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ABSTRACT. An experimental program at Worthington Glacier, Alaska, U.S.A., has
yielded the first in situ measurement of the full stress tensor in glacier ice. Measurements
were made with an array of stiff (low-compliance) normal-force sensors frozen into a
borehole at 120 m depth. Freezing in temperate ice was accomplished by a down-hole heat
exchanger which extracted heat at a rate of 15 W. Under slowly varying stress conditions,
relaxation of stress anomalies by viscous creep following drilling of the hole and installa-
tion of the sensors allows for equilibration of measured stresses with far-field stresses.
Equilibration of local and far-field stresses was confirmed and pressure sensors calibrated
in laboratory experiments prior to the field program. Results of the stress measurements
show principal axes of the stress tensor oriented in directions consistent with the geometry
of the glacier and broadly consistent with measured englacial strain rate. The magnitudes
of stress-tensor components are more error-prone and more sensitive to uncertainty in
sensor magnitude than uncertainty in sensor orientation. Mean stress determined by pres-
sure measurements agrees with estimated lithostatic overburden to within approximately
15%. Unexpected results include a stress perturbation lasting about 5 days that caused a
rotation of the orientations of the principal stress axes of approximately 5° about an axis

pointing in the down-flow direction.

1. INTRODUCTION

Accurate analysis of the motion of glacier ice in response to
gravity and boundary tractions is central to all problems
involving the interactions of glaciers and ice sheets with
climate. These problems include the interpretation of ice-core
paleoclimate records, interpretation of past glacier volume
and length changes, and prediction of the contributions of
glaciers to sea level arising from current climate changes.
Glacier flow is complicated by the fact that glacier ice is a
constitutively complex material. Mechanical analyses of the
relationship between applied stress and deformation rate in
polycrystalline ice assume a non-linear viscous flow law
(typically referred to as Glen’s law) of the form

b= Ay o, (1)
for flow in steady-state creep (Glen, 1955; Paterson, 1994),
where €;; is one of six independent components of the strain-
rate tensor, a;j is the deviatoric-stres/s tf:nsor and O'/H is the
second tensor invariant, equal to %Oijaij. All second-order
tensor indices ¢ and j range in value from 1 to 3. The exponent
n 1s typically taken to be approximately 3, but values ranging
from 1 to 4.2 have been suggested (Raymond, 1980). Uncertain-
ties persist, however, in the range of values of the parameter n,
and in the form of the flow law itself (Baker, 1978; Goldsby and
Kohlstedt, 1998; Pettit and others, 1998). The assumption of
steady-state creep may not always be valid, and in conditions
colder than the pressure-melting point the parameter A
changes as a function of accumulated strain when the poly-
crystalline aggregate recrystallizes under applied stress. The
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parameter A is also strongly temperature-dependent, varying
over two orders of magnitude between 0° and —30°C (Paterson,
1994). Most knowledge of the constitutive properties of glacier
ice comes from laboratory experiments (e.g. Glen, 1955;
Baker, 1978; Budd and Jacka, 1989) and from field obser-
vations of strain rate combined with inferred values of stress
(e.g. Nye, 1953; Raymond, 1973; Hooke and Hanson, 1986).
Direct measurements of local values of the full stress tensor
in combination with in situ measurements of the correspond-
ing strain-rate tensor components are the most complete
source of information constraining the flow law for ice. In situ
stress measurements in glacier ice have been attempted pre-
viously (Outters, 1995), and partial stress-tensor measure-
ments have been made in sea ice (Cox and Johnson, 1983),
but the work presented here is the first successful in situ meas-
urement of stress-tensor components in glacier ice.

We present the results of a prototype experiment to
measure the full stress tensor at depth in glacier ice. The
technique is based on inclusion methods developed for
measuring stresses in rocks with viscoelastic behavior such
as salt or potash (Amadei and Stephansson, 1996). For such
viscous media under steady or slowly varying conditions,
the state of stress in an inclusion initially placed in a stressed
viscoelastic material approaches the absolute state of stress of
the medium over time. Viscous creep in the immediate neigh-
borhood of the stress-measurement unit allows stress pertur-
bations created by the emplacement of the unit to diffuse,
resulting in the elimination of a major source of error encoun-
tered in non-viscous materials. Reliance on this relaxation of
stress perturbations requires that (1) the stress field being
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measured 1s slowly varying relative to the relaxation time,
and (2) sufficient time is allowed for relaxation before meas-
urements are taken as representative of the unperturbed state.

2. STUDY SITE

Measurements were conducted on Worthington Glacier, a
temperate valley glacier located in the Chugach Mountains,
Alaska, U.S.A. Worthington Glacier was chosen for its ease of
access, moderate flow (about 80 ma ') and simple geometry.
An extensive field program has been conducted here since
1993, and results have been reported concerning the direct
observation of internal deformation (Harper and others,
1998b), surface velocity (Harper and others, 1998a), internal
ice structure (Harper and Humphrey, 1995) and subglacial
topography (Welch and others, 1998). Worthington Glacier is
approximately 8 km long, straight with no tributaries, and
divided into three sections by two icefalls. The field studies
were all located on a gently inclined (2-3°) reach between
the icefalls at an altitude just below the glacier’s equilibrium-
line elevation of approximately 365 ma.s.l. The surface

velocity field, described in detail in Harper and others
(1998a), 1s generally symmetrical about the center line of the
glacier, and reflects compression in the upper reach at the
base of the upper icefall, and extension below as ice enters
the lower icefall. The general pattern and symmetry of stress
and deformation in the glacier are reflected in the crevasse
patterns (Fig. 1). At the site of the stress measurements
(marked with a cross in Fig. 1), the general pattern of deform-
ation is down-glacier compression, cross-glacier extension
and vertical extension, compatible with emergent-flow vectors
in the ablation zone. This configuration is generally compat-
ible with the location of the measurement site about 200 m
down-glacier from the base of an icefall.

3. THEORY OF MEASUREMENT

The state of stress at a point in three dimensions is described
by a tensor with six independent components o;;. For glacier
ice, only the deviatoric stresses (deviations from a state of
hydrostatic pressure) influence the components of the strain-
rate tensor. The deviatoric-stress tensor has components 0; ;=

#

-

iy

Fig. 1. Aerial photograph of the central portion of Worthington Glacier where measurements were made. The flow direction is top to
bottom (west to east ); the upper icefall is out of the picture to the left, and the lower icefall is located in the region of large transverse
crevasses to the left of the bifurcated terminus. The region where surface and englacial velocities were measured is depicted by the

box, and the location of stress measurements by the cross. The boxed area is approximately 370 m across at its widest extent.
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Oij —%Jk,k&;j where summation is assumed over repeated
indices. In this paper, deviatoric compression is denoted by
negative values of deviatoric stress, and deviatoric tension by
positive values. The six tensor components can be deduced
from six or more measurements of normal stress (pressure)
in the body, oriented in directions which span the three-
dimensional space. Tensor components and normal stresses
are related through the matrix equation

[P] = [M][o], (2)
where [P] is a column vector of N pressure magnitudes P,,,

[0] is a column vector of the six independent stress-tensor
components, and

lf m% nf 2myny 2n1ly 2lymy
lg mﬁ né 2mons 2noly 2lamy
()=
1?\_1 mf\_l ”?\"—1 2my_1ny-1  2ny_1ly-1  2ly_1mpy_1
lz\ mg\ nz\ 2myny 2nyly 2xmy

isan N x 6 matrix of geometric coefficients derived from the
direction cosines l;,m;,n;, of the pressure-sensor orienta-
tions. For a unique solution to exist, N must be greater than
or equal to 6. When N is greater than 6, a least-squares esti-
mate can be obtained which gives a measure of the error in
[0]. Normal-stress orientations (I;,m;, n;) and tensor com-
ponents o;; are described relative to any global Cartesian
coordinate system, defined as (z,y, z) in this paper. After
obtaining the stress tensor o;; in the (x,y,2) coordinate
system, the eigenvalues and eigenvectors of the tensor give
the principal-stress magnitudes and principal-stress axis
orientations relative to that coordinate system.

4. INSTRUMENT DESIGN AND INSTALLATION

Normal-stress measurements were made at Worthington
Glacier by freezing in an array of nine pressure sensors in a
borehole drilled to 120 m depth. The array of pressure sensors
occupies a cylindrical volume approximately 0.70 m high and
0.08 m in diameter. The pressures measured by the array are
combined to form a single determination of the state of
stress at the location of the installation, but individual cells
are separated by sufficient distances to avoid mechanical
interference between cells. Pressure sensors are based on a
(high-stiffness)
deflection of the faces to about 0.05 mm at full-scale loading.
The pressure sensors were designed, built and tested at the
University of Wyoming. Testing prior to field deployment
included laboratory calibration of the pressure sensors to
hydrostatic pressure and biaxial shear stress, and quantifi-

low-compliance design which reduces

cation of the relaxation time under conditions including ice
texture, temperature and general state of stress to be
encountered at Worthington Glacier. The relaxation time
for laboratory runs was 5—7 days. Pressure sensors are 6 cm
in diameter and 1 cm thick, and were arranged with varying
orientations in a vertical stack approximately 0.7m in
height for installation in the glacier borehole. A borehole of
approximately 0.Im diameter was drilled by hot-water
methods (Harper and others, 1998b) only to the depth of
installation to avoid trapping a pocket of liquid water below
the stress unit. Freezing of the borehole water and englacial
water surrounding the measurement unit was accomplished
by circulating a refrigerated fluid in a closed loop surround-
ing the pressure sensors. Refrigeration was provided by a
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50 W thermoelectric cooler and heat exchanger located in
the borehole above the pressure-sensor array. After cooler
inefficiency and waste heat from pumping were accounted
for, heat could be extracted from the vicinity of the pressure-
sensor array at a rate of about 15-30 W. During installation,
heat was extracted to freeze the water in the 0.l m diameter
borehole over a 1 m length enclosing the stress unit (about
2400K]), freeze liquid-water content in the ice within a
0.5 m radius of the stress unit (about 3300 KJ) and pull down
the temperature of the ice within a 0.2 m radius of the stress
unit to approximately —=5°C (about 1200 KJ ). Waste heat was
vented into the borehole water approximately 3 m above the
pressure-sensor array. At a minimum net heat extraction rate
of 15 W, the freezing process can be completed in approxi-
mately 5 days. For test runs and final installation the freezer
was run for at least 5 days, and freeze-in was monitored by
measuring temperature in the ice surrounding the stress
unit and by monitoring changing stresses on the sensors.
Temperature was monitored during freeze-in, and after
freeze-in during data acquisition. Power supply, tempera-
ture monitoring and pressure-sensor data acquisition were
all handled through power and signal lines to data-acquisi-
tion and control devices at the surface.

5. DATA

The response of the nine pressure-sensor time series for the
76 day measurement period beginning 6 July and ending 20
September 1998 is shown in Figure 2. Pressures were meas-
ured hourly, and the hourly measurements were averaged to
produce single daily values shown in Figure 2. Equilibration
of the pressures with the far-field stresses can be seen in the
declining signals during the first ~5 days of record. For the
calculations which follow, pressure values were selected from
the time series at times 18 days or more after the initial instal-
lation to ensure equilibration. A small variation in pressure-
sensor signals near 30 August is common to six of the nine
sensors, and is interpreted to be a real stress event in the gla-
cier. However, two of the sensors (LC-1 and LC-9) showed
anomalous behavior and were discarded, leaving seven pres-
sure time series for the determination of the six independent
stress-tensor components, with four of the remaining seven
showing the 30 August jump. The anomalous pressure sensors
may have been improperly coupled to the ice by freezing, or

Loac—cell time series
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Fig. 2. Time series of nine load cells.
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Table 1. Deviatoric-stress lensor components (kPa) derived
from load-cell measurements

Table 2. Results of introduction of errors into synthesized
stress data

Day o o, o o, a, a

T vy 2z xy xz yz

Before 30 August

24 July —165.29 174.36 -906 15242 7815  —71.59
26 July —-160.56  168.20 -764 15447 7960 —74.68
31 July —-150.49 17915  —28.66 14138  —66.75  —81.17

5 August —202.55 19941 -3.14 13379 5786  —65.96

After 30 August

4 September —30525  220.96 84.28 12824 1296  —15.23
9 September —286.31 22274 63.57 12528 569 1722
14 September —29845  230.00 6844  126.66 1449 1843

Notes: All seven available load cells were used in all calculations. Coordinate
system is oriented with x across flow direction, y parallel to flow, z up.
Negative values on normal stresses denote compression, positive values
tension.

may have experienced internal mechanical problems after
installation.

The measured pressures were converted to corresponding
stress-tensor components for seven representative days fol-
lowing equilibration: 24, 26 and 31 July, 5 August and 4, 9
and 14 September. Pressure values on 24, 26 and 31 July and
5 August were chosen as representative of fairly steady values
prior to the 30 August jump in sensor pressures, and 4,9 and
14 September were chosen as representative of the more
stable period after the 30 August jump. Table 1 shows values
of the deviatoric-stress tensor components calculated from
sensor pressures for the seven days in a global coordinate
system (x,y,z) oriented so that x is oriented to the north
(horizontal and perpendicular to the glacier flow direction),
y 1s oriented to the west (horizontal; parallel to and in the
opposite direction to flow) and 2 is oriented vertically upwards.

5.1. Evaluation of error in determination of stress-
tensor components

Errors in the determination of stress-tensor components from
oriented pressure measurements arise from four sources: (1)
disturbance of the local stress field by installation of sensors
(the local state of stress does not represent the unperturbed
state of stress); (2) flawed coupling of sensor surfaces with the
ice (pressure sensor is not measuring a simple normal force);
(3) error in the measurement of actual load impinging on the
sensor (sensor-signal magnitude is inaccurate); and (4) uncer-
tainty in the orientation of the sensor (sensor orientation is
inaccurate). The relaxation of the disturbance of the local
stress by installation of sensors is seen in the beginning of the
record shown in Figure 2 and is discussed above. Flawed cou-
pling of the sensors is detectable when it occurs to a significant
degree (as in the case of the discarded records from LC-1 and
LC-9), but at less obvious levels may be hard to detect. The
best insurance against coupling flaws lies in complete and
effective freezing of the sensors in the borehole. Errors arising
both from perturbation of the undisturbed stress field and
from coupling flaws are being investigated in ongoing labora-
tory experiments at the University of Wyoming.

Inaccuracy in sensor-signal magnitude and sensor orien-
tation is largely controllable in the sensor design and con-
struction, and the influence of these errors can also be
calculated by adding known errors to synthesized data. This
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Perturbation Angular deviation Stress magnitude deviation
Jfrom datum
g1 a9 a3
Sensor orientation 0.1°
error 5° 0.27% 0.94% 2.60%
Sensor magnitude 0.6°
error 5° 1.80% 6.30% 17.30%

was done by adding errors in pressure magnitude and orien-
tation to one of seven stress sensors in a synthesized dataset,
with the error magnitudes representative of the expected
error in our current sensor design. The synthesized dataset
was created by defining a datum state of stress, in terms of
stress-tensor components, and then calculating the resolved
normal stress on planes representing sensor orientations. The
resolved normal stresses are the datum sensor signals, one of
which is then perturbed in magnitude or orientation. The
stress-tensor components are then recalculated with the per-
turbed sensor value included, and the result is compared to
the initial datum state of stress. Differences are quantified in
terms of angular deviation of principal-stress axis orienta-
tions and mean percent deviation of the three principal-
stress values from the mean of the initial stress magnitudes.
The results of these tests are shown in'Table 2. Errors in sensor
magnitude are clearly more significant than errors in orienta-
tion. The largest errors occur in the o3 direction because the
perturbed sensor is oriented most nearly parallel to the o3
direction, although the relation between the orientation of
sensors experiencing magnitude errors and the orientation
of principal stresses with the strongest response is complex.
On the basis of this analysis, and the difference noted
between the mean sensor stress and the overburden stress
expected from the depth of burial, we interpret the measured
stress magnitudes with caution, but have good confidence in
the reliability of the principal-stress orientations.

24 July

7 choices of 6 sensors Equal-area projection, lower hemisphere
Fig. 3. Principal-axis orientations for seven choices of six
sensors. Starred symbols show the orientations for the one
choice of seven sensors.
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Stress-tensor component errors are also influenced by
the number of sensors employed and by the distribution of
sensor orientations around the orientation sphere. With
seven sensors providing reliable data, there are eight possi-
ble combinations of six or more sensors available, with six
being the minimum number of values required to produce
a unique solution for the stress-tensor components. From the
seven sensor measurements available, stress-tensor compo-
nents were calculated for seven possible combinations of six
pressure sensors and one combination of seven sensors. The
combinations of six sensors were all found to produce more
scattered values of stress-tensor components, due to less
complete directional coverage of the orientation sphere,
but all eight possible combinations of sensors produced prin-
cipal-axis orientations which scatter to a degree comparable
to the the orientation error arising from uncertainty in indi-
vidual sensor orientation. Figure 3 shows the orientations of
the principal stresses, plotted as equal-area lower-hemi-
sphere projections, for the tensors determined from six of
seven available sensors and for all seven available sensors.
All orientations are very close, both to each other and to
the principal-stress orientations presented in the discussion
of changing stresses below. For all seven measurement days,
the mean pressure on the seven cells was 1240 kPa, with a
standard deviation of 41.2 kPa. This pressure corresponds
to a burial depth of 140m, 15% in excess of the value of
1078.4 kPa corresponding to the burial depth of 120 m under
ice of density 917kgm °. Measurements were made in
summer, when the firn cover was thin or absent, and the
assumption of density equal to that for ice does not intro-
duce a significant error.

6. STATE OF STRESS PRIOR TO 30 AUGUST

The stress-tensor components (Table 1) at 120 m depth for
dates before 30 August show lateral (cross-flow) compression
and longitudinal (along-flow) extension. The vertical axial
stress 1s variable, being weakly compressive on 24, 26 and 31
July and weakly tensile on 5 August. The sense of these
terms is generally compatible with the regional flow regime
which is in a transitional area between compression at the
base of the upper icefall and extension entering the lower ice-
fall. The axial strain rates €, and €, measured at the surface in
the vicinity of the borehole stress measurements (Harper and
others, 1998b) show essentially a reversed pattern to that seen
in the stresses at 120 m depth: surface strain rates are longi-
tudinally compressive and laterally extensile. Comparison
between stresses at the surface and at depth is not entirely
straightforward, however, since insight into the characteris-
tics of stresses at depth is based primarily on analytic solu-
tions to the force equilibrium equations under very simple
conditions, and on stresses inferred from a conventionally
assumed flow law. The difference between the stresses meas-
ured at depth and inferred from velocities at the surface is
discussed below.

The shear-stress term o7, (marginal shear in a flow-
parallel vertical plane) is positive at all measurement times,
denoting left-lateral horizontal shear, which is expected on
the left side of the flow center line (facing down-flow). The
sl}ear in the horizontal plane parallel to the flow direction,

Yz
The remaining shear-stress term, o, represents a moment
about the y axis (horizontal, oriented in the flow direction).

o,.,1s negative at all times, which again is the expected sense.
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Table 3. Principal-stress magnitudes (kPa)

Day o1 o9 o3

Before 30 August

24 July 1551.76 1266.18 1049.90
26 July 1550.23 1261.52 1050.90
31 July 1544.38 1302.03 1059.34
5 August 1580.57 1301.41 1067.43
After 30 August

4 September 1730.12 1312.47 1142.65
9 September 1698.83 1321.49 1129.72
14 September 1711.91 1318.05 1123.28

A negative value of a;z corresponds to a counterclockwise
moment about the y axis, facing in the down-flow direction,
and a positive value corresponds to a clockwise moment. It is
a stress that could arise from a lateral (cross-flow) gradient in
uplift or settling on the bed and does not have an expected
value on the basis of simple flow configurations. The value of
oim 1s negative before 30 August and positive after. The bed
topography in the study region includes a low flow-parallel
ridge in the center of the glacier valley, approximately under
the flow center line, and rising in elevation with down-glacier
distance below the upper icefall (Welch and others, 1998). If
this ridge forces lateral divergence of ice near the glacier bed,
then on the left side of the bedrock ridge (facing down-flow)
the cross-flow normal stress me could be negative (as
observed), with the shear stress O’fm also negative as ice is
lifted on the right (closer to the center line) by the bedrock
ridge. Changes in the value of a;z could be a consequence of
the passage of a bedrock feature of a smaller size than the
bedrock ridge, or possibly a change in the spatial distribution
of sliding arising from changes in basal hydrology.

The principal non-deviatoric stress magnitudes are shown
in Table 3, and principal-stress axis orientations for the period

Before 30 August

Equal-area projection, lower hemisphere

Ig. 4. Principal-stress orientations for the period prior to 30
August. Sigma I corresponds to direction of deviatoric principal
compression; Sigma 3 corresponds lo direction of deviatoric
principal extension.
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prior to 30 August are shown in Figure 4. The magnitudes and
the orientations are nearly constant during the period of
observation (variations in magnitude are approximately 1%
of average value; average variation in orientation is 5°), and
closely match the overall expected pattern of stress. Most of
the differences seen in the stresses before and after 30 August
are in the relative magnitude of the deviatoric-stress tensor
terms, and do not appear as significant changes in the non-
deviatoric principal-stress magnitudes.

7. CHANGE IN STATE OF STRESS FOLLOWING 30
AUGUST

Figure 1 shows a transient increase in four of seven pressure
signals occurring over a ~5day period centered on 5
August. The sensors respond differently because the stress
event constitutes a change in the stress tensor, not simply a
uniform variation in mean stress. Following the 30 August
transient, most of the pressure values stabilize at slightly
higher values than observed before 30 August. As in the
period prior to 30 August, the axial deviatoric stresses U;Z
(cross-flow) are compressive and O'/yy (along-flow) tensile,
but both are larger in magnitude than before 30 August.
The vertical axial deviatoric stress O',ZZ 1s consistently positive
(tensile) following 30 August, and also greater in magnitude.
Qualitatively, the axial stresses before and after 30 August
indicate that strain rates undergo a transition to greater
cross-flow, and compression, accommodated by higher
values of along-flow and vertical extension.

The marginal shear-stress term Jjw remains positive, as
expected, but is diminished in magnitude, indicating a
reduced drag at the margin. The horizontal along-flow
shear stress O',yz remains negative, also as expected, and also
1s diminished in magnitude, becoming less negative. The
average magnitude of U;/Z prior to 30 August is —73.35 kPa;
after 30 August the average value is —16.63 kPa. The ex-
pected value of 0';/2, 18 —37 kPa, based on O';/Z = pghsin a,
using the values h = 120m, a = 223. This difference
between observed values and the expected value based on
the assumption of simple laminar flow is large relative to
the estimates of error in the determination of stress magni-
tude, and is interpreted as a deviation of the actual 0;}2 from
simple laminar flow.

The cross-flow shear stress O';Z becomes positive in sign
and smaller in magnitude following 30 August, correspond-
ing to a transition from a counterclockwise to a clockwise
moment about the ¥ axis, facing down-flow. The center-line
subglacial ridge, described above, could be involved in this
transition if some support by the ridge was lost during the
30 August transient (e.g. by flow down the backside of a
bed obstacle), resulting in lowering of ice near the center
line and a corresponding clockwise torsion left of the center
line (looking down-flow).

The changes described in the deviatoric stresses across
the 30 August transient are not so pronounced in the princi-
pal stresses (Table 3): o1 increases in magnitude following 30
August, o9 declines slightly and o3 increases slightly. A
clearer change is evident in Figure 5 where the principal-
stress orientations following 30 August are shown. The axes
have rotated approximately 20° counterclockwise (looking
down-flow) about an axis oriented approximately parallel
to the o7 direction and the flow direction. This change
reflects the same change seen in the reversal of sign in the

234

https://doi.org/10.3189/172756400781820354 Published online by Cambridge University Press

After 30 August

Equal-area projection, lower hemisphere

Fig. 5. Principal-stress orientations for the period following 50
August. Sigma I corresponds to direction of deviatoric principal
compression; Sigma 3 corresponds to direction of deviatoric
principal extension.

shear-stress term o, from negative (clockwise) to positive
(counterclockwise).

8. DISCUSSION AND CONCLUSIONS

The appearance of lateral compression and longitudinal
extension at depth together with longitudinal compression
and lateral extension at the surface would not be expected
on the basis of a simple laminar-flow view of deformation,
but might in fact be anticipated from the borehole inclinom-
etery reported in Harper and others (1998b). In the en-
glacial  ?tw=96pvvelocity  fields  inferred  from
measurements of deformation, it was reported that areas of
faster flow exist in the up-glacier and down-glacier sections
of the study area, and that these areas of higher velocity ap-
pear only in the uppermost 50-75 m of ice thickness. The
location of the borehole stress measurements is at the trans-
ition from the up- glacier region of faster flow to the central
region of slower flow. Near the surface, the velocity gradient
at the surface is longitudinally compressive, but at depth
where the region of faster flow is absent, the flow is longitud-
inally extensile. The velocity distribution near the borehole
site can be seen most clearly in the central panel of figure 3 of
Harper and others (1998b). The upper part of the study region
has yielded a number of other unusual results, including pat-
terns of borehole deformation which suggest weak extrusion
flow. The flow regime of this part of the glacier is evidently
more complex than the gross geometry would indicate, prob-
ably because of the shape of the icefall above the study reach
and the center-line bedrock ridge beneath. The icefall 1s con-
cave up-glacier and has lobes on either side of the center line,
shaped such that thicker and steeper ice comes into the study
region on the flanks, compared to thinner ice leaving the base
of the icefall at the center line. At the same time, the center-
line ice of the study reach stands slightly above the flanks due
to the center-line bedrock ridge. The net effect may be that
lateral compression imposed by the extended flanks of the ice-
fall is felt more at depth in the center of the glacier than at the
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surface where the elevated center-line ice is slightly isolated
from the stresses imposed by the flanks. The additional com-
pression imposed at depth could produce the lateral compres-
sion seen in the borehole measurements, and act to reduce the
effective viscosity at depth through the influence of O',H in the
flow law. More extensive comparison of the stress measure-
ments with the detailed borehole inclinometry is underway.
Fully three- dimensional finite-element modeling would also
be desirable, and is probably the most effective way to inter-
pret the apparent interaction between stress components.

The change in alm before and after 30 August suggests
complex and effective lateral coupling in the ice, although,
on the basis of a measurement in one location only, it is hard
to estimate a length scale for this coupling. Changes in J/m
(or any component of the stress) are undoubtedly common
at small length scales near the boundary, but stress vari-
ations beneath some length scale are insignificant to the flow
of the glacier. If the stress event causing the 30 August transi-
ent originated at the bed, then the fact that the event was
observed some 65—70 m above the bed suggests that the length
scale is comparable. However, we cannot at this stage rule out
the possibility that the transient was a local artifact in some
way connected with this prototype stress-sensor installation.
The next tasks in our stress-measurement program will be to
install a number of stress-sensor packages distributed in a
volume of glacier ice of a length scale comparable to signifi-
cant scales for glacier mechanics. Also needed are sensor
arrays with greater redundancy than that provided by the
nine-sensor array used here, so that sensor failures still leave
more than the minimum number of six sensors. Finally, the
technical problems of installation and mechanical coupling
of the sensors to the ice are simplified to some degree by work-
ing in cold ice. Our next plans involve deployment of new
stress-sensor packages in Greenland, where active freezing
of the sensor arrays will be unnecessary.
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