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ELLIPTIC DIFFERENTIAL OPERATORS

AND DIFFUSION PROCESSES

HEINZ BAUER

This article develops survey lectures for general mathematical

audiences which the author delivered at the 27th Annual

Meeting of the Australian Mathematical Society at the

University of Queensland, 1983, and at the 10th Austrian

Congress of Mathematicians in Innsbruck, 1981. The central

theme of these lectures was the use of probabilistic methods

in the study of linear elliptic-parabolic differential

equations of second order.

The starting point will be an orientative discussion of

the role of Brownian motion in classical potential theory.

It will then be discussed that, given an elliptic-

parabolic differential operator L of a certain type,

there exists a uniquely determined diffusion process which

is linked with L formally in the same way in which

Brownian motion is linked with the Laplace operator. The

fundamental results of K. It6, D.W.Stroock and S.R.S.

Varadhan will be in the centre of this part of the paper.

We will then proceed to the discussion of more refined

problems of the same type for differentiable manifolds.

A glimpse at stochastic Riemannian geometry will then close

our tour d1horizon.
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2 2 0 Heinz Bauer

1. Laplace Operator and Brownian Motion

On JR , p > 1} equipped with the Euclidean norm II. II, we

consider the Brownian semigroup (g.). where

(1) gt(X)

is a semigroup in the sense that g * g.= g , , holds for all
S t STL

s,t>O. It is advantageous to interpret the Brownian semigroup as a

semigroup of positive linear operators, more precisely as a semigroup of

kernels in the sense of measure theory (cf. [2], [16]). For this

purpose we put

(2) Ptf=gt*f (f€Bb),

where 8 = 8 (H?) denotes the linear space of bounded, real-valued,

Borel-measurable functions on i?? . The semigroup property then appears

in the form

(3) Ps+t=PSPt (8tt>0).

It is easily seen that (P.)j.~ is a Feller semigroup (or Feller-Dynkin

semigroup in the terminology of Williams [23] , p.115) which means that

(P.). is a semigroup of kernels having the following three

properties:

C0 >

(F ) lim IIP / - f II = o (f € C ) t
2 t->o t °

Here C = C (TR") denotes the space of continuous real-valued functions

on JR vanishing at infinity and II. .. II stands for the sup-norm.

The semigroup (P+).. is closely related to the Laplace operator
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Elliptic differential operators 2 2 1

A. In fact, i t i s well known that C2 , the space of C -functions on
c

J?" with compact support, is contained in the domain of the

infinitesimal generator of the Brownian semigroup and that on C the
G

infinitesimal generator coincides with iA (cf. [5]). So we have

(4) lim , = ihf (f £ C1)(even in the sense of uniform convergence). From the semigroup property

(3) the following integrated form of (4) follows:

t

(5) Ptf(x) = f(x) + / Ps(ihf)(x)ds (f £ Cza)
o

for all x £ JRP.

When speaking about the Brownian semigroup ^2+}j->o
 o r ^t^t>o '

we have passed from the Laplace equation to the heat equation

(6) M _ I A M = O .

In fact, for f £ 8 } the function

u(x,t) = P.f(x)

solves the heat equation on the half-space JR"xj0j + <*>[ . Consequently

the property (F2) expresses that u solves the Cauchy problem for

f 6 C on this half-space. The function
C-

(x,t) -+gt(x)

given by (1) is nothing else than the fundamental solution of (6) with

pole at the origin (o,o) .

We shall now pass to the probabilistic meaning of the Brownian

semigroup. In the language of a physicist, this means that we replace

the macroscopic observation level by the microscopic one. We introduce

(7) fl = C(JE+J]R
P)
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222 Heinz Bauer

the s e t of a l l continuous paths in JR , i . e . of a l l continuous maps

w ; JR—*• JR" where JR i s the closed ha l f - l i ne [Oj+mf. We introduce

the position map for the time t € JR

(8) Xt : a -*• JRP

as well as the o-algebras

(9) F = a(Xo ; s £ J? J

and

(10) F,= a(X ; s € / o , * ; ;

generated by all X respectively by all X with o ̂  s ̂  t. F is
s s

the a-algebra of all events (of interest to us) ; F is the o-algebra

of events up to time t .

On F the Wiener measure P is available. It is the only

probability measure on F with the following three properties:

(Wx) PUo = o} = 1 ,-

(Wo) X - X i s independent of F (s <t) ;
2. ~C S S

(W_) the distribution of the increment X - X 3 s < t 3
j V S

equals the p-dimensional Lebesque measure

X with g, as density, i . e .
u—S

t y tg

for every Borel set B c n" .

Translation to ->• x + u yields a measurable bijection of Q. onto

itself for every x E JR . We denote by r the image of P under

this bijection. While P lives - according to (W ) - on the set of

paths to £ °, starting at the origin, t lives on {X = x] the set of
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paths a) £ Q starting at x . The family (TT) cmP o f probability

measures is called Brownian motion, it is the steering mechanism of a

stochastic process describing the movement of a Brownian particle. It

is important to observe that the family (P ) has the following

properties:

(D1) PX{Xo = x} = 1 (x £ MV) i

(D ) x -+r(A) is Borel measurable (A £ F) ;

(D ) E^CfoX, | F ) = ETs(foX ) P^-almost surely

(x€lRP,s<t,f £Bh).

As usual, we denote by ST (resp. IT (. \.)) the expectation (resp. the

conditional expectation) with respect to t . (Do) ̂ s t n e famous (weak)

Markov property. It interrelates the different probability measures

c in such a way that the Brownian particle 'has no memory': not the

full history of the particle counts for the prediction of its future;

for the prediction,only the present position of the particle (at time s)

is necessary. (For details, see for example [2].)

An arbitrary family (?) gjnV °f probability measures on F

with the above properties (D )-(D ) is called a diffusion (or diffusion

process) on TR . So Brownian motion is a particular diffusion.

The Brownian semigroup (P,).> can be recovered from Brownian

motion (cf. [2], p.399-401). One has

(11) Ptf(x) = for all

x £ i??", t>O. For an arbitrary diffusion the equalities (11) can be

used in order to define a family (P+), of operators on a . (P.)

turns out to be a semigroup of Markovian kernels on M 3 hence

satisfying P.I = 1 for all t > o. (P+)+> is called the transition

semigroup of the given diffusion. This semigroup is not a Feller
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semigroup, in general. Property (F ) is missing. Only a weakened form

of (F ) - however equivalent to (F ) in the presence of (F ) (cf. [23],

p.115) - is available, namely CP.f). converges pointwise to f as

t -*• o (even for continous bounded functions f). Property (F,) remains

valid.

The great advantage of interpreting the Brownian semigroup as the

transition semigroup of a diffusion process, namely of Brownian motion,

lies in the well-known possibility of a probabilistic, intuitively

simple approach to the main results of classical potential theory

(cf. [6] and [3]). The price that one has to pay for this advantage is

not negligible since one has to pass from the Laplace operator to the

fundamental solution of the heat equation in order to arrive at the

Brownian semigroup. For more general elliptic or even elliptic-parabolic

differential operators a remarkable amount of hard analysis can be

expected in order to arrive (eventually) at similar probabilistic

approaches to potential theoretic problems. The theory of harmonic

spaces develops a general machinery which allows to pursue this kind of

an approach (cf. [3], [4], [7]).

In what follows we intend to discuss procedures which, for certain

elliptic-parabolic differential operators L , will allow a probabilistic

approach to the corresponding potential theory by going straight-away

from L to an associated diffusion.

2. Elliptic-parabolic differential operators and associated diffusions

We will consider a linear differential operator L defined on all

of HP of the form

L=\ . ! V arsr + j V*> af:
131

i 3 %=1
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which satisfies the following assumptions: all coefficients

x -*• a . • (x) and x -*• b • (x)
VQ ^

are bounded and continuous real-valued functions on JR". L is semi-

elliptic (or elliptic-parabolic) in the sense that the matrix

a(x) = (a. Ax))
I'd

is symmetric and positive semi-definite for all x £ TR . The operator

L is called elliptic if a(x) is even positive definite for all x E JR?

A diffusion (F ) CTOp on J?" will be called associated to L
-Tic* In

if its transition semigroup (P.). satisfies the same condition as

Brownian motion does for the special operator L = — A (see (5)), namely:

t

(i3> P,f(x) = f(x) + \P (Lf)(x)ds (f e cz, x e mp).

o

According to the definition (11) of the transition semigroup and

according to (D ), this can be rewritten in the form
(14) ST(H\') = o (f £ C\ x e JRF),

"V G

where

(15) HTt = f o Xt - f o XQ - j Lf o Xsds
o

is defined on the set ft.

The probability measures c of a diffusion associated to L are

interrelated by means of the Markov property (D ) in a complicated way.

The family (H,).^. of real random variables leads to the possibility

of detangling these measures with the intention to prove the existence of

diffusions associated to L later on. This possibility is due to the

following fact which can be easily proved: (H,),^ is a martingale with

respect to each probability measure t of a given diffusion associated

with L. So, by definition,
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F J = / f^-almost surely
S Ss s

whenever o < s < t, x £ JR" and / £ C2 .

This crucial observation leads to the following

DEFINITION. A probability measure P on F is called a solution

of the martingale problem for L and for a point x £ JR& if

(M ) (H+)+> is a martingale with respect to P (f £ Cz)

and if

(M2) P{Xo = x} = 1.

For reasons of illustration let us return for a moment to the

1 1 dz
situation of §1, namely to L = ~oh=—-3—2 i-

n dimension p = 1. For the

two functions f = id and = id23 that is f(x) = x and = x2, one

obtains for any probability measure P on F satisfying P{X = o} = 1

that H and H, coincide with
~C V

X. and X, - t P-almost surely.

respectively. According to (W ) the (1-dimensional) Wiener measure is

such a measure P. It is a classical result of P. LeVy (cf. [10], p.75)

that (X,)^ and (X7. - t) ,> are martingales for a probability

measure P on F satisfying P{X = o} = 1 if and only if P is the

Wiener measure. From this it can be derived that the Wiener measure

is the only solution of the martingale problem for x = o (given the

operator L = — A in dimension p = 1) . The proof has to take care of

the fact that the two functions id and id2 do not have a compact

support.

It is the preceding illustration which motivates the following

definition - now again in the general situation.

DEFINITION. The martingale problem (for the differential operator

L) is said to be well posed if, for every x £ iff j it has exactly one
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solution.

By means of compactness arguments involving probability measures,

one is led to the first result of fundamental importance due to Stroock

and Varadhan [20], [21]. (For quick references see the presentation of

Priou.ret [18] .)

PROPOSITION 1. Assume that the martingale problem for L is well

posed. Then the family of its solutions (P^) cjpP ^s the only diffusion

associated to L. Furthermore, the corresponding transition semigroup

(P.), is a Feller semigroup.

One is thus led to the problem of deciding when the martingale

problem is well posed. Essentially, two types of answers are known:

THEOREM 1. In each of the following two cases the martingale

problem is well posed:

(I) the matrix field x -+a(x) is of the form

a(x) = a(x)aT(x) (x € JRP)

where the matrix field x -»• a(x) as well as the vector field

x -*• (bx(x),... ,b (x)) satisfy the global Lipschitz condition on J?".

(sv) The differential operator L is elliptic.

Condition (I) is due to K. Ito [11]. The proof uses the technique

of stochastic differential equations. (SV) is due to Stroock and Varadhan

[20] , [21] . The proof makes essential use of the martingale formulation

by means of an approximation of the situation (SV) by that of (I).

Furthermore, it uses the so-called Cameron-Martin formula which allows

the passage from the case where the drift, which by definition is the

vector field

(16) x ->b(x) = {b̂(x),...,b

vanishes to the general case by means of a martingale argument. For the

technical details the reader is referred to Priouret [18].
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A Feller semigroup associated to L can always be interpreted as

the transition semigroup of a diffusion (cf. [23]). This fact leads to

a purely non-probabilistic version of Theorem 1 in connection with

Proposition 1.

COROLLARY. Under each of the assumptions (I) or (sv) there

exists exactly one Feller semigroup (P+),. for which condition (13)

is satisfied.

No purely analytic proof of this result seems to be known. In

conclusion we can say that by means of the martingale problem it is

possible to pass directly from the differential operator L to an

associated diffusion process which, in addition, turns out to be uniquely

determined by each of the conditions (I) and (SV) .

3. Diffusions on manifolds

Up to now the coefficients of the differential operator L were

assumed to be bounded fend continuous) . The treatment of the continuous,

but unbounded case leads in a natural way to the problem of studying

diffusions associated to a semi-elliptic differential operator on a

differentiable manifold. In fact, the natural idea of treating the

unbounded case by restricting the differential operator L to open

subsets U of J?" on which L coincides with a differential operator

Lj. on JR satisfying the conditions of §2, by restricting the diffusion

associated to L to the set U in an appropriate way, and by glueing

together the pieces can be carried out successfully (cf. [18]).

So let us pass immediately to the case of a C -manifold M of

dimension p. We assume that M is connected and has a countable base.

A semi-elliptic (respectively elliptic) differential operator on M will

be a map

L : C2(M)
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which in each chart x = (x , . . . , ! ) can be written in the form

L = i ? a-̂ra;; "srir + ? V x ; *r + e2 i,j=i ̂  3 xi3 xj i=i*• 3a:i

where the coefficients are continuous and the matrix (a. Ax)) is

positive semi-definite (respectively definite) for all admissible points

x. For reasons of simplicity we will assume LI = O} that is, a = 0

as we did before. Contributions to the general case where c = Ll^O

can be found in [1].

The probabilistic setting of §1 has now to be modified (even for

M =JR") in order to study a phenomenon which unbounded coefficients

cause in general, namely the explosion phenomenon. It is due to a

possibly finite lifetime of the moving particle described by a diffusion.

In order to take care of this phenomenon we consider the one-point

compactification M?= M V {&} of M (with 6 as an isolated point if

M is compact) and the space C.(M) of all continuous maps to : J? —*• M.

o +o

which respect 6 in the sense of a "cimetary": w(t ) = 6 for some

t £ iff implies m(t) = 6 for all t > t . The number

(17) ?(u) = inf{£ £ JR+ : to(t) = 6}

is then called the lifetime of the path u £ CJM).

The appropriate probabilistic setting is now the following: we

choose J2 = CJM) and define (X+)+> , F and (? ) ,> formally in

the same way as before. A diffusion on M is then a family (P^) of

probability measures on J2 with the properties (D )-(D ) reformulated

in the appropriate way. The only essential difference to §1 is the

definition of fT : this has to be now the space of all bounded Borel-

measurable functions on M extended to M by assigning the value o
o
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to 6. The definition (11) of the transition semigroup (P^.),^ yields

then

and hence

P.l(x) = P^iX, £ M] = f^U > t] (x £ M)
u t

(18) P.I < 1 .
t

So ("£\J ,> is now a semigroup of sub-Markov kernels on M. All P.

are Markov kernels on M , that is they satisfy

(19) P,l(x) = 1 (xEM, t£JR )

t +

if and only if

(191) £ = +=° P -almost surely

for all x £ M. For M = H this corresponds to the situation which

we studied before. We do not encounter the phenomenon of an explosion

there.

As before, one can study diffusions associated to L and the

martingale problem. Via localization and the technique of glueing pieces

together, one is then led to (cf. [18], p.111).

THEOREM 2. There exists exactly one diffusion process on M

associated to L if L satisfies one of the following two conditions:

(I1) L has coefficients in C2 (M)

(s'v') L is elliptic.

It is important to observe that both conditions are chart

invariant. For M = JR , C2-coefficients of L imply that condition

(I) is locally satisfied. The matrix field a is then of the form

a(x) =a(x)a (x), x £ iff , where the new matrix field x -*• a(x) is

locally Lipschitz (cf. [18], p.82).

In the situation of Theorem 2 the unique diffusion associated with

L has a transition semigroup (P.),^ which is not anymore uniquely
V X*O

determined by the one condition
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(20) P f = / + / P (Lf)ds (f 6 C2)
v s c

However, (20) determines (P.).~ uniquely if there is no explosion
u T *O

C)
c

(cf. [1]). Furthermore, (P.)j.^ is not a Feller semigroup in general,
~c v^o

even if there is no explosion. So it is natural to ask, when there is no

explosion and when the transition semigroup is of Feller type.

Several answers to these questions are known. We restrict our

discussion to two particular situations in which interesting answers are

available.

The first situation is that of M = _ffi™. Several conditions are

known which assure an infinite lifetime of the diffusion. One of the

simplest and most important is the following (cf. [21], p. 255 for

further details).

PROPOSITION 2. There is no explosion if the differential operator

L is elliptic and if for some constant K > o

(21) \\a(x)\\ < Jf(l + llxll2)

and

(22) < x,b(x) > < K(l + llxll2)

hold for all x £ JRP.

Similar, but somewhat stronger growth conditions are necessary to

assure, in addition, that the transition semigroup of the diffusion

associated to L is a Feller semigroup. Condition (22) has to be

replaced by

| <x,b(x)> | < K(X + llxll2) (x

also a stronger version of (21) is needed. For details the reader is

referred to Leha-Ritter [13]. Conditions close to being necessary and

sufficient can be found in Azencott [1].

The second situation concerns the case where M is a Riemannian

(C<»-)manifold and where
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(23) L - \ A^

is - up to the factor — - the Laplace-Beltrami operator A,, of M.

The unique diffusion associated to L is called Brownian motion on M.

It can also be obtained by the global solutions of a stochastic

differential equation (cf. [24] , p.46 and the acknowledgement mentioned

there).

The manifold M is called stochastically complete if Brownian

motion on M does not explode. The following result is due to Yau [25]

who gave an analytical proof. For a probabilistic proof see Ichihara [9].

THEOREM 3. Every complete Riemannian manifold M with Ricci

curvature bounded from below is stochastically complete. Furthermore,

the transition semigroup of Brownian motion on M is then a Feller

semigroup.

Here completeness of M refers to metric completeness with respect

to the global metric derived from the Riemannian metric. The curvature

condition is fulfilled if the sectional curvature of M is bounded from

below. Related results have been obtained by Azencott [1], Debiard-

Gaveau-Mazet [8] and Pinsky [17].

4. An outlook on stochastic Riemannian geometry

In the preceding situation (M Riemannian manifold and L = — A „ )

the transition semigroup (P.), of Brownian motion on M has a

density p.(x3y) with respect to the natural measure X.. on M which

depends smoothly on (t,x,y) G ]o,+<*>[y-M*M (cf. [1], [15]). So we have

for all / e Bb

(24) Ptf(x) = j Pt(x,y)f(y)\M(dy) (t > o).

For fixed y € M the function (t,x) -+p,(x1y) is the minimal fundamental
t

solution of the heat equation
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on ]o,+<>°[ x M with pole at (o,y). For M = M" we are then back in

the framework of §1 where

Pt(x,y) = gt(x-y).

For the study of geometric properties of M it is important to

know estimates for p . The so-called comparison method of Malliavin [14]

and his school uses Brownian paths and stochastic differential equations

to obtain such estimates. We close this article with one remarkable

result due to Debiard-Gaveau-Mazet [8].

For fixed dimension p, let M denote the canonical Riemannian

manifold of constant sectional curvature a (and dimension p ) . Two

geodesic balls with centres x £ M and x E M of the same radius

o o a

p > o can be identified by means of the normal charts and a linear

isometry of the tangent spaces at x and x , for p sufficiently

small (cf. [14] , p.38). In the case of a Hadamard manifold even global

identification of M and M is possible due to the Cartan-Hadamard-

theorem. We recall that M is called a Hadamard manifold [22] if M

is (metrically) complete, simply connected and of sectional curvature

K < o .

Each manifold M is such a Hadamard manifold provided that

a < o. The corresponding densities p, are known. They can be

calculated by means of recursion formulas (cf. [8], p.397). In the case

a = o we have M = J?" and hence p,(x,y) = g,(x-y) . Also in the

general case p.(x,y) depends on x,y only via the distance r = d(x,y)

in the global metric.

The announced result of Debiard-Gaveau-Mazet [8] is now the

following.
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THEOREM 4. Let M be a Hadamard manifold which is stochastically

complete. Suppose that its sectional curvature K is bounded from above

by a constant a < o or from below by a constant b. Then (after global

identification of M and M ) one has

p,(x,y) < pAx,y) (x,y £ M)

and

v+'x>y) ̂  pf(
x3y) (x>y € M)

respectively

In particular, one always has

Pt(x,y) < {^j e r /2t with r = d(x,y)

since p.(x,y) = g,(x-y). It should be observed that, according to

Theorem 3, lower boundedness of K implies stochastical completeness of

M.

The results of Theorem 4 can be used in order to obtain comparison

results about Green functions and the first eigenvalue of the

differential operator - A_ (cf. [8]).

What is remarkable in the proofs of these results is the constant

use of Brownian paths. They thus become the object of differential-

geometric studies. This is due to the fact that the density p. can be

written in the form

where B (y) denotes the geodesic ball of radius e > 0 with centre y.

Here again, we encounter the general message of this lecture:

probabilistic methods, above all the theory of stochastic processes,

allow deep insight in purely analytic problems.
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