6], f_{1} and f_{2} are conjugate in $\overline{C_{G}^{r}(e)}$. Hence there exists $m \in N_{G}(T) \cap$ $C_{G}^{r}(e)=N_{G}(T) \cap C_{G}(e)$ such that $m^{-1} f_{1} m=f_{2}$. So $\pi=m T \in W(e)$ and $f_{1}^{\pi}=f_{2}$.

In preparation for our main theorem, we prove the following technical lemma.

Lemma 2.5. Let e,f $\in E(\bar{T})$. Define a relation \equiv on G as: $g_{1} \equiv g_{2}$ if there exist $x \in C_{G}(e, f), a \in \tilde{G}_{f}^{l} \cap C_{G}(e), b \in \tilde{G}_{e}^{r} \cap C_{G}(f)$ such that $\operatorname{axg}_{1}=g_{2} x b$. Then
(i) \equiv is an equivalence relation on G.
(ii) If $\sigma=n T \in W, e^{\sigma}=f, k \in \mathbb{Z}^{+}, x, y \in C_{G}\left(e^{\sigma^{j}} \mid j=0, \ldots, k-1\right), x \in \tilde{G}_{e^{o^{k}}}^{l}$, then $x y n \equiv y n$.
(iii) Let $\theta=m T \in W, e^{\theta}=f, u \in C_{G}\left(G_{e^{\delta}} \mid \delta \in\langle\theta\rangle\right), z \in G_{e}$. Then there exists $\sigma=n T \in W, v \in C_{G}\left(e^{\delta} \mid \delta \in\langle\sigma\rangle\right)$, such that zum $\equiv v n$ and $\theta=\pi_{0} \cdots \pi_{t} \sigma$ for some $\pi_{i} \in W_{e^{\sigma^{i}}} \cap W\left(e^{\sigma^{j}} \mid 0 \leq j \leq i\right), i=0, \ldots, t$.

Proof. (i) Suppose $g_{1}, g_{2} \in G$ with $g_{1} \equiv g_{2}$. Then there exist $a \in \tilde{G}_{f}^{l} \cap C_{G}(e)$, $x \in C_{G}(e, f), b \in \tilde{G}_{e}^{r} \cap C_{G}(f)$ such that axg $_{1}=g_{2} x b$. Then

$$
\left(x^{-1} a^{-1} x\right) x^{-1} g_{2}=g_{1} x^{-1}\left(x b^{-1} x^{-1}\right)
$$

with $x^{-1} a^{-1} x \in \tilde{G}_{f}^{l} \cap C_{G}(e), x \in C_{G}(e, f), x b^{-1} x^{-1} \in \tilde{G}_{e}^{r} \cap C_{G}(f)$. Thus \equiv is symmetric. Clearly \equiv is reflexive. Next let $g_{1}, g_{2}, g_{3} \in G$ such that $g_{1} \equiv g_{2} \equiv g_{3}$. Then there exist $a, c \in \tilde{G}_{f}^{l} \cap C_{G}(e), x, y \in C_{G}(e, f), b, d \in \tilde{G}_{e}^{r} \cap C_{G}(f)$ such that

$$
a x g_{1}=g_{2} x b, \quad c y g_{2}=g_{3} y d .
$$

Then

$$
c\left(y a y^{-1}\right)(y x) g_{1}=g_{3}(y x)\left(x^{-1} d x\right) b
$$

with $c\left(y a y^{-1}\right) \in \tilde{G}_{f}^{l} \cap C_{G}(e), y x \in C_{G}(e, f),\left(x^{-1} d x\right) b \in \tilde{G}_{e}^{r} \cap C_{G}(f)$. Thus $g_{1} \equiv g_{3}$ and \equiv is an equivalence relation on G.
(ii) We prove by induction on k. If $k=1$, then $x \in C_{G}(e) \cap \tilde{G}_{f}^{l}$ and the result is clear. So let $k>1$. Then $x \in C_{G}(e, f), n x n^{-1} \in C_{G}\left(e^{e^{j}} \mid j=0, \ldots, k-2\right) \cap \tilde{G}_{e^{\alpha-1}}^{l}$. Hence $y\left(n x n^{-1}\right) y^{-1} \in C_{G}\left(e^{\sigma^{j}} \mid j=0, \ldots, k-2\right) \cap \tilde{G}_{e^{e^{k-1}}}^{l}$. Thus by the induction hypothesis,

$$
x y n \equiv y n x=y\left(n x n^{-1}\right) y^{-1} \cdot y n \equiv y n .
$$

(iii) Suppose inductively that

$$
y \in H=\prod_{i=0}^{k}\left[C_{G}\left(e^{\theta j} \mid j=0, \ldots, k\right) \cap G_{e^{i j}}\right] .
$$

Then by [6; Facts 1.1, 1.2, 1.3], H is a reductive group and $P \cap H$ is a parabolic subgroup of H for all parabolic subgroups P of G with $T \subseteq P$. Further, $T_{o}=T_{e} \cdots T_{e^{e^{*}}}$ is a maximal torus of H. Now $P_{1}=C_{G}^{l}\left(e^{\theta+1}\right)$ and $P_{2}=C_{G}^{r}\left(\theta e \theta^{-1}\right)$ are parabolic subgroups of G containing T. Hence $P_{1} \cap H$ and $P_{2} \cap H$ are parabolic subgroups of H containing T_{0}. By the Bruhat decomposition for H, there exists $p \in N_{G}(T) \cap H$ such that $y \in\left(P_{1} \cap H\right) p\left(P_{2} \cap H\right)$. So there exist $y_{1} \in P_{1} \cap H, y_{2} \in P_{2} \cap H$ such that $y=y_{1} p y_{2}$. By [6; Fact 1.3], $y_{2}=y_{3} y_{4}$ for some $y_{3} \in H \cap C_{G}\left(\theta e \theta^{-1}\right), y_{4} \in H \cap \tilde{G}_{\theta e \theta^{-1}}^{r}$. So by [6; Facts 1.1, 1.2, 1.3],

$$
\begin{aligned}
m^{-1} y_{3} m \in & \prod_{i=1}^{k+1}\left[C_{G}\left(e^{\theta^{j}} \mid j=0, \ldots, k+1\right) \cap G_{e^{e^{i}}}\right] \\
& m^{-1} y_{4} m \in C_{G}(f) \cap \tilde{G}_{e}^{r}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y u m & =y_{1} p y_{2} u m \\
& =y_{1} u p y_{2} m \\
& =y_{1} u p m\left(m^{-1} y_{3} m\right)\left(m^{-1} y_{4} m\right) \\
& \equiv\left(m^{-1} y_{3} m\right) y_{1} u p m .
\end{aligned}
$$

Now $y_{1}=y_{5} y_{6}$ for some $y_{5} \in H \cap \tilde{G}_{e^{\alpha+1}}^{l}, y_{6} \in H \cap C_{G}\left(e^{\theta^{k+1}}\right)$. Hence by [6; Facts 1.1, 1.2, 1.3], $\left(m^{-1} y_{3} m\right) y_{1}=y_{7} y_{8}$, where

$$
\begin{gathered}
y_{7}=\left(m^{-1} y_{3} m\right) y_{5}\left(m^{-1} y_{3} m\right)^{-1} \in \tilde{G}_{e^{\theta^{k+1}}} \\
y_{8}=\left(m^{-1} y_{3} m\right) y_{6} \in \prod_{i=0}^{k+1}\left[C_{G}\left(e^{\theta^{j}} \mid j=0, \ldots, k+1\right) \cap G_{e^{i d}}\right] .
\end{gathered}
$$

Let $\sigma=p m$. We see by induction that for all $i \geq 0$,

$$
(p m)^{-i} u(p m)^{i}=m^{-i} u m^{i} \in C_{G}\left(G_{e}\right)
$$

Hence $u \in C_{G}\left(G_{e^{\delta}} \mid \delta \in\langle\sigma\rangle\right)$. We claim that $e^{\sigma^{j}}=e^{\theta^{j}}$ for $j=0, \ldots, k+1$. We prove this by induction. For $j=0$, this is obvious. So assume $e^{\theta^{j}}=e^{\sigma^{j}}, j \leq k$. Now $\pi=p T \in$ $C_{W}\left(e^{\theta^{j}}\right)$ and $\sigma=\pi \theta$. So

$$
e^{\sigma^{j+1}}=\left(e^{\theta^{j}}\right)^{\sigma}=\left(e^{\theta^{j}}\right)^{\pi \theta}=\left(e^{\theta^{j}}\right)^{\theta}=e^{\theta^{j+1}} .
$$

Now by (ii),

$$
\begin{aligned}
y u m & \equiv\left(m^{-1} y_{3} m\right) y_{1} u p m \\
& =y_{7}\left(y_{8} u\right) p m \\
& \equiv y_{8} u p m .
\end{aligned}
$$

Now $\pi=\pi_{0} \cdots \pi_{k}$, with $\pi_{i} \in W_{e^{i}} \cap W\left(e, \ldots, e^{\sigma^{k}}\right), i=0, \ldots, k$.
Thus starting with $y=z$ and $k=0$, and proceeding inductively to $k=|W|$, we find $\sigma=n T \in W, y \in C_{G}\left(e^{\delta} \mid \delta \in\langle\sigma\rangle\right.$ such that $u \in C_{G}\left(G_{e^{\delta}} \mid \delta \in\langle\sigma\rangle\right), \theta=\pi_{0} \cdots \pi_{t} \sigma$ with $\pi_{i} \in W_{e^{d}} \cap W\left(e, \ldots, e^{\sigma^{i}}\right), i=0, \ldots, t$, and zum $\equiv y u n$. This completes the proof.

We are now ready to prove our main theorem.
THEOREM 2.6. The following conditions are equivalent for $e \in \Lambda$ and $\sigma, \theta \in W$:
(i) There exists an element of $M_{e, \sigma}$ that is conjugate to an element of $M_{e, \theta}$.
(ii) Every element of $M_{e, \sigma}$ is conjugate to an element of $M_{e, \theta}$ and every element of $M_{e, \theta}$ is conjugate to an element of $M_{e, \sigma}$.
(iii) There exists $\gamma \in W$ with $\theta=\pi_{0} \cdots \pi_{t} \gamma$ and $\pi_{i} \in W_{e^{i}} \cap W\left(e, \ldots, e^{\gamma^{i}}\right), i=0, \ldots, t$, such that

$$
\bigcap_{i \geq 0} \gamma^{i} W(e) \sigma^{-i} \neq \emptyset
$$

(iv) There exists $\gamma \in W$ with e θ conjugate to $e \gamma$ in $\operatorname{Ren}(M)$, such that

$$
\bigcap_{i \geq 0} \gamma^{i} W(e) \sigma^{-i} \neq \emptyset
$$

(v) $N_{e \sigma}^{\pi}=N_{e \theta}$ for some $\pi \in W(e)$.

Proof. (i) \Rightarrow (iii) Let $f=e^{\sigma}$. By Lemma 2.4 there exists $\eta \in W(e)$ such that $f^{\eta}=e^{\theta}$. We can replace θ by $\eta \theta \eta^{-1}$. Then having found the appropriate $\pi_{0}, \ldots, \pi_{t}, \gamma$ with respect to $\eta \theta \eta^{-1}$, we can replace them by $\eta^{-1} \pi_{0} \eta, \ldots, \eta^{-1} \pi_{t} \eta, \eta^{-1} \gamma \eta$, respectively. Thus without loss of generality, we can assume that $e^{\theta}=f$.

There exists $A_{1} \in M_{e, \sigma}$ that is conjugate to some $A_{2} \in M_{e, \theta}$. By Theorem 2.3, we can assume that $A_{2} \in N_{e \theta}$. So there exist $u \in C_{G}\left(e^{\delta} \mid \delta \in\langle\sigma\rangle\right), v \in C_{G}\left(G_{e^{\delta}} \mid \delta \in\langle\theta\rangle\right)$ such that $A_{1}=e u n, A_{2}=e v m, \sigma=n T, \theta=m T$. There exists $X \in G$ such that $X A_{1} X^{-1}=A_{2}$. Since $A_{1}, A_{2}, \in e M f, X \in C_{G}^{r}(e) \cap C_{G}^{l}(f)$. By Lemma 1.3,

$$
C_{G}^{r}(e) \cap C_{G}^{l}(f)=\left[C_{G}(e) \cap \tilde{G}_{f}^{l}\right]\left[C_{G}(e, f)\right]\left[C_{G}(f) \cap \tilde{G}_{e}^{r}\right]\left[\tilde{G}_{e}^{r} \cap \tilde{G}_{f}^{l}\right] .
$$

Since $A_{1}, A_{2} \in e M f$, we can assume without loss of generality that

$$
X \in\left[C_{G}(e) \cap \tilde{G}_{f}^{l}\right]\left[C_{G}(e, f)\right]\left[C_{G}(f) \cap \tilde{G}_{e}^{r}\right]
$$

So there exist $a \in C_{G}(e) \cap \tilde{G}_{f}^{l}, x \in C_{G}(e, f), b \in C_{G}(f) \cap \tilde{G}_{e}^{r}$ such that $X=a x b$. From $X A_{1}=A_{2} X$, we get

$$
\text { eaxun }=\text { evmxb. }
$$

Since $e^{\sigma}=e^{\theta}, n m^{-1} \in C_{G}(e)$. Hence

$$
(a x u n)(v m x b)^{-1}=a x u\left(n b^{-1} x^{-1} n^{-1}\right) n m^{-1} v \in C_{G}(e)
$$

Hence

$$
\begin{equation*}
a x u n=z v m x b \tag{1}
\end{equation*}
$$

for some $z \in \hat{G}_{e}$. Since $\hat{G}_{e} \subseteq C\left(C_{G}(e)\right) \cdot G_{e}$, we can assume without loss of generality (by changing u appropriately), that $z \in G_{e}$. In the notation of Lemma 2.5 , un $\equiv z v m$. By Lemma 2.5 (iii), we can change θ, m, v appropriately, so that $u n \equiv v m$ with $v \in$ $C_{G}\left(e^{\delta} \mid \delta \in\langle\theta\rangle\right)$. Let us therefore assume that

$$
\begin{equation*}
a x u n=v m x b . \tag{2}
\end{equation*}
$$

Note that now $A_{2} \in M_{e, \theta}$ and not $N_{e \theta}$. By (2),

$$
\begin{aligned}
a x & =v m x b n^{-1} u^{-1} \\
& =v m x b m^{-1}\left(m n^{-1} u^{-1} n m^{-1}\right) m n^{-1} \in C_{G}^{r}\left(\theta e \theta^{-1}\right) \theta \sigma^{-1} .
\end{aligned}
$$

Since $a \in \tilde{G}_{f}^{l}$ and $x \in C_{G}(f)$, we see by Lemma 1.1 that $a, x n m^{-1} \in C_{G}^{r}\left(\theta e \theta^{-1}\right)$. By [6; Fact 1.3], we can factor

$$
\begin{gather*}
a=c_{1} a_{1} \quad \text { for some } c_{1} \in \tilde{G}_{\theta e \theta^{-1}}^{r} \text { and } \tag{3}\\
a_{1} \in C_{G}\left(e, \theta e \theta^{-1}\right) \cap \tilde{G}_{f}^{l} .
\end{gather*}
$$

Similarly we can factor

$$
\begin{equation*}
x=y_{1} x_{1} \quad \text { for some } y_{1} \in \tilde{G}_{\theta e \theta^{-1}}^{r}, x_{1} \in C_{G}\left(\theta e \theta^{-1}\right) m n^{-1}=\theta C_{G}(e) \sigma^{-1} . \tag{4}
\end{equation*}
$$

Since $y_{1}\left(x_{1} \mathrm{~nm}^{-1}\right)=x n m^{-1} \in C_{G}(e, f) \sigma \theta^{-1}$, we see by Lemma 1.1 that $y_{1} \in C_{G}(e, f)$.
Hence

$$
\begin{equation*}
x_{1} \in C_{G}(e, f) . \tag{5}
\end{equation*}
$$

By (2)

$$
c_{1} a_{1} y_{1} x_{1} u n=v m y_{1} x_{1} b
$$

Hence

(6)

$$
w a_{1} x_{1} u n=v m y_{1} x_{1}
$$

where by (3), (4),

$$
\begin{aligned}
w & =v m y_{1} x_{1} n^{-1} u^{-1} x_{1}^{-1} a_{1}^{-1} \\
& =c_{1} a_{1} y_{1} x_{1} u n b^{-1} n^{-1} u^{-1} x_{1}^{-1} a_{1}^{-1} \\
& =c_{1} \cdot a_{1} \cdot y_{1} \cdot\left(x_{1} n m^{-1}\right)\left[m\left(n^{-1} u n\right) b^{-1}\left(n^{-1} u n\right)^{-1} m^{-1}\right]\left(x_{1} n m^{-1}\right)^{-1} \cdot a_{1}^{-1} \in \tilde{G}_{\theta e \theta^{-1}}^{r} .
\end{aligned}
$$

Suppose inductively that for $k \in \mathbb{Z}^{+}$,

$$
\begin{equation*}
x=y_{1} \cdots y_{k} x_{k} \tag{7}
\end{equation*}
$$

where

$$
\begin{gather*}
y_{i} \in \tilde{G}_{\theta^{i} e \theta^{-i}}^{r}, \quad i=1, \ldots, k \tag{8}\\
x_{k} \in \bigcap_{j=-1}^{k} \theta^{j} C_{G}(e) \sigma^{-j} .
\end{gather*}
$$

Further assume that there exist

$$
\begin{gather*}
w_{i} \in C_{G}\left(\theta^{j} e \theta^{-j} \mid i+1 \leq j \leq k\right) \cap \tilde{G}_{\theta^{i} e \theta^{-i}}^{r}, \quad i=1, \ldots, k \tag{9}\\
a_{k} \in C_{G}\left(\theta^{j} e \theta^{-j} \mid j=0, \ldots, k\right) \cap \tilde{G}_{f}^{l}
\end{gather*}
$$

such that

$$
\begin{equation*}
w_{k} \cdots w_{1} a_{k} x_{k} u n=v m y_{k} x_{k} . \tag{10}
\end{equation*}
$$

By (3)-(6) we see that (7)-(10) are valid for $k=1$, since

$$
C_{G}(f)=\theta^{-1} C_{G}(e) \theta=\theta^{-1} C_{G}(e) \sigma \theta^{-1} \cdot \theta=\theta^{-1} C_{G}(e) \sigma
$$

Since $x_{k} \in \theta^{j} C_{G}(e) \sigma^{-j}$ for $-1 \leq j \leq k$, we see that

$$
\begin{equation*}
x_{k} n^{j} m^{-j} \in C_{G}\left(\theta^{j} e \theta^{-j}\right), \quad-1 \leq j \leq k \tag{11}
\end{equation*}
$$

Hence

$$
\begin{aligned}
w_{k} \cdots w_{1} a_{k} x_{k}= & v m y_{k} x_{k} n^{-1} u^{-1} \\
= & v \cdot m\left(y_{k} x_{k} n^{k} m^{-k}\right) m^{-1} \cdot m^{k+1}\left(n^{-k-1} u^{-1} n^{k+1}\right) m^{-k-1} \\
& \cdot m^{k+1} n^{-k-1} \in C_{G}^{r}\left(\theta^{k+1} e \theta^{-k-1}\right) \theta^{k+1} \sigma^{-k-1} .
\end{aligned}
$$

By (9), (11) and the repeated use of Lemma 1.1, we see that

$$
\begin{equation*}
w_{1}, \ldots, w_{k}, a_{k}, x_{k} n^{k+1} m^{-k-1} \in C_{G}^{r}\left(\theta^{k+1} e \theta^{-k-1}\right) . \tag{12}
\end{equation*}
$$

Hence we can factor by [6; Fact 1.3],

$$
\begin{gather*}
x_{k}=y_{k+1} x_{k+1} \quad \text { with } y_{k+1} \in \tilde{G}_{\theta^{k+1}}^{r} e^{-k-1} \tag{13}\\
x_{k+1} \in C_{G}\left(\theta^{k+1} e \theta^{-k-1}\right) m^{k+1} n^{-k-1}=\theta^{k+1} C_{G}(e) \sigma^{-k-1} .
\end{gather*}
$$

By (11), (13) and Lemma 1.1,

$$
y_{k+1} \in C_{G}\left(\theta^{j} e \theta^{-j}\right), \quad-1 \leq j \leq k
$$

Hence by (11), (13),

$$
\begin{equation*}
x_{k+1}=y_{k+1}^{-1} x_{k} \in C_{G}\left(\theta^{j} e \theta^{-j}\right) \theta^{j} \sigma^{-j}=\theta^{j} C_{G}(e) \sigma^{-j}, \quad-1 \leq j \leq k . \tag{14}
\end{equation*}
$$

By (13), (14),

$$
\begin{equation*}
x_{k+1} \in \bigcap_{j=-1}^{k+1} \theta^{j} C_{G}(e) \sigma^{-j} . \tag{15}
\end{equation*}
$$

By (9), (12) and [6; Fact 1.3], we can factor

$$
\begin{align*}
& a_{k}=c_{k+1} a_{k+1}, \quad c_{k+1} \in \tilde{G}_{\theta^{k+1} e e^{-k-1}}^{r}, \tag{16}\\
& a_{k+1} \in C_{G}\left(\theta^{j} e \theta^{-j} \mid 0 \leq j \leq k\right) \cap \tilde{G}_{f}^{l}
\end{align*}
$$

and for $i=1, \ldots, k$,

$$
\begin{gather*}
w_{i}=q_{i} w_{i}^{\prime}, \quad q_{i} \in \tilde{G}_{\theta^{k+1} e \theta^{-k-1}}^{r}, \tag{17}\\
w_{i}^{\prime} \in C_{G}\left(\theta^{j} e \theta^{-j} \mid i+1 \leq j \leq k+1\right) \cap \tilde{G}_{\theta^{i} e^{-i}}^{r} .
\end{gather*}
$$

Now

$$
\begin{equation*}
p=v m y_{k} m^{-1} v^{-1} \in \tilde{G}_{\theta^{k+1}}^{r} e e^{-k-1} \tag{18}
\end{equation*}
$$

and by (10), (13), (16), (17),

$$
\begin{aligned}
\left(q_{k} w_{k}^{\prime}\right) \cdots\left(q_{1} w_{1}^{\prime}\right)\left(c_{k+1} a_{k+1}\right) y_{k+1} x_{k+1} u n & =v m y_{k} x_{k} \\
& =p v m x_{k} \\
& =p v m y_{k+1} x_{k+1} .
\end{aligned}
$$

Since $q_{1}, \ldots, q_{k}, c_{k+1}, y_{k+1}, p \in \tilde{G}_{\theta^{k+1} e \theta^{-k-1}}^{r}$ and since $a_{k+1}, w_{1}^{\prime}, \ldots, w_{k}^{\prime} \in C_{G}\left(\theta^{k+1} e \theta^{-k-1}\right)$ we see that

$$
w_{k+1}^{\prime} w_{k}^{\prime} \cdots w_{1}^{\prime} a_{k+1} x_{k+1} u n=v m y_{k+1} x_{k+1}
$$

for some $w_{k+1}^{\prime} \in \tilde{G}_{\theta^{k+1} e e^{-k-1}}^{r}$. This completes the induction step. In particular (15) is valid for $k=|W|$. Hence by Lemma 1.2,

$$
\bigcap_{j \geq 0} \theta^{j} W(e) \sigma^{-j}=\bigcap_{j=1}^{k} \theta^{j} W(e) \sigma^{-j} \neq \emptyset .
$$

(iii) \Rightarrow (iv) We show that $e \theta$ is conjugate to $e \gamma$ in $\operatorname{Ren}(M)$. We do this by induction on t. If $t=0$, then $e \theta=e \gamma$. So let $t>0$. Then $e \theta=e \pi_{1} \cdots \pi_{t} \gamma=\pi_{1} \cdots \pi_{t} e \gamma$ is conjugate in $\operatorname{Ren}(M)$ to $e \gamma \pi_{1} \cdots \pi_{t}=e \pi_{1}^{\prime} \cdots \pi_{t}^{\prime} \gamma$, where

$$
\pi_{i}^{\prime}=\gamma \pi_{i} \gamma^{-1} \in W_{e^{i-1}} \cap W\left(e, \ldots, e^{\chi^{i-1}}\right), \quad i=1, \ldots, t .
$$

By the induction hypothesis, $e \theta$ is conjugate to $e \sigma$ in $\operatorname{Ren}(M)$.
(iv) $\Rightarrow(\mathrm{v})$ If $e \theta$ and $e \gamma$ are conjugate in $\operatorname{Ren}(M)$, then they are conjugate by an element of $W(e)$. Thus without loss of generality we can assume that $\gamma=\theta$. Let

$$
\pi \in \bigcap_{i \geq 0} \theta^{i} W(e) \sigma^{-i}
$$

Then $\pi \sigma^{i} \theta^{-i} \in W\left(\theta^{i} e \theta^{-i}\right)$ for all $i \geq 0$. Now

$$
\pi(e \sigma) \pi^{-1}=e \pi \sigma \pi^{-1}=e\left(\pi \sigma \pi^{-1} \theta^{-1}\right) \theta .
$$

Clearly $\pi N_{e \sigma} \pi^{-1}=N_{e \pi \sigma \pi^{-1}}$. Now for all $i \in \mathbb{Z}^{+}$,

$$
\begin{aligned}
\pi \sigma \pi^{-1} \theta^{-1} & =\left(\pi \sigma^{i} \theta^{-i}\right) \theta\left(\theta^{i-1} \sigma^{i-1} \pi^{-1}\right) \theta^{-1} \in W\left(\theta^{i} e \theta^{-i}\right) \cdot \theta W\left(\theta^{i-1} e \theta^{1-i}\right) \theta^{-1} \\
& =W\left(\theta^{i} e \theta^{-i}\right) .
\end{aligned}
$$

It follows that $\pi \sigma \pi^{-1} \theta^{-1} \in W\left(e^{\delta} \mid \delta \in\langle\theta\rangle\right)$. By Theorem 2.3(ii), $N_{e \pi \sigma \pi^{-1}}$ is conjugate to $N_{e \theta}$ by an element of $W\left(e^{\delta} \mid \delta \in\langle\theta\rangle\right)$. It follows that $N_{e \theta}$ is conjugate to $N_{e \sigma}$ by an element of $W(e)$.
(v) \Rightarrow (ii) follows from Theorem 2.3, and (ii) \Rightarrow (i) is obvious.

By Theorems 2.3 and 2.6, we have,
COROLLARY 2.7. There exist reductive groups G_{1}, \ldots, G_{t} with respective automorphisms $\sigma_{1}, \ldots, \sigma_{t}$, such that the conjugacy classes of M are in a natural bijective correspondence with the σ_{i}-conjugacy classes of $G_{i}, i=1, \ldots, t$.

Corollary 2.8. Let $\sigma=n T, \theta=m T \in W, e \in E(\bar{T})$ such that en and em are conjugate in M. Then there exists $\pi=p T \in W$ such that en and ep are conjugate by an element in $C_{G}\left(e^{\delta} \mid \delta \in\langle\sigma\rangle\right)$, and et and e π are conjugate in $\operatorname{Ren}(M)$.

The following answers affirmatively [6; Conjecture 2.7].

Corollary 2.9. Let $e \in E(M), a, b \in e M e$. Then a and b are conjugate in $e M e$ if and only if a and b are conjugate in M.

Proof. We can assume that $e \in \Lambda$. Now $e C_{G}(e)$ is the unit group of $e M e$. Thus if a and b are conjugate in $e M e$, then they are conjugate in M by an element in $C_{G}(e)$. Assume conversely that a and b are conjugate in M. We need to show that they are conjugate by an element in $C_{G}(e)$. By Theorem 2.1 applied to $e M e$, we can assume that $a \in M_{h, \sigma}$, $b \in M_{h, \theta}$ for some $h \in e \Lambda$ and $\sigma, \theta \in W(e)$. By Lemma 2.4, h^{σ} and h^{θ} are conjugate in $\overline{C_{G}(h)}$. By [5; Chapter 6], h^{σ} and h^{θ} are conjugate in $\overline{C_{G}(h)} e$. It follows that h^{σ} and h^{θ} are conjugate by an element in $W(e, h)$. Thus without loss of generality we can assume that $h^{\sigma}=h^{\theta}=h^{\prime}$. By Theorem 2.6, a and b are conjugate by an element in $C_{G}\left(h, h^{\prime}\right)$. Now $h C_{G}(h)=h C_{G}(e, h)$ and $h^{\prime} C_{G}\left(h^{\prime}\right)=h^{\prime} C_{G}\left(e, h^{\prime}\right)$. Hence

$$
\begin{gathered}
C_{G}(h)=G_{h} \cdot C_{G}(e, h)=G_{h} \cdot C_{G}\left(e, G_{h}\right) \\
C_{G}\left(h^{\prime}\right)=G_{h^{\prime}} \cdot C_{G}\left(e, h^{\prime}\right)=G_{h^{\prime}} \cdot C_{G}\left(e, G_{h^{\prime}}\right) .
\end{gathered}
$$

By [6; Facts 1.1, 1.2],

$$
C_{G}\left(h, h^{\prime}\right) \subseteq C_{G}(e)\left[G_{h} \cap G_{h^{\prime}}\right] .
$$

Since $a, b \in h M h^{\prime}$, it follows that a and b are conjugate by an element in $C_{G}(e)$.

References

1. R. W. Carter, Finite groups of Lie type: Conjugacy classes and complex characters, Wiley, 1985.
2. J. E. Humphreys, Linear algebraic groups, Springer-Verlag, 1981.
3. M. S. Putcha, A semigroup approach to linear algebraic groups, J. Algebra 80(1983), 164-185.
4. \qquad Determinant functions on algebraic monoids, Comm. Algebra 11(1983), 695-710.
5. ___ Linear algebraic monoids, London Math. Soc. Lecture Note Series 133, Cambridge Univ. Press, 1988.
6. \ldots Conjugacy classes in algebraic monoids, Trans. Amer. Math. Soc. 303(1987), 529-540.
7. L. E. Renner, Analogue of the Bruhat decomposition for algebraic monoids, J. Algebra 101(1986), 303338.
8. Conjugacy classes of semisimple elements, and irreducible representations of algebraic monoids, Comm. Algebra 116(1988), 1933-1943.
9. \qquad , Analogue of the Bruhat decomposition for algebraic monoids II. The length function and the trichotomy, to appear.

Department of Mathematics
North Carolina State University
Raleigh, North Carolina 27695-8205
U.S.A.

[^0]: Research partially supported by NSF Grant DMS-9200077.
 Received by the editors November 16, 1992.
 AMS subject classification: 20G99, 20M10.
 (c) Canadian Mathematical Society 1994.

