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Abstract

We propose a simple stochastic volatility model which is analytically tractable, very
easy to simulate, and which captures some relevant stylized facts of financial assets,
including scaling properties. In particular, the model displays a crossover in the log-
return distribution from power-law tails (small time) to a Gaussian behavior (large time),
slow decay in the volatility autocorrelation, and multiscaling of moments. Despite its
few parameters, the model is able to fit several key features of the time series of financial
indexes, such as the Dow Jones Industrial Average, with remarkable accuracy.
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1. Introduction

1.1. Modeling financial assets

Recent developments in stochastic modeling of time series have been strongly influenced
by the analysis of financial assets, such as exchange rates, stocks, and market indexes. The
basic model, which has given rise to the celebrated Black–Scholes formula [24], [25], assumes
that the logarithm Xt of the price of the asset, after subtracting the trend, evolves through the
simple equation

dXt = σ dBt , (1)

where σ (the volatility) is a constant and (Bt )t≥0 is a standard Brownian motion. It has been
well known for a long time that, despite its success, this model is not consistent with a number
of stylized facts that are empirically detected in many real-time series, e.g.

• the volatility is not constant and may exhibit high peaks, which may be interpreted as
shocks in the market;
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Scaling and multiscaling in financial series 1019

• the empirical distribution of the increments Xt+h − Xt of the logarithm of the price—
called log-returns—is non-Gaussian, displaying power-law tails (see Figure 4(b) below),
especially for small values of the time span h, while a Gaussian shape is approximately
recovered for large values of h;

• log-returns corresponding to a disjoint time interval are uncorrelated, but not independent:
in fact, the correlation between the absolute values |Xt+h−Xt | and |Xs+h−Xs |—called
volatility autocorrelation—is positive (clustering of volatility) and has a slow decay in
|t − s| (long memory), at least up to moderate values for |t − s| (cf. Figure 3(b)–(c)
below).

In order to account for these facts, a very popular choice in the literature of mathematical
finance and financial economics has been to upgrade the basic model (1), allowing σ = σt to
vary with t and to be itself a stochastic process. This produces a wide class of processes, known
as stochastic volatility models, determined by the process (σt )t≥0, which are able to capture (at
least some of) the abovementioned stylized facts; cf. [7], [29], and the references therein.

More recently, other stylized facts have been pointed out concerning the scaling properties
of the empirical distribution of the log-returns. Given a daily time series (si)1≤i≤T over a
period of T � 1 days, denote by ph the empirical distribution of the (detrended) log-returns
corresponding to an interval of h days:

ph(·) := 1

T − h

T−h∑
i=1

δxi+h−xi (·), xi := log(si)− d̄i . (2)

Here d̄i is the local rate of linear growth of log(si) (see Section 7 for details) and δx(·) denotes
the Dirac measure at x ∈ R. The statistical analysis of various financial series, such as the Dow
Jones Industrial Average (DJIA) or the Nikkei 225, shows that, for small values of h, ph obeys
approximately a diffusive scaling relation (cf. Figure 1(a)):

ph(dr) � 1√
h
g

(
r√
h

)
dr. (3)

Here g is a probability density with power-law tails. Considering the qth empirical moment
mq(h), defined by

mq(h) := 1

T − h

T−h∑
i=1

|xi+h − xi |q =
∫

|r|q ph(dr), (4)

from relation (3), it is natural to guess that mq(h) should scale as hq/2. This is indeed what
one observes for moments of small order, q ≤ q̄ (with q̄ � 3 for the DJIA). However, for
moments of higher order, q > q̄, the different scaling relation hA(q), with A(q) < q/2, holds;
cf. Figure 1(b). This is the so-called multiscaling of moments; cf. [18], [22], [23], and [32].

An interesting class of models that are able to reproduce the multiscaling of moments—as
well as many other features, notably the persistence of volatility on different time scales—are
the so-called multifractal models, such as the MMAR (multifractal model of asset returns;
cf. [14], [15], and [20]) and the MSM (Markov-switching multifractal; cf. [13]). These models
describe the evolution of the detrended log-price (Xt )t≥0 as a random time change of Brownian
motion, i.e.Xt = WI(t), where the time change (I (t))t≥0 is a continuous and increasing process,
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Figure 1: Scaling properties of the DJIA time series (opening prices 1935–2009). (a) The empirical
densities of the log-returns over 1, 2, 5, 10, and 25 days show a remarkable overlap under diffusive
scaling. (b) The scaling exponentA(q) as a function of q, defined by the relationmq(h) ≈ hA(q) (cf. (4)),
bends down from the Gaussian behavior q/2 (solid line) for q ≥ q̄ � 3. The quantity A(q) is evaluated
empirically through a linear interpolation of (logmq(h)) versus (logh) for h ∈ {1, . . . , 5} (see Section 7

for more details).

sometimes called the trading time, which displays multifractal features and is usually taken to
be independent of the Brownian motion (Wt )t≥0 (see [12] for more details).

Modeling financial series through a random time change of Brownian motion is a classical
topic, dating back to Clark [16], and reflects the natural idea that external information influences
the speed at which exchanges take place in a market. It should be stressed that, under the
mild regularity assumption that the time change (I (t))t≥0 has absolutely continuous paths
almost surely (a.s.), any random time change of Brownian motionXt = WI(t) can be written as
a stochastic volatility model dXt = σt dBt , and vice versa. More precisely, ‘independent
random time changes of Brownian motion with absolutely continuous time change’—that
is, processes (Xt )t≥0 such that Xt −X0 = WI(t), where (Wt )t≥0 is a Brownian motion and
(I (t))t≥0 is an independent process with increasing and absolutely continuous paths a.s.—
and ‘stochastic volatility models with independent volatility’—that is, processes (Xt )t≥0 such
that dXt = σt dBt , where (Bt )t≥0 is a Brownian motion and (σt )t≥0 is an independent
process with paths in L2

loc(R) a.s.—are the same class of processes; cf. [7] and [29]. The
link between the two representations dXt = σt dBt and Xt − X0 = WI(t) is given by
σt = √

I ′(t) and Bt = ∫ t
0 (I

′(s))−1/2 dWI(s) = ∫ It
0 (I

′(I−1(v)))−1/2 dWu. However, a key
feature of multifractal models is precisely that their trading time (I (t))t≥0 has nonabsolutely
continuous paths a.s.; hence, they cannot be expressed as stochastic volatility models. This
makes their analysis harder, as the standard tools available for Itô diffusions cannot be applied.

The purpose of this paper is to define a simple stochastic volatility model—or, equivalently,
an independent random time change of Brownian motion, where the time-change process
has absolutely continuous paths—which agrees with all the abovementioned stylized facts,
displaying in particular a crossover in the log-return distribution from a power-law to a Gaussian
behavior, slow decay in the volatility autocorrelation, diffusive scaling, and multiscaling of
moments. In its most basic version, the model contains only three real parameters and is defined
as a simple, deterministic function of a Brownian motion and an independent Poisson process.
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This makes the process analytically tractable and very easy to simulate. Despite its few degrees
of freedom, the model is able to fit remarkably well several key features of the time series of
the main financial indexes, such as the DJIA, S&P 500, FTSE 100, and Nikkei 225. In this
paper we present a detailed numerical analysis on the DJIA.

Let us mention that there are subtler stylized facts that are not properly accounted for by
our model, such as the multiscale intermittency of the volatility profile, the possible skewness
of the log-return distribution, and the so-called leverage effect (negative correlation between
log-returns and future volatilities); cf. [17]. As we discuss in Section 3, such features—which
are relevant in the analysis of particular assets—can be incorporated into our model in a natural
way. Generalizations in this sense are currently under investigation, as are the performances
of our model in financial problems, such as the pricing of options (see [2]). In this paper we
focus for simplicity on the most basic formulation.

Finally, although we work in the framework of stochastic volatility models, we point out
that an important alternative class of models in discrete time, widely used in the econometric
literature, is given by autoregressive processes such as ARCH, GARCH, FIGARCH, and their
generalizations; cf. [5], [8], [9], and [19]. More recently, continuous-time versions have been
studied as well; cf. [26] and [27]. With no aim for completeness, let us mention that GARCH
and FIGARCH do not display multiscaling of moments; cf. [12, Section 8.1.4]. We have also
tested the model recently proposed in [10], which fits the statistics of the empirical volatility
very accurately, and does exhibit multiscaling of moments. However, the model requires the
calibration of more than 30 parameters.

We conclude by noting that long-memory effects in autoregressive models are obtained
through a suitable dependence on the past in the equation for the volatility, while large price
variations are usually controlled by specific features of the driving noise. In our model, we
propose a single mechanism, modeling the reaction of the market to shocks, which is the source
of all the mentioned stylized facts.

1.2. Content of the paper

The paper is organized as follows.

• In Section 2 we give the definition of our model, we state its main properties and we
discuss its ability to fit the DJIA time series in the period 1935–2009.

• In Section 3 we discuss some key features and limitations of our model, point out possible
generalizations, and compare it with other models.

• Sections 4, 5, and 6 contain the proofs of the main results, plus some additional material.

• In Section 7 we discuss in more detail the numerical comparison between our model and
the DJIA time series.

• Finally, Appendix A contains the proofs of some technical results, while Appendix B
is devoted to a brief discussion of the model introduced by Baldovin and Stella in [6]
and [31], which has partially inspired the construction of our model.

1.3. Notation

Throughout the paper, the indexes s, t, u, x, and λ run over real numbers, while i, k,m, and
n run over integers, so t ≥ 0 means t ∈ [0,∞) while n ≥ 0 means n ∈ {0, 1, 2, . . .}. The
notation ‘∼’ denotes asymptotic equivalence for positive sequences (an ∼ bn if and only if
an/bn → 1 as n → ∞) and also equality in law for random variables, e.g. W1 ∼ N (0, 1).
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Given two real functions f (x) and g(x), we write f = O(g) as x → x0 if there exists
M > 0 such that |f (x)| ≤ M|g(x)| for x in a neighborhood of x0, and we write f = o(g) if
f (x)/g(x) → 0 as x → x0; in particular, O(1) is a bounded quantity and o(1) is a vanishing
quantity. The standard exponential and Poisson laws are denoted by Exp(λ) and Po(λ) for
λ > 0: X ∼ Exp(λ) means that P(X ≤ x) = (1 − e−λx) 1[0,∞)(x) for all x ∈ R, while
Y ∼ Po(λ) means that P(Y = n) = e−λλn/n! for all n ∈ {0, 1, 2, . . .}. We sometimes write
‘(constant)’ to denote a positive constant, whose value may change from place to place.

2. The model and the main results

We introduce our model as an independent random time change of a Brownian motion, in
the spirit of, e.g. [4] and [16]. An alternative and equivalent definition, as a stochastic volatility
model, is illustrated in Section 2.2.

2.1. Definition of the model

In its basic version, our model contains only three real parameters:

• λ ∈ (0,+∞) is the inverse of the average waiting time between ‘shocks’ in the market;

• D ∈ (0, 1
2 ] determines the sublinear time change t → t2D , which expresses the ‘trading

time’ after shocks;

• σ ∈ (0,+∞) is proportional to the average volatility.

In order to have more flexibility, we actually let σ be a random parameter, i.e. a positive random
variable whose distribution ν becomes the relevant parameter:

• ν is a probability on (0,∞), connected to the volatility distribution.

Remark 1. When the model is calibrated to the main financial indexes (DJIA, S&P 500,
FTSE 100, Nikkei 225), the best fit turns out to be obtained for a nearly constant σ . In
any case, we stress that the main properties of the model are only marginally dependent on
the law ν of σ : in particular, the first two moments of ν, i.e. E(σ ) and E(σ 2), are enough to
determine the features of our model that are relevant for real-world times series; see Remark 5
below. Therefore, roughly speaking, we could say that in the general case of random σ our
model has four ‘effective’ real parameters.

Beyond the parameters λ,D, and ν, we need the following three sources of randomness:

• a standard Brownian motion W = (Wt )t≥0;

• a Poisson point process T = (τn)n∈Z on R with intensity λ;

• a sequence � = (σn)n≥0 of independent and identically distributed positive random
variables with law ν (so that σn ∼ ν for all n); for conciseness, we denote by σ a variable
with the same law ν.

We assume thatW,T , and� are defined on some probability space (�,F ,P) and that they are
independent. By convention, we label the points of T so that τ0 < 0 < τ1. We will actually need
only the points (τn)n≥0, and we recall that the random variables (−τ0), τ1, and (τn+1 − τn)n≥1
are independent and identically distributed with marginal laws Exp(λ). In particular, 1/λ is the
mean distance between the points in T , except for τ0 and τ1, whose average distance is 2/λ.
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Figure 2: A sample trajectory of the process (It )t≥0.

Although some of our results would hold for more general distributions of T , we focus for
simplicity on the (rather natural) choice of a Poisson process.

For t ≥ 0, we define

i(t) := sup{n ≥ 0 : τn ≤ t} = #{T ∩ (0, t]}, (5)

so that τi(t) is the location of the last point in T before t . Clearly, i(t) ∼ Po(λt). Then we
introduce the basic process I = (It )t≥0 defined by

It = I (t) := σ 2
i(t)(t − τi(t))

2D +
i(t)∑
k=1

σ 2
k−1(τk − τk−1)

2D − σ 2
0 (−τ0)

2D, (6)

with the agreement that the sum on the right-hand side is 0 if i(t) = 0. More explicitly, (It )t≥0
is a continuous process with I0 = 0 and Iτn+h − Iτn = (σ 2

n ) h
2D for 0 ≤ h ≤ (τn+1 − τn). We

note that the derivative (dIt /dt)t≥0 is a stationary regenerative process; cf. [3]. See Figure 2
for a sample trajectory of (It )t≥0 when D < 1

2 .
We then define our model X = (Xt )t≥0 by setting

Xt := WIt .

In words, our model is a random time change of the Brownian motion (Wt )t≥0 through the time-
change process (It )t≥0. Note that I is a strictly increasing process with absolutely continuous
paths, and it is independent of W .

When D = 1
2 and σ is constant, we have It = σ 2t and the model reduces to the Black–

Scholes model with volatility σ . On the other hand, when D < 1
2 , the paths of I are singular

(nondifferentiable) at the points in T ; cf. Figure 2. This suggests a possible financial interpre-
tation of the instants in T as the epochs at which big shocks arrive in the market, making the
volatility jump to infinity. This will be more apparent in the next subsection, where we give a
stochastic volatility formulation of the model. We point out that the singularity is produced by
the sublinear time change t → t2D , which was first suggested by Baldovin and Stella in [6]
and [31] (their model is described in Appendix B).
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2.2. Basic properties

Let us state some basic properties of our model that will be proved in Section 6.

(P1) The process X has stationary increments.

(P2) The following relation between moments of Xt and σ holds: for any q > 0,

E(|Xt |q) < ∞ for some (hence any) t > 0 ⇐⇒ E(σ q) < ∞. (7)

(P3) The process X can be represented as a stochastic volatility model, i.e.

dXt = vt dBt , (8)

where (Bt )t≥0 is a standard Brownian motion and (vt )t≥0 is an independent process,
defined by (denoting I ′(s) := dI (s)/ ds)

Bt :=
∫ t

0

1√
I ′(s)

dWI(s) =
∫ It

0

1√
I ′(I−1(u))

dWu,

vt := √
I ′(t) = √

2Dσi(t)(t − τi(t))
D−1/2.

(9)

Note that, whenever D < 1
2 , the volatility vt has singularities at the random times τn.

(P4) The process X is a zero-mean, square-integrable martingale (provided E(σ 2) < ∞).

Remark 2. If we look at the process X for a fixed realization of the variables T and �,
averaging only on W—that is, if we work under the conditional probability P(· | T , �)—the
increments of X are no longer stationary, but properties (P3) and (P4) continue to hold (of
course, the condition E(σ 2) < ∞ in (P4) is not required under P(· | T , �)).

Remark 3. It follows from (7) that if σ is chosen as a deterministic constant then Xt admits
moments of all orders (actually, even exponential moments; cf. Proposition 1 in Section 6).
This seems to indicate that to see power-law tails in the distribution of (Xt+h − Xt)—one
of the basic stylized facts mentioned in the introduction—requires taking σ with power-law
tails. This, however, is not true, and is one of the surprising features of the simple model we
propose: for typical choices of the parameters of our model, the distribution of (Xt+h − Xt)

displays a power-law tail behavior up to several standard deviations from the mean, irrespective
of the law of σ . Thus, the eventually light tails are ‘invisible’ for all practical purposes and real
heavy-tailed distributions appear to be unnecessary to fit data. We discuss this issue below in
Remark 4, after having stated some results; see also Subsection 2.4 and Figure 4(b) below for
a graphical comparison with the DJIA time series.

Another important property of the process X is that its increments are mixing, as we show
in Section 6. This entails in particular that, for every δ > 0, k ∈ N, and every choice of the
intervals (a1, b1), . . . , (ak, bk) ⊆ (0,∞) and of the measurable function F : Rk → R, we
have, a.s.,

lim
N→∞

1

N

N−1∑
n=0

F(Xnδ+b1 −Xnδ+a1 , . . . , Xnδ+bk −Xnδ+ak )

= E(F (Xb1 −Xa1 , . . . , Xbk −Xak )), (10)
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provided the expectation appearing on the right-hand side is well defined. In words, the
empirical average of a function of the increments of the process over a long time period is
close to its expected value.

Thanks to this property, our main results concerning the distribution of the increments of
the processX, which we state in the next subsection, are of direct relevance for the comparison
of our model with real data series. Some care is needed, however, because the accessible time
length N in (10) may not be large enough to ensure that the empirical averages are close to
their limit. We elaborate more on this issue in Section 7, where we compare our model with
the DJIA data from a numerical viewpoint.

2.3. The main results

We now state the main results for our model X, which correspond to the basic stylized facts
mentioned in the introduction: diffusive scaling and crossover of the log-return distribution
(Theorem 1), multiscaling of moments (Theorem 2 and Corollary 1), and clustering of the
volatility (Theorem 3 and Corollary 2).

Our first result, proved in Section 4, shows that the increments (Xt+h − Xt) have an
approximate diffusive scaling both when h ↓ 0, with a heavy-tailed limit distribution (in
agreement with (3)), and when h ↑ ∞, with a normal limit distribution. This is a precise
mathematical formulation of a crossover phenomenon in the log-return distribution, from
approximately heavy-tailed (for small time) to approximately Gaussian (for large time).

Theorem 1. (Diffusive scaling.) The following convergences in distribution hold for any choice
of the parameters D and λ and of the law ν of σ .

• Small-time diffusive scaling:

(Xt+h −Xt)√
h

d−→h↓0 f (x) dx := law of (
√

2Dλ1/2−D)σSD−1/2W1, (11)

where σ ∼ ν, S ∼ Exp(1), and W1 ∼ N (0, 1) are independent random variables.
The density f is thus a mixture of centered Gaussian densities and, when D < 1

2 , has
power-law tails: more precisely, if E(σ q) < ∞ for all q > 0,∫

|x|qf (x) dx < +∞ ⇐⇒ q < q∗ := 1

1/2 −D
. (12)

• Large-time diffusive scaling: if E(σ 2) < ∞,

(Xt+h −Xt)√
h

d−→h↑∞
e−x2/(2c2)

√
2πc

dx = N (0, c2),

c2 = λ1−2D E(σ 2)	(2D + 1),

(13)

where 	(α) := ∫ ∞
0 xα−1e−x dx denotes Euler’s gamma function.

Remark 4. We have already observed that, when σ has finite moments of all orders, for h > 0,
the increment (Xt+h−Xt) has finite moments of all orders too, cf. (7), so there are no heavy tails
in the strict sense. However, for small h, the heavy-tailed density f (x) is, by (11), an excellent
approximation for the true distribution of (Xt+h −Xt)/

√
h up to a certain distance from the

mean, which can be quite large. For instance, when the parameters of our model are calibrated
to the DJIA time series, these ‘apparent power-law tails’ are clearly visible for h = 1 (daily
log-returns) up to a distance of about six standard deviations from the mean; cf. Subsection 2.4
and Figure 4(b) below.
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We also note that the moment condition (12) follows immediately from (11): in fact, when
σ has finite moments of all orders,∫

|x|qf (x) dx < +∞ ⇐⇒ E(S(D−1/2)q) =
∫ ∞

0
s(D−1/2)qe−s ds < +∞,

which clearly happens if and only if q < q∗ := ( 1
2 −D)−1. This also shows that the heavy

tails of f depend on the fact that the density of the random variable S, which represents (up
to a constant) the distance between points in T , is strictly positive around 0, and not on other
details of the exponential distribution.

The power-law tails of f have striking consequences on the scaling behavior of the moments
of the increments of our model. If we set, for q ∈ (0,∞),

mq(h) := E(|Xt+h −Xt |q), (14)

the natural scaling mq(h) ≈ hq/2 as h ↓ 0, which one would naively guess from (11), breaks
down for q > q∗, for which the faster scaling mq(h) ≈ hDq+1 holds instead, the reason being
precisely the fact that the q-moment of f is infinite for q ≥ q∗. More precisely, we have the
following result, which we prove in Section 4.

Theorem 2. (Multiscaling of moments.) Let q > 0, and assume that E(σ q) < +∞. The
quantity mq(h) in (14) is finite and has the following asymptotic behavior as h ↓ 0:

mq(h) ∼

⎧⎪⎪⎨⎪⎪⎩
Cqh

q/2 if q < q∗,

Cqh
q/2 log

(
1

h

)
if q = q∗,

Cqh
Dq+1 if q > q∗,

where q∗ := 1

1/2 −D
.

The constant Cq ∈ (0,∞) is given by

Cq :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E(|W1|q)E(σ q)λq/q

∗
(2D)q/2	

(
1 − q

q∗

)
if q < q∗,

E(|W1|q)E(σ q)λ(2D)q/2 if q = q∗,

E(|W1|q)E(σ q)λ

[∫ ∞

0
((1 + x)2D − x2D)q/2 dx + 1

Dq + 1

]
if q > q∗,

(15)

where 	(α) := ∫ ∞
0 xα−1e−x dx denotes Euler’s gamma function.

Corollary 1. The following relation holds:

A(q) := lim
h↓0

logmq(h)

logh
=

{q
2

if q ≤ q∗,
Dq + 1 if q ≥ q∗,

where q∗ := 1

1/2 −D
. (16)

The explicit form of the multiplicative constant Cq in (15) will be used in Section 7 for the
estimation of the parameters of our model on the DJIA time series.

Our last theoretical result, proved in Section 5, concerns the correlations of the absolute
value of two increments, usually called the volatility autocorrelation. We start by determining
the behavior of the covariance.
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Theorem 3. Assume that E(σ 2) < ∞. The following relation holds as h ↓ 0 for all s, t > 0:

cov(|Xs+h −Xs |, |Xt+h −Xt |) = 4D

π
λ1−2De−λ|t−s|(φ(λ|t − s|)h+ o(h)). (17)

Here
φ(x) := cov(σSD−1/2, σ (S + x)D−1/2) (18)

and S ∼ Exp(1) is independent of σ .

We recall that ρ(Y,Z) := cov(Y, Z)/
√

var(Y ) var(Z) is the correlation coefficient of two
random variables Y and Z. As Theorem 2 yields

lim
h↓0

1

h
var(|Xt+h −Xt |) = (2D)λ1−2D var(σ |W1|SD−1/2),

where S ∼ Exp(1) is independent of σ and W1, we easily obtain the following result.

Corollary 2. (Volatility autocorrelation.) Assume that E(σ 2) < ∞. The following relation
holds as h ↓ 0 for all s, t > 0:

lim
h↓0

ρ(|Xs+h −Xs |, |Xt+h −Xt |) = ρ(t − s)

:= 2

π var(σ |W1|SD−1/2)
e−λ|t−s|φ(λ|t − s|). (19)

Here φ(·) is defined in (18) and σ ∼ ν, S ∼ Exp(1), and W1 ∼ N (0, 1) are independent
random variables.

This shows that the volatility autocorrelation of our process decays exponentially fast for
time scales larger than the mean distance 1/λ between the epochs τk . However, for shorter time
scales, the relevant contribution is given by the function φ(·). By (18) we can write

φ(x) = var(σ )E(SD−1/2(S + x)D−1/2)+ E(σ )2 cov(SD−1/2, (S + x)D−1/2), (20)

where S ∼ Exp(1). When D < 1
2 , as x → ∞, the two terms on the right-hand side decay as

E(SD−1/2(S + x)D−1/2) ∼ c1x
D−1/2,

cov(SD−1/2, (S + x)D−1/2) ∼ c2x
D−3/2,

(21)

where c1 and c2 are positive constants; hence, φ(x) has a power-law behavior as x → ∞. For
x = O(1), which is the relevant regime, the decay of φ(x) is, roughly speaking, slower than
exponential but faster than polynomial (see Figure 3(b) and (c)).

2.4. Fitting the DJIA time series

We now consider some aspects of our model from a numerical viewpoint. More precisely,
we have compared the theoretical predictions and the simulated data of our model with the time
series of some of the main financial indexes (DJIA, S&P 500, FTSE 100, and Nikkei 225),
finding very good agreement. Here we describe in detail the case of the DJIA time series over
a period of 75 years: we have considered the DJIA opening prices from 2 January 1935 to
31 December 2009 for a total of 18 849 daily data.

The four real parametersD,λ,E(σ ), and E(σ 2) of our model have been chosen to optimize
the fitting of the scaling function A(q) of the moments (see Corollary 1), which depends
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(a) Multiscaling in the DJIA (1935–2009)

(b) Volatility autocorrelation in the DJIA
       (1935–2009): log plot

(c) Volatility autocorrelation in the DJIA
       (1935–2009): log-log plot

Figure 3: Multiscaling of moments and the volatility autocorrelation in the DJIA time series (1935–2009)
compared with our model. (a) The DJIA empirical scaling exponent Â(q) (circles) and the theoretical
scaling exponentA(q) (solid line) as a function of q. (b) Log plot for the DJIA empirical one-day volatility
autocorrelation ρ̂1(t) (circles) and the theoretical prediction ρ(t) (solid line), as functions of t (days). For
clarity, only the data for even values of t are plotted. (c) Same as (b), but a log-log plot instead of a log

plot. For clarity, for t ≥ 50, only the data for even values of t are plotted.

only onD and the curve ρ(t) of the volatility autocorrelation (see Corollary 2), which depends
onD,λ,E(σ ), and E(σ 2) (more details on the parameter estimation are illustrated in Section 7).
We have obtained the following numerical estimates:

D̂ � 0.16, λ̂ � 0.000 97, Ê(σ ) � 0.108, Ê(σ 2) � 0.0117 � (Ê(σ ))2. (22)

Note that the estimated standard deviation of σ is negligible, so σ is ‘nearly constant’. We
point out that the same is true for the other financial indexes that we have tested. In particular,
in these cases there is no need to specify other details of the distribution ν of σ and our model
is completely determined by the numerical values in (22).
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(a) Density of the empirical distribution of
the DJIA log-returns (1935–2009)
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the DJIA log-returns (1935–2009)
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Figure 4: Distribution of daily log-returns in the DJIA time series (1935–2009) compared with our model
(see Subsection 7.3 for details). (a) The density of the DJIA log-return empirical distribution p̂1(·) (circles)
and the theoretical prediction p1(·) (solid line). The plot ranges from 0 to about three standard deviations
(ŝ � 0.0095) from the mean. (b) Log-log plot of the right and left integrated tails of the DJIA log-return
empirical distribution p̂1(·) (circles and triangles) and of the theoretical prediction p1(·) (solid line). The
plot ranges from 1 to about twelve standard deviations from the mean. Also plotted is the asymptotic

density f (·) (dashed line) defined in (11).

As we show in Figure 3, there is an excellent fitting of the theoretical predictions to the
observed data. We find it remarkable that a rather simple mechanism of (relatively rare)
volatility shocks can account for the nontrivial profile of both the multiscaling exponent A(q)
(cf. Figure 3(a)) and the volatility autocorrelation ρ(t) (cf. Figure 3(b)–(c)).

Last but not least, we have considered the distribution of daily log-returns: in Figure 4 we
compare both the density and the integrated tails of the log-return empirical distribution, cf. (2),
with the theoretical predictions of our model, i.e. the law of X1. The agreement is remarkable,
especially because the empirical distributions of log-returns was not used for the calibration
the model. This accuracy can therefore be regarded as a structural property of the model.

In Figure 4(b) we have plotted the density of X1, represented by the solid line, and the
asymptotic limiting density f appearing in (11), represented by the dashed line. The two
functions are practically indistinguishable up to six standard deviations from the mean, and still
very close in the whole plotted range. We stress that f is a rather explicit function; see (11).
Also, note that the log-log plot in Figure 4(b) shows a clear power-law decay, as one would
expect from f (the eventually light tails of X1 are invisible).

Remark 5. We point out that, even if we had found v̂ar(σ ) := Ê(σ 2)− (Ê(σ ))2 > 0 (as could
happen for different assets), detailed properties of the distribution of σ are not expected to be
detectable from data—nor are they relevant. Indeed, the estimated mean distance between the
successive epochs (τn)n≥0 of the Poisson process T is 1/̂λ � 1031 days; cf. (22). Therefore, in
a time period of the length of the DJIA time series we are considering, only 18 849/1031 � 18
variables σk are expected to be sampled, which is certainly not enough to allow more than a
rough estimation of the distribution of σ . This should be viewed more as a robustness than
a limitation of our model: even when σ is nonconstant, its first two moments contain the
information that is relevant for application to real data.
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3. Discussion and further developments

Having stated the main properties of the model, we can discuss in more depth its strength
as well as its limitations, and consider possible generalizations.

3.1. On the role of parameters

A key feature of our model is its rigid structure. Let us focus for simplicity on the case in
which σ is a constant (which, as we have discussed, is relevant for financial indexes). Not
only is the model characterized by just three real parameters, D,λ, and σ , the roles of λ and σ
are reduced to simple scale factors. In fact, if we change the values of λ and σ in our process
(Xt )t≥0, keeping D fixed, the new process has the same distribution as (aXbt )t≥0 for suitable
a and b (depending on λ and σ ), as is clear from the definition of (It )t≥0 given in (6). This
means that D is the only parameter that truly changes the shape (beyond simple scale factors)
of the relevant quantities of our model, as is also clear from the explicit expressions we have
derived for the small-time and large-time asymptotic distributions (Theorem 1), multiscaling
of moments (Theorem 2), and volatility autocorrelation (Theorem 3).

More concretely, the structure of our model imposes strict relations between different
quantities: for instance, the moment q∗ = ( 1

2 −D)−1 beyond which one observes anomalous
scaling (see (16)) coincides with the power-law tail exponent of the (approximate) log-return
distribution for small time (see (12)), and is also linked (through D) to the slow decay of the
volatility autocorrelation from short to moderate time (see (20) and (21)). The fact that these
quantitative constraints are indeed observed on the DJIA time series (see Figures 3 and 4) is
not obvious a priori and is therefore particularly noteworthy.

3.2. On the comparison with multifractal models

As noted in the introduction, the multiscaling of moments is a key feature of multifractal
models. These models are random time changes of Brownian motion, Xt = WIt , as does our
model, with the important difference that the time-change process (It )t≥0 is rather singular,
having nonabsolutely continuous paths. Since in our case the time-change process is quite
regular and explicit, our model can be analyzed with more standard and elementary tools and
is very easy to simulate.

A key property of multifractal models, which is at the origin of their multiscaling features,
is that the law of Xt has power-law tails for every t > 0. However, as already discussed,
the law of Xt in our model has finite moments of all orders—at least when E(σ q) < ∞ for
every q > 0, which is the typical case. In a sense, the source of multiscaling in our model is
analogous because (approximate) power-law tails appear in the distribution of Xt in the limit
t ↓ 0, but what is important to note is that ‘true’ power-law tails in the distribution of Xt are
not necessary to have multiscaling properties.

We remark that the multiscaling exponent A(q) of our model is piecewise linear with two
different slopes, thus describing a biscaling phenomenon. Multifractal models are very flexible
in this respect, allowing for a much wider class of behavior of A(q). It appears however that a
biscaling exponent is compatible with the time series of financial indexes (see also Remark 7
below).

We conclude with a semiheuristic argument, which illustrates how heavy tails and
multiscaling arise in our model. On the event {(−τ0) ≤ h, τ1 > h} we can write, by (6),
Ih = σ 2

0 {(h− τ0)
2D − (−τ0)

2D}� h2D and, therefore, |Xh| = |WIh | ∼ √
Ih|W1| � hD . Con-

sequently, we obtain the bound

P(|Xh| � hD) ≥ P((−τ0) ≤ h, τ1 > h) � h, (23)
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which allows us to draw a couple of interesting consequences.

• Relation (23) yields the lower bound E(|Xh|q) � hDq P(|Xh| � hD) � hDq+1 on the
moments of our process. Since Dq + 1 < q/2 for q > q∗ = ( 1

2 −D)−1, this shows that
the usual scaling E(|Xh|q) � hq/2 cannot hold for q > q∗.

• Relation (23) can be rewritten as P(|Xh|/
√
h � t) � t−q∗

, where t = h−(1/2−D) and
q∗ = ( 1

2 −D)−1. Since t → +∞ as h ↓ 0, whenD < 1
2 , this provides a glimpse of the

appearance of power-law tails in the distribution of Xh as h ↓ 0 (see (11) and (12)) with
the correct tail exponent q∗.

3.3. On the stochastic volatility model representation

We recall that our process (Xt )t≥0 can be written as a stochastic volatility model dXt =
vt dBt ; cf. (8). It is interesting to note that the squared volatility (vt )2 is the stationary solution
of the stochastic differential equation

d(v2
t ) = −αt (v2

t )
γ dt + ∞ di(t), (24)

where we recall that (i(t))t≥0 is an ordinary Poisson process, while γ is a constant and αt is a
piecewise-constant function, defined by

γ := 2 + 2D

1 − 2D
> 2,

αt := 1 − 2D

(2D)1/(1−2D)

1

σ
2/(1−2D)
i(t)

> 0.

We stress that (vt )2 is a pathwise solution of (24), i.e. it solves the equation for any fixed
realization of the stochastic processes i(t) and αt . The infinite coefficient of the driving
Poisson noise is no problem: in fact, thanks to the superlinear drift term −αt (v2

t )
γ , the solution

starting from infinity becomes instantaneously finite (note that the ordinary differential equation
dx(t) = −αx(t)γ dt with x(0) = ∞ has the explicit solution x(t) = ct−1/(γ−1), where
c = c(α, γ ) = (α(γ − 1))−1/(γ−1)).

The volatility representation (24) is also useful to understand the limitations of our model and
to design possible generalizations. For instance, according to (24), the volatility has the rather
unrealistic feature of being deterministic between jumps. This limitation could be weakened in
various ways, e.g. by replacing i(t) in (24) with a more general Lévy subordinator, and/or adding
to the volatility a continuous random component. Such addition should allow a more accurate
description of the intermittent structure of the volatility profile, in the spirit of multifractal
models.

In a sense, the model we have presented describes only the relatively rare big jumps of
the volatility, ignoring the smaller random fluctuations that are present on smaller time scales.
Besides obvious simplicity considerations, one of our aims is to point out that these big jumps,
together with a nonlinear drift term as in (24), are sufficient to explain in a rather accurate way
the several stylized facts we have discussed.

3.4. On the skewness and leverage effect

Our model predicts an even distribution for Xt , but it is known that several financial assets
data exhibit a nonzero skewness. A reasonable way to introduce skewness is through the

https://doi.org/10.1239/aap/1354716588 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1354716588


1032 A. ANDREOLI ET AL.

so-called leverage effect. This can be achieved, e.g. by modifying the stochastic volatility
representation, given in (8) and (24), to be

dXt = vt dBt − β di(t), dv2
t = −αt (v2

t )
γ dt + ∞ di(t),

where β > 0. In other words, when the volatility jumps (upward), the price jumps downward
by an amount γ . The effect of this extension of the model is currently under investigation.

3.5. On further developments

A bivariate version ((Xt , Yt ))t≥0 of our model, where the two components are driven by
possibly correlated Poisson point processes T X and T Y , has been investigated by Pigato [28].
The model has been numerically calibrated on the joint time series of the DJIA and FTSE 100
indexes, finding in particular very good agreement for the volatility cross-correlation between
the two indexes: for this quantity, the model predicts the same decay profile as for the individual
volatility autocorrelations, a fact which is not obvious a priori and is indeed observed on the
real data.

We point out that an important ingredient in the numerical analysis on the bivariate model is
a clever algorithm for finding the location of the relevant big jumps in the volatility (a concept
which is of course not trivially defined). Such an algorithm has been devised by Bonino [11],
which deals with portfolio optimization problems in the framework of our model.

4. Scaling and multiscaling: proofs of Theorems 1 and 2

We observe that, for all fixed t, h > 0, we have the equality in law Xt+h −Xt ∼ √
IhW1,

which follows from the definition of our model, (Xt )t≥0 = (WIt )t≥0. We also observe that
i(h) = #{T ∩ (0, h]} ∼ Po(λh), which follows from (5) and the properties of the Poisson
process.

4.1. Proof of Theorem 1

Since P(i(h) ≥ 1) = 1 − e−λh → 0 as h ↓ 0, we may focus on the event {i(h) = 0} =
{T ∩ (0, h] = ∅}, on which we have Ih = σ 2

0 ((h− τ0)
2D − (−τ0)

2D), with −τ0 ∼ Exp(λ).
In particular,

lim
h↓0

Ih

h
= I ′(0) = (2D)σ 2

0 (−τ0)
2D−1 a.s.

Since Xt+h −Xt ∼ √
IhW1, the convergence in distribution (11) follows:

Xt+h −Xt√
h

d−→ √
2Dσ0(−τ0)

D−1/2W1 as h ↓ 0.

Next we focus on the case h ↑ ∞. Under the assumption that E(σ 2) < ∞, the random
variables {σ 2

k−1(τk − τk−1)
2D}k≥1 are independent and identically distributed with finite mean;

hence, by the strong law of large numbers,

lim
n→∞

1

n

n∑
k=1

σ 2
k−1(τk − τk−1)

2D = E(σ 2)E((τ1)
2D) = E(σ 2)λ−2D	(2D + 1) a.s.

Clearly, limh→+∞ i(h)/h = λ a.s., by the strong law of large numbers applied to the random
variables {τk}k≥1. Recalling (6), it easily follows that

lim
h↑∞

I (h)

h
= E(σ 2)λ1−2D	(2D + 1) a.s.
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Since Xt+h −Xt ∼ √
IhW1, we obtain the convergence in distribution

Xt+h −Xt√
h

d−→
√

E(σ 2)λ1−2D	(2D + 1)W1 as h ↑ ∞,

which coincides with (13).

4.2. Proof of Theorem 2

Since Xt+h −Xt ∼ √
Ih W1, we can write

E(|Xt+h −Xt |q) = E(|Ih|q/2|W1|q) = E(|W1|q)E(|Ih|q/2) = cq E(|Ih|q/2), (25)

where we have set cq := E(|W1|q). We therefore focus on E(|Ih|q/2), which we write as the
sum of three terms that will be analyzed separately:

E(|Ih|q/2) = E(|Ih|q/2 1{i(h)=0})+ E(|Ih|q/2 1{i(h)=1})+ E(|Ih|q/2 1{i(h)≥2}). (26)

For the first term on the right-hand side of (26), we note that P(i(h) = 0) = e−λh → 1 as
h ↓ 0 and that Ih = σ 2

0 ((h− τ0)
2D − (−τ0)

2D) on the event {i(h) = 0}. Setting −τ0 =: λ−1S

with S ∼ Exp(1), we obtain, as h ↓ 0,

E(|Ih|q/2 1{i(h)=0}) = E(σ q)λ−Dq E(((S + λh)2D − S2D)q/2)(1 + o(1)). (27)

Recalling that q∗ := ( 1
2 −D)−1, we have

q � q∗ ⇐⇒ q

2
� Dq + 1 ⇐⇒ −1 �

(
D − 1

2

)
q.

As δ ↓ 0, we have δ−1((S + δ)2D − S2D) ↑ 2DS2D−1 and we note that E(S(D−1/2)q) =
	(1 − q/q∗) is finite if and only if (D − 1

2 )q > −1, that is, q < q∗. Therefore, the monotone
convergence theorem yields, for q < q∗,

lim
h↓0

E(((S + λh)2D − S2D)q/2)

λq/2hq/2
= (2D)q/2	

(
1 − q

q∗

)
∈ (0,∞). (28)

Next observe that, by the change of variable s = (λh)x, we can write

E(((S + λh)2D − S2D)q/2) =
∫ ∞

0
((s + λh)2D − s2D)q/2e−s ds

= (λh)Dq+1
∫ ∞

0
((1 + x)2D − x2D)q/2e−λhx dx. (29)

Note that ((1 + x)2D − x2D)q/2 ∼ (2D)q/2x(D−1/2)q as x → +∞ and that (D − 1
2 )q < −1

if and only if q > q∗. Therefore, again by the monotone convergence theorem, we obtain, for
q > q∗,

lim
h↓0

E(((S + λh)2D − S2D)q/2)

λDq+1hDq+1 =
∫ ∞

0
((1 + x)2D − x2D)q/2 dx ∈ (0,∞). (30)

Finally, in the case q = q∗ we have ((1 + x)2D − x2D)q
∗/2 ∼ (2D)q

∗/2x−1 as x → +∞ and
we want to study the integral in the second line of (29). Fix an arbitrary (large) M > 0, and
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note that, integrating by parts and performing a change of variable, as h ↓ 0, we have∫ ∞

M

e−λhx

x
dx = −logMe−λhM + λh

∫ ∞

M

(log x)e−λhx dx

= O(1)+
∫ ∞

λhM
log

(
y

λh

)
e−y dy

= O(1)+
∫ ∞

λhM
log

(
y

λ

)
e−y dy + log

(
1

h

) ∫ ∞

λhM
e−y dy

= log

(
1

h

)
(1 + o(1)).

From this, it is easy to see that, as h ↓ 0,∫ ∞

0
((1 + x)2D − x2D)q

∗/2e−λhx dx ∼ (2D)q
∗/2 log

(
1

h

)
.

From (29), noting that Dq + 1 = q/2 for q = q∗, it follows that

lim
h↓0

E(((S + h)2D − S2D)q
∗/2)

λDq∗+1hq
∗/2 log(1/h)

= (2D)q
∗/2. (31)

Recalling (25) and (27), relations (28), (30), and (31) show that the first term on the right-hand
side of (26) has the same asymptotic behavior as in the statement of the theorem, except for the
regime q > q∗ where the constant does not match (the missing contribution will be obtained
in a moment).

We now focus on the second term on the right-hand side of (26). Note that, conditionally
on the event {i(h) = 1} = {τ1 ≤ h, τ2 > h}, we have

Ih = σ 2
1 (h− τ1)

2D + σ 2
0 ((τ1 − τ0)

2D − (−τ0)
2D)

∼ σ 2
1 (h− hU)2D + σ 2

0

((
hU + S

λ

)2D

−
(
S

λ

)2D)
,

where S ∼ Exp(1) and U ∼ U(0, 1) (uniformly distributed on the interval (0, 1)) are
independent of σ0 and σ1. Since P(i(h) = 1) = λh+ o(h) as h ↓ 0, we obtain

E(|Ih|q/2 1{i(h)=1}) = λhDq+1 E

((
σ 2

1 (1 − U)2D + σ 2
0

((
U + S

λh

)2D

−
(
S

λh

)2D)q/2))
.

Since (u + x)2D − x2D → 0 as x → ∞ for every u ≥ 0, by the dominated convergence
theorem we have (for every q ∈ (0,∞))

lim
h↓0

E(|Ih|q/2 1{i(h)=1})
hDq+1 = λE(σ q1 )E((1 − U)Dq) = λE(σ q1 )

1

Dq + 1
. (32)

This shows that the second term on the right-hand side of (26) gives a contribution of the order
hDq+1 as h ↓ 0. This is relevant only for q > q∗ because, for q ≤ q∗, the first term gives
a much bigger contribution of the order hq/2 (see (28) and (31)). Recalling (25), it follows
from (32) and (30) that the contribution of the first and the second terms on the right-hand side
of (26) matches the statement of the theorem (including the constant).
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It only remains to show that the third term on the right-hand side of (26) gives a negligible
contribution. We begin by deriving a simple upper bound for Ih. Since (a+b)2D−b2D ≤ a2D

for all a, b ≥ 0 (we recall that 2D ≤ 1), when i(h) ≥ 1, i.e. τ1 ≤ h, we can write

Ih = σ 2
i(h)(h− τi(h))

2D +
i(h)∑
k=2

σ 2
k−1(τk − τk−1)

2D + σ 2
0 [(τ1 − τ0)

2D − (−τ0)
2D]

≤ σ 2
i(h)(h− τi(h))

2D +
i(h)∑
k=2

σ 2
k−1(τk − τk−1)

2D + σ 2
0 τ

2D
1 , (33)

with the convention that the sum over k is 0 if i(h) = 1. Since τk ≤ h for all k ≤ i(h), by the
definition of i(h) given in (5), relation (33) yields the bound Ih ≤ h2D ∑i(h)

k=0 σ
2
k , which clearly

also holds when i(h) = 0. In conclusion, we have shown that, for all h, q > 0,

|Ih|q/2 ≤ hDq
( i(h)∑
k=0

σ 2
k

)q/2
. (34)

Consider first the case q > 2. By Jensen’s inequality we have

( i(h)∑
k=0

σ 2
k

)q/2
= (i(h)+ 1)q/2

(
1

i(h)+ 1

i(h)∑
k=0

σ 2
k

)q/2
≤ (i(h)+ 1)q/2−1

i(h)∑
k=0

σ
q
k . (35)

By (34) and (35), we obtain

E(|Ih|q/2 1{i(h)≥2}) ≤ hDq E(σ q)E((i(h)+ 1)q/2 1{i(h)≥2}). (36)

A corresponding inequality for q ≤ 2 is derived from (34): since (
∑∞
k=1 xk)

q/2 ≤ ∑∞
k=1 x

q/2
k

for every nonnegative sequence (xn)n∈N, we obtain

E(|Ih|q/2 1{i(h)≥2}) ≤ hDq E

( i(h)∑
k=0

σ
q
k 1{i(h)≥2}

)
≤ hDq E(σ q)E((i(h)+ 1) 1{i(h)≥2}). (37)

For any fixed a > 0, by the Hölder inequality with p = 3 and p′ = 3
2 , we can write, for h ≤ 1,

E((i(h)+ 1)a 1{i(h)≥2}) ≤ E((i(h)+ 1)3a)1/3 P(i(h) ≥ 2)2/3

≤ E((i(1)+ 1)3a)1/3(1 − e−λh − e−λhλh)2/3

≤ (constant)h4/3, (38)

because E((i(1)+ 1)3a) < ∞ (recall that i(h) ∼ Po(λ)) and (1 − e−λh − e−λhλh) ∼ 1
2 (λh)

2

as h ↓ 0. Then it follows from (36), (37), and (38) that

E(|Ih|q/2 1{i(h)≥2}) ≤ (constant1)hDq+4/3.

This shows that the contribution of the third term on the right-hand side of (26) is always
negligible with respect to the contribution of the second term (recall (32)).
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5. Decay of correlations: proof of Theorem 3

Given a Borel set I ⊆ R, we let GI denote the σ -algebra generated by the family of random
variables (τk 1{τk∈I }, σk 1{τk∈I })k≥0. Informally, GI may be viewed as the σ -algebra generated
by the variables τk and σk for the values of k such that τk ∈ I . From the basic property of the
Poisson process and from the fact that the variables (σk)k≥0 are independent, it follows that, for
disjoint Borel sets I and I ′, the σ -algebras GI and GI ′ are independent. We write G := GR for
short, which is by definition the σ -algebra generated by all the variables (τk)k≥0 and (σk)k≥0,
which coincides with the σ -algebra generated by the process (It )t≥0.

We have to prove (17). Clearly, by translation invariance we can set s = 0 without loss of
generality. We also assume that h < t . We start by writing

cov(|Xh|, |Xt+h −Xt |)
= cov(E(|Xh| | G),E(|Xt+h −Xt | | G))+ E(cov(|Xh|, |Xt+h −Xt | | G)). (39)

We recall that Xt = WIt , and that the process (It )t≥0 is G-measurable and independent
of the process (Wt )t≥0. It follows that, conditionally on (It )t≥0, the process (Xt )t≥0 has
independent increments; hence, the second term on the right-hand side of (39) vanishes, because
cov(|Xh|, |Xt+h − Xt | | G) = 0 a.s. For fixed h, from the equality in law Xh = WIh ∼√
IhW1, it follows that E(|Xh| | G) = c1

√
Ih, where c1 = E(|W1|) = √

2/π . Analogously
E(|Xt+h −Xt | | G) = √

2/π
√
It+h − It and (39) reduces to

cov(|Xh|, |Xt+h −Xt |) = 2

π
cov(

√
Ih,

√
It+h − It ). (40)

Recall the definitions of the variables i(t) and It given in (5) and (6). We now claim that we
can replace

√
It+h − It by

√
It+h − It 1{T ∩(h,t]=∅} in (40). In fact, from (6) we can write

It+h − It = σ 2
i(t+h)(t + h− τi(t+h))2D +

i(t+h)∑
k=i(t)+1

σ 2
k−1(τk − τk−1)

2D − σ 2
i(t)(t − τi(t))

2D,

with the convention that the sum on the right-hand side is 0 if i(t + h) = i(t). This shows
that (It+h − It ) is a function of the variables τk and σk with index i(t) ≤ k ≤ i(t + h).
Since {T ∩ (h, t] �= ∅} = {τi(t) > h}, then

√
It+h − It 1{T ∩(h,t]�=∅} is G(h,t+h]-measurable

and, hence, independent of
√
Ih, which is clearly G(−∞,h]-measurable. This shows that

cov(
√
Ih,

√
It+h − It 1{T ∩(h,t]�=∅}) = 0; therefore, from (40) we can write

cov(|Xh|, |Xt+h −Xt |) = 2

π
cov(

√
Ih,

√
It+h − It 1{T ∩(h,t]=∅}).

Now we decompose this last covariance as follows:

cov(
√
Ih,

√
It+h − It 1{T ∩(h,t]=∅})

= E((
√
Ih − E(

√
Ih))

√
It+h − It 1{T ∩(h,t]=∅})

= E((
√
Ih − E(

√
Ih))

√
It+h − It 1{T ∩(0,t+h]=∅})

+ E((
√
Ih − E(

√
Ih))

√
It+h − It 1{T ∩(h,t]=∅} 1{T ∩([0,h]∪(t,t+h])�=∅}). (41)

We deal with the two terms on the right-hand side of (41) separately. The first gives the dominant
contribution. To see this, observe that, on {T ∩ (0, t + h] = ∅},

Ih = σ 2
0 [(h− τ0)

2D − (−τ0)
2D]
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and
It+h − It = σ 2

0 [(t + h− τ0)
2D − (t − τ0)

2D].
Since both σ 2

0 [(h− τ0)
2D − (−τ0)

2D] and σ 2
0 [(t + h− τ0)

2D − (t − τ0)
2D] are independent

of {T ∩ (0, t + h] = ∅}, we have

E[(√Ih − E(
√
Ih))

√
It+h − It 1{T ∩(0,t+h]=∅}]

= E((σ0

√
(h− τ0)2D − (−τ0)2D − E(

√
Ih))

× σ0

√
(t + h− τ0)2D − (t − τ0)2D 1{T ∩(0,t+h]=∅})

= e−λ(t+h) E((σ0

√
(h− τ0)2D − (−τ0)2D − E(

√
Ih))

× σ0

√
(t + h− τ0)2D − (t − τ0)2D)

= e−λ(t+h){cov(σ0

√
(h− τ0)2D − (−τ0)2D, σ0

√
(t + h− τ0)2D − (t − τ0)2D)

+ [E(σ0

√
(h− τ0)2D − (−τ0)2D)− E(

√
Ih)]

× E(σ0

√
(t + h− τ0)2D − (t − τ0)2D)}. (42)

Since δ−1((δ + x)2D − x2D) ↑ 2Dx2D−1 as δ ↓ 0, by monotone convergence we obtain

lim
h→0

1

h
cov(σ0

√
(h− τ0)2D − (−τ0)2D, σ0

√
(t + h− τ0)2D − (t − τ0)2D)

= 2D cov(σ0(−τ0)
D−1/2, σ0(t − τ0)

D−1/2)

= 2Dλ1−2D cov(σ0S
D−1/2, σ0(λt + S)D−1/2)

= 2Dλ1−2Dφ(λt), (43)

with S := λ(−τ0) ∼ Exp(1) and φ defined as in (18). Similarly,

lim
h→0

1√
h

E(σ0

√
(t + h− τ0)2D − (t − τ0)2D) = √

2D E(σ0(t − τ0)
D−1/2) < +∞. (44)

Therefore, if we show that

lim
h→0

E

(√
Ih

h

)
= √

2D E(σ0(−τ0)
D−1/2) (45)

using (42), (43), and (44), we have

lim
h→0

1

h
E[(√Ih − E(

√
Ih))

√
It+h − It 1{T ∩(0,t+h]=∅}] = 2Dλ1−2Dφ(λt). (46)

To complete the proof of (46), it remains to show (45). But, this is a nearly immediate
consequence of Theorem 2: indeed, using (15) and the fact that q∗ > 1,

E(
√
Ih) = 1

E
√|W1| E(|Xh|)

= C1

E |W1|
√
h+ o(

√
h)

= √
2D E(σ0(−τ0)

D−1/2)
√
h+ o(

√
h).
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The proof is now completed by showing that the second term in (41) is negligible, i.e. o(h).
By the Cauchy–Schwarz inequality and the simple fact that (

√
Ih − E(

√
Ih))

2 ≤ Ih + E(Ih),

E((
√
Ih − E(

√
Ih))

√
It+h − It 1{T ∩(h,t]=∅} 1{T ∩((0,h]∪(t,t+h])�=∅})

≤ (E((
√
Ih − E(

√
Ih))

2(It+h − It ))P(T ∩ ((0, h] ∪ (t, t + h]) �= ∅))1/2

≤ (E((Ih + E(Ih))(It+h − It ))P(T ∩ ((0, h] ∪ (t, t + h]) �= ∅))1/2

≤ (2 E(I 2
h )P(T ∩ ((0, h] ∪ (t, t + h]) �= ∅))1/2

= (2 E(I 2
h ))

1/2
√

2λh.

By Theorem 2, E(I 2
h ) is of order h2 if 4 < q∗, and of order h4D+1 if 4 > q∗, with a logarithmic

correction for q∗ = 4. In both cases (E(I 2
h ))

1/2
√

2λh = o(h), and the proof is completed.

6. Basic properties of the model

In this section we start by proving properties (P1)–(P4) stated in Section 2.2. We then provide
some connections between the tails of σ and those of Xt , also beyond the equivalence stated
in (7). Finally, we establish a mixing property that yields relation (10). One of the proofs is
postponed to Appendix A.

We denote by G the σ -field generated by the whole process (It )t≥0, which coincides with
the σ -field generated by the sequences T = {τk}k≥0 and � = {σk}k≥0.

Proof of property (P1). We first focus on the process (It )t≥0 defined in (6). For h > 0, let
T h := T − h and denote the points in T h by τhk = τk − h. As before, let τh

ih(t)
be the largest

point of T h smaller than t , i.e. ih(t) = i(t + h). Recalling definition (6), we can write

It+h − Ih = σ 2
ih(t)

(t − τh
ih(t)

)2D +
ih(t)∑

k=ih(0)+1

σ 2
k−1(τ

h
k − τhk−1)

2D − σ 2
ih(0)(−τhih(0))2D,

with the convention that the sum on the right-hand side is 0 if ih(t) = ih(0). This relation
shows that (It+h − Ih)t≥0 and (It )t≥0 can be expressed as the same function applied to the
two random sets T h and T , respectively. Since T h and T have the same distribution (both are
Poisson point processes on R with intensity λ), the processes (It+h − Ih)t≥0 and (It )t≥0 have
the same distribution too.

We recall that G is the σ -field generated by the whole process (It )t≥0. From the definition
Xt = WIt and the fact that Brownian motion has independent, stationary increments, it follows
that, for every Borel subset A ⊆ R[0,+∞),

P(Xh+· −Xh ∈ A) = E(P(WIh+· −WIh ∈ A | G)) = P(WI· ∈ A) = P(X· ∈ A),
where we have used the stationarity property of the process I . Thus, the processes (Xt )t≥0 and
(Xh+t −Xh)t≥0 have the same distribution, which implies stationarity of the increments.

Proof of property (P2). Note that E(|Xt |q) = E(|WIt |q) = E(|It |q/2)E(|W1|q), by the
independence of W and I and the scaling properties of Brownian motion. It therefore remains
to show that

E(|It |q/2) < ∞ ⇐⇒ E(σ q) < ∞.
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The implication ‘⇒’ is easy: by the definition of the process I given in (6) we can write

E(|It |q/2) ≥ E(|It |q/2 1{i(t)=0}) = E(σ q0 )E(|(t − τ0)
2D − (−τ0)

2D|q/2)P(i(t) = 0);
therefore, if E(σ q) = ∞ then E(|It |q/2) = ∞ also.

The implication ‘⇐’ follows immediately from bounds (36) and (37), which also hold
without the indicator 1{i(h)≥2}.

Proof of property (P3). Observe first that I ′
s := dIs/ ds > 0 a.s. and for Lebesgue almost

everywhere s ≥ 0. By a change of variable, we can rewrite the process (Bt )t≥0 defined in (9) as

Bt =
∫ It

0

1√
I ′(I−1(u))

dWu =
∫ t

0

1√
I ′
s

dWIs =
∫ t

0

1√
I ′
s

dXs,

which shows that relation (8) holds. It remains to show that (Bt )t≥0 is indeed a standard
Brownian motion. Note that

Bt =
∫ It

0

√
(I−1)′(u) dWu.

Therefore, conditionally on G (the σ -field generated by (It )t≥0), (Bt )t≥0 is a centered Gaussian
process—it is a Wiener integral—with conditional covariance given by

cov(Bs, Bt | G) =
∫ min{Is ,It }

0
(I−1)′(u) du = min{s, t}.

This shows that, conditionally on G, (Bt )t≥0 is a Brownian motion. Therefore, it is a fortiori a
Brownian motion without conditioning.

Proof of property (P4). The assumption that E(σ 2) < ∞ ensures that E(|Xt |2) < ∞ for all
t ≥ 0, as we have already shown. Let us now denote by F X

t = σ(Xs, s ≤ t) the natural
filtration of the process X. We recall that G denotes the σ -field generated by the whole
process (It )t≥0 and we denote by F X

t ∨ G the smallest σ -field containing F X
t and G. Since

E(WIt+h −WIt | F X
t ∨ G) = 0 for all h ≥ 0, by the basic properties of Brownian motion,

recalling that Xt = WIt we obtain

E(Xt+h | F X
t ∨ G) = Xt + E(WIt+h −WIt | F X

t ∨ G) = Xt .

Taking the conditional expectation with respect to F X
t on both sides, we obtain the martingale

property for (Xt )t≥0.

Let us state a proposition, proved in Appendix A, that relates the exponential moments of
σ to those of Xt . We recall that, when our model is calibrated to real-time series, such as the
DJIA, the ‘observable tails’ ofXt are quite insensitive to the details of the distribution of σ ; see
Remarks 3 and 4.

Proposition 1. Regardless of the distribution of σ , for every q > (1 −D)−1, we have

E(exp(γ |Xt |q)) = ∞ for all t > 0 and γ > 0. (47)

On the other hand, for all q < (1 −D)−1 and t > 0, we have

E(exp(γ |Xt |q)) < ∞ for all γ > 0 ⇐⇒ E(exp(ασ 2q/(2−q))) < ∞ for all α > 0,
(48)

and the same relation holds for q = (1 −D)−1 provided D < 1
2 .
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Note that (1 − D)−1 ∈ (1, 2], because D ∈ (0, 1
2 ], so, for D < 1

2 , the distribution of Xt
always has tails heavier than Gaussian.

We finally show a mixing property for the increments of our process. In what follows, for
an interval I ⊆ [0,+∞), we let

F D
I := σ(Xt −Xs : s, t ∈ I )

denote the σ -field generated by the increments in I of the process X.

Proposition 2. Let I = [a, b) and J = [c, d) with 0 ≤ a < b ≤ c < d . Then, for every
A ∈ F D

I and B ∈ F D
J ,

|P(A ∩ B)− P(A)P(B)| ≤ e−λ(c−b). (49)

As a consequence, (10) holds a.s. and in L1 for every measurable function F : Rk → R such
that E(|F(Xb1 −Xa1 , . . . , Xbk −Xak )|) < +∞.

Proof. We recall that T denotes the set {τk : k ∈ Z} and, for I ⊆ R, GI denotes the σ -algebra
generated by the family of random variables (τk 1{τk∈I }, σk 1{τk∈I })k≥0, where (σk)k≥0 is the
sequence of volatilities. We introduce the G[b,c)-measurable event

	 := {T ∩ [b, c) �= ∅}.
(We recall that the σ -field GI was defined at the beginning of Section 5.) We claim that, for
A ∈ F D

I and B ∈ F D
J , we have

P(A ∩ B ∩ 	) = P(A)P(B ∩ 	). (50)

The key to seeing this is in the following two remarks.

• F D
I and F D

J are independent conditionally on G = GR. This follows immediately from
the independence of W and (It ). As a consequence,

P(A ∩ B | G) = P(A | G)P(B | G) a.s.

• Conditionally on G, the family of random variables (Xt −Xs)s,t∈[c,d) is a Gaussian
process whose covariances are measurable with respect to the σ -field generated by the
random variables {It −Ic : t ∈ (c, d)}. In particular, P(B | G) is measurable with respect
to this σ -field. The same holds for [a, b) in place of [c, d). Note also that the increment
It − Ic is a measurable function of the random variables

{(τk 1{τk∈I }, σk 1{τk∈I }) : k ≥ 0} ∪ {(σi(c), τi(c))}.
It follows that the random variable (P(B | G) 1	) is G(b,d)-measurable, and is therefore
independent of P(A | G), which is G(−∞,b]-measurable.

Thus, we have

P(A ∩ B ∩ 	) = E(P(A ∩ B | G) 1	) = E(P(A | G)P(B | G) 1	) = P(A)P(B ∩ 	),
where the two remarks above have been used. Thus, (50) is established. Finally,

|P(A ∩ B)− P(A)P(B)|
= |P(A ∩ B ∩ 	)+ P(A ∩ B ∩ 	c)− P(A)P(B ∩ 	)− P(A)P(B ∩ 	c)|
= |P(A ∩ B ∩ 	c)− P(A)P(B ∩ 	c)|
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= |P(A ∩ B | 	c)− P(A | 	c)P(B | 	c)| P(	c)

≤ P(	c)

= e−λ(c−b).

We finally show that (10) holds a.s. and inL1 for every measurable functionF : Rk → R such
that E(|F(Xb1 −Xa1 , . . . , Xbk −Xak )|) < +∞. Consider the Rk-valued stochastic process
ξ = (ξn)n∈N defined by

ξn := (Xnδ+b1 −Xnδ+a1 , . . . , Xnδ+bk −Xnδ+ak )

for fixed δ > 0, k ∈ N, and (a1, b1), . . . , (ak, bk) ⊆ (0,∞). The process ξ is stationary,
because we have proven in Section 6 thatX has stationary increments. Moreover, inequality (49)
implies that ξ is mixing, and, therefore, ergodic (see, e.g. [30, Chapter 5, Section 2, Definition 4
and Theorem 2]). The existence of the limit in (10), both a.s. and in L1, is then a consequence
of the classical ergodic theorem (see, e.g. [30, Chapter 5, Section 3, Theorems 1 and 2]).

7. Estimation and data analysis

In this section we present the main steps that led to the calibration of the model to the DJIA
over a period of 75 years; the essential results have been sketched in Section 2.4. We point out
that the agreement with the S&P 500, FTSE 100, and Nikkei 225 indexes is very good as well.
A systematic treatment of other time series, beyond financial indexes, still has to be done, but
some preliminary analysis of single stocks shows that our model fits well some but not all of
them. It would be interesting to understand which of the properties we have mentioned are
linked to aggregation of several stock prices, as in the DJIA.

The data analysis, the simulations, and the plots have been obtained with the software R (see
http://www.R-project.org). The code we have used is publicly available online at http://www.
matapp.unimib.it/∼fcaraven/c.html.

7.1. Overview

For the numerical comparison of our process (Xt )t≥0 with the DJIA time series, we have
decided to focus on the following quantities.

(a) The multiscaling of moments; see Corollary 1.

(b) The volatility autocorrelation decay; see Corollary 2.

Roughly speaking, the idea is to empirically compute these quantities on the DJIA time series
and then to compare the results with the theoretical predictions of our model. This is justified
by the ergodic properties of the increments of our process (Xt )t≥0; cf. (10).

The first problem that one faces is the estimation of the parameters of our model: the two
scalars λ ∈ (0,∞) and D ∈ (0, 1

2 ] and the distribution ν of σ . This in principle belongs to
an infinite-dimensional space, but as a first step we focus on the moments E(σ ) and E(σ 2).
In order to estimate (D, λ,E(σ ),E(σ 2)), we take into account four significant quantities that
depend only on these parameters:

• the multiscaling coefficients C1 and C2 (see (15));

• the multiscaling exponent A(q) (see (16));

• the volatility autocorrelation function ρ(t) (see (19)).
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We consider a natural loss functional L = L(D, λ,E(σ ),E(σ 2)) which measures the distance
between these theoretical quantities and the corresponding empirical ones, evaluated on the
DJIA time series; see (51) below. We then define the estimator for (D, λ,E(σ ),E(σ 2)) as the
point at which L attains its overall minimum, subject to the constraint E(σ 2) ≥ (E(σ ))2.

It turns out that the estimated values are such that E(σ 2) � (E(σ ))2, that is, σ is nearly
constant and the estimated parameters completely specify the model. (The constraint E(σ 2) ≥
(E(σ ))2 does not play a relevant role: the unconstrained minimum nearly coincides with the
constrained one.) Thus, the problem of determining the distribution of σ beyond its moments
E(σ ) and E(σ 2) does not appear in the case of the DJIA. More generally, even we found
v̂ar(σ ) := Ê(σ 2)− (Ê(σ ))2 > 0 and, hence, σ is not constant; fine details of its distribution ν
beyond the first two moments give a negligible contribution to the properties that are relevant
for application to real data series, as we observed in Remark 5.

7.2. Estimation of the parameters D, λ, E(σ ), and E(σ 2)

Let us fix some notation. The DJIA time series will be denoted by (si)0≤i≤N (where N =
18 848) and the corresponding detrended log-DJIA time series will be denoted by (xi)0≤i≤N ,
where

xi := log(si)− d̄(i)

and d̄(i) := 1
250

∑i−1
k=i−250 log(si) is the mean log-DJIA price on the previous 250 days. (Other

reasonable choices for d̄(i) affect the analysis only in a minor way.)
The theoretical scaling exponent A(q) is defined in (16), while the multiscaling constants

C1 and C2 are given in (15) for q = 1 and q = 2. Since q∗ = ( 1
2 −D)−1 > 2 (we recall that

0 ≤ D ≤ 1
2 ), we can write more explicitly

C1 = 2
√
D	(1/2 +D)E(σ )λ1/2−D

√
π

, C2 = 2D	(2D)E(σ 2)λ1−2D.

Defining the corresponding empirical quantities requires some care, because the DJIA data
are in discrete time and, therefore, no h ↓ 0 limit is possible. We first evaluate the empirical
q-moment m̂q(h) of the DJIA log-returns over h days, namely,

m̂q(h) := 1

N + 1 − h

N−h∑
i=0

|xi+h − xi |q .

By Theorem 2, the relation log m̂q(h) ∼ A(q)(logh) + log(Cq) should hold for small h. By
plotting log m̂q(h) versus logh we indeed find an approximate linear behavior for moderate
values of h and when q is not too large (q � 5). By a standard linear regression of log m̂q(h)
versus logh for h = 1, 2, 3, 4, 5 days we therefore determine the empirical values of A(q) and
Cq on the DJIA time series, which we call Â(q) and Ĉq .

As for the theoretical volatility autocorrelation, Corollary 2 and the stationarity of the
increments of our process (Xt )t≥0 yield

ρ(t) := lim
h↓0

ρ(|Xh|, |Xt+h −Xt |) = 2

π var(σ |W1|SD−1/2)
e−λtφ(λt),

where S ∼ Exp(1) is independent of σ and W1 and the function φ(·) is given by

φ(x) = var(σ )E(SD−1/2(S + x)D−1/2)+ E(σ )2 cov(SD−1/2, (S + x)D−1/2);
cf. (20). Note that although φ(·) does not admit an explicit expression it can be easily evaluated
numerically. For the analogous empirical quantity, we define the empirical DJIA volatility
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autocorrelation ρ̂h(t) over h days as the sample correlation coefficient of the two sequences
(|xi+h − xi |)0≤i≤N−h−t and (|xi+h+t − xi+t |)0≤i≤N−h−t . Since no h ↓ 0 limit can be taken
on discrete data, we are going to compare ρ(t) with ρ̂h(t) for h = 1 day.

We can then define a loss functional L as

L(D, λ,E(σ ),E(σ 2)) = 1

2

{(
Ĉ1

C1
− 1

)2

+
(
Ĉ2

C2
− 1

)2}
+ 1

20

20∑
k=1

(
Â(k/4)

A(k/4)
− 1

)2

+
400∑
n=1

e−n/T

(
∑400
m=1 e−m/T )

(
ρ̂1(n)

ρ(n)
− 1

)2

, (51)

where the constant T controls a discount factor in long-range correlations. Of course, different
weights for the four terms appearing in the functional could be assigned. We fix T = 40 (days),
and we define the estimator (D̂, λ̂, Ê(σ ), Ê(σ 2)) of the parameters of our model as the point
where the functional L attains its overall minimum, that is,

(D̂, λ̂, Ê(σ ), Ê(σ 2)) := arg min
D∈(0,1/2], λ,E(σ ),E(σ 2)∈(0,∞)

such that E(σ 2)≥(E(σ ))2
{L(D, λ,E(σ ),E(σ 2))},

where the constraint E(σ 2) ≥ (E(σ ))2 is due to var(σ ) = E(σ 2) − (E(σ ))2 ≥ 0. We expect
that such an estimator has good properties, such as asymptotic consistency and normality (we
omit a proof of these properties, as it goes beyond the spirit of this paper).

The numerical study of the functional L, which appears to be quite regular, was carried out
using MATHEMATICA®, yielding the estimates for the parameters given in (22), i.e.

D̂ � 0.16, λ̂ � 0.000 97, Ê(σ ) � 0.108, Ê(σ 2) � 0.0117 � (Ê(σ ))2.

7.3. Graphical comparison

Having found that Ê(σ 2) � (Ê(σ ))2, the estimated variance of σ is equal to 0, that is, σ is a
constant. In particular, the model is completely specified and we can compare some quantities,
as predicted by our model, with the corresponding numerical ones evaluated for the DJIA time
series. The graphical results have already been described in Section 2.4 and show very good
agreement; see Figure 3 for the multiscaling of moments and the volatility autocorrelation, and
Figure 4 for the log-return distribution.

Let us give some details about Figure 4. The theoretical distribution pt (·) := P(Xt ∈ ·) =
P(Xt − X0 ∈ ·) of our model, for which we do not have an analytic expression, can be easily
evaluated numerically via Monte Carlo simulations. The analogous quantity evaluated for the
DJIA time series is the empirical distribution p̂t (·) of the sequence (xi+t − xi)0≤i≤N−t :

p̂t (·) := 1

N + 1 − t

N−t∑
i=0

δxi+t−xi (·).

In Figure 4(a) we plotted the bulk of the distributionspt (·) and p̂t (·) for t = 1 (daily log-returns)
or, more precisely, the corresponding densities, in the range [−3ŝ,+3ŝ], where ŝ � 0.0095
is the standard deviation of p̂1(·) (i.e. the empirical standard deviation of the daily log-returns
evaluated for the DJIA time series). In Figure 4(b) we plotted the tail of p1(·), that is, the
function z → P(X1 > z) = P(X1 < −z) (note that Xt ∼ −Xt for our model) and the right
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(a) Multiscaling exponent in subperiods
      of 30 years: simulated data

(b) Volatility autocorrelation in subperiods
      of 30 years: simulated data

(c) Multiscaling exponent in subperiods
      of 30 years: DJIA data

(d) Volatility autocorrelation in subperiods
      of 30 years: DJIA data

Figure 5: Variability of estimators in subperiods of 30 years. Empirical evaluation of the observables
Â(q) and ρ̂1(t) in subperiods of 30 years for a 75-year-long time series, sampled from our model (Xt )t≥0

((a) and (b)) and from the DJIA time series ((c) and (d)).

and left empirical tails R̂(z) and L̂(z) of p̂1(·), defined for z ≥ 0 by

L̂(z) := #{1 ≤ i ≤ N : xi − xi−1 < −z}
N

, R̂(z) := #{1 ≤ i ≤ N : xi − xi−1 > z}
N

,

in the range z ∈ [ŝ, 12ŝ].
7.4. Variability of estimators

In this paper we have identified relatively rare but dramatic shocks in the volatility as the
main common source of various stylized facts such as multiscaling, autocorrelations, and heavy
tails. As observed in Remark 5, the expected number of shocks in a period of 75 years is about
18, which is a rather low number; this means that empirical averages may not be very close to
their ergodic limit or, in other words, estimators should have nonnegligible variance. A way to
detect this is to simulate data from our model for 75 years, and then compute estimators using
data in different subperiods, which we have chosen to be 30 years. Figure 5(a) and (b) indeed
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show a considerable variability of the values of the estimators for the multiscaling exponent and
the volatility autocorrelations, when computed in different subperiods. We repeated the same
computations on the DJIA time series (see Figure 5(c) and (d)), observing a similar variability.
We regard this as a significant test for this model.

Remark 6. We point out that, among the different quantities that we have considered, the
scaling exponent Â(q) appears to be the most sensitive. For instance, if instead of the opening
prices one took the closing prices of the DJIA time series (over the same time period 1935–
2009), one would obtain a different (though qualitatively similar) graph of Â(q).

Remark 7. The multiscaling of empirical moments has been observed in several financial
indexes in [18], where it is claimed that data provide solid arguments against models with
linear or piecewise-linear scaling exponents. Note that the theoretical scaling exponentA(q) of
our model is indeed piecewise linear; see (16). However, Figure 5(a) shows that the empirical
scaling exponent Â(q) evaluated on data simulated from our model ‘smooths out’ the change
of slope, yielding graphs that are analogous to those obtained for the DJIA time series; see
Figure 5(c). This shows that the objection against models with piecewise linear A(q), raised
in [18], cannot apply to the model we have proposed.

Appendix A. Proof of Proposition 1

We first need two simple technical lemmas.

Lemma 1. For 0 < q < 2, consider the function ϕq : [0,+∞) → [0,+∞) defined by

ϕq(β) :=
∫ +∞

−∞
exp

[
β|x|q − x2

2

]
dx.

Then there are constants C1, C2 > 0 that depend on q such that, for all β > 0,

C1 exp[C1β
2/(2−q)] ≤ ϕq(β) ≤ C2 exp[C2β

2/(2−q)]. (52)

Proof. We begin by observing that it is enough to establish the bounds in (52) for large
enough β. Consider the function of positive real variable f (r) := eβr

q−r2/2. It is easily
checked that f is increasing for 0 ≤ r ≤ (βq)1/(2−q). Thus,

ϕq(β) ≥
∫ (βq)1/(2−q)

(βq)1/(2−q)/2
f (r) dr

≥ 1
2 (βq)

1/(2−q)f
( 1

2 (βq)
1/(2−q))

= 1
2 (βq)

1/(2−q) exp[c(q)β2/(2−q)],
with

c(q) := 1

2q
qq/(2−q) − 1

8
q2/(2−q) > 0.

The lower bound in (52) easily follows for large β.
For the upper bound, by direct computation we observe that f (r) ≤ e−r2/4 for r >

(4β)1/(2−q). We have

ϕq(β) ≤
∫

|x|≤(4β)1/(2−q)
f (|x|) dx +

∫
|x|>(4β)1/(2−q)

e−x2/4 dx

≤ 2(4β)1/(2−q)‖f ‖∞ +
∫ +∞

−∞
e−x2/4 dx.
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Since ‖f ‖∞ = f ((βq)1/(2−q)) = exp[C(q)β2/(2−q)] for a suitableC(q), the upper bound also
follows for large β.

Lemma 2. Let X1, X2, . . . , Xn be independent random variables uniformly distributed in
[0, 1], and let U1 < U2 < · · · < Un be the associated order statistics. For n ≥ 2 and
k = 2, . . . , n, set ξk := Uk − Uk−1. Then, for every ε > 0,

lim
n→+∞ P

(∣∣∣∣{k ∈ {2, . . . , n} : ξk > 1

n1+ε

}∣∣∣∣ ≥ n1−ε
)

= 1.

Proof. This is a consequence of the following stronger result: for every x > 0, as n → ∞,
we have the convergence in probability

1

n

∣∣∣∣{k ∈ {2, . . . , n} : ξk > x

n

}∣∣∣∣ → e−x;

see [33] for a proof.

Proof of Proposition 1. Since Xt = WIt and
√
It W1 have the same law, we can write

E(eγ |Xt |q ) = E(exp[γ Iq/2t |W1|q ]).
We begin with the proof of (48); hence, we work in the regime q < (1 − D)−1, or q =

(1 −D)−1 andD < 1
2 ; in any case, q < 2. We start with the ‘⇐’ implication. Since It andW1

are independent, it follows from Lemma 1 that

E(exp[γ Iq/2t |W1|q ]) ≤ C E(exp[δIq/(2−q)
t ]) (53)

for some C, δ > 0. For the moment, we work on the event {i(t) ≥ 1}. It follows from the basic
bound (33) that

It ≤
i(t)∑
k=0

ξ2D
k σ 2

k , (54)

where we set

ξk :=

⎧⎪⎨⎪⎩
τ1 for k = 0,

τk+1 − τk for 1 ≤ k ≤ i(t)− 1,

t − τi(t) for k = i(t).

Note that
∑i(t)
k=0 ξk = t . By applying Hölder’s inequality to (54) with exponents p = 1/2D

and p′ = 1/(1 − 2D), we obtain

It ≤ t2D
( i(t)∑
k=0

σ
2/(1−2D)
k

)1−2D

.

By assumption, q ≤ 1/(1 −D), which is the same as (1 − 2D)q/(2 − q) ≤ 1. Thus,

I
q/(2−q)
t ≤ t2Dq/(2−q)

( i(t)∑
k=0

σ
2/(1−2D)
k

)(1−2D)q/(2−q)
≤ t2Dq/(2−q)

i(t)∑
k=0

σ
2q/(2−q)
k . (55)
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Now observe that if i(t) = 0 we have It = σ 2
0 [(t − τ0)

2D − (−τ0)
2D] ≤ σ 2

0 t
2D; hence, (55)

also holds when i(t) = 0. Therefore, by (53),

E(eγ |Xt |q ) ≤ C E

(
exp

[
δt2Dq/(2−q)

i(t)∑
k=0

σ
2q/(2−q)
k

])
= C E(ρi(t)+1), (56)

where we have set

ρ = ρt := E(exp[δt2Dq/(2−q)σ 2q/(2−q)
0 ]).

Therefore, if ρ < ∞, the right-hand side of (56) is finite, because i(t) ∼ Po(λt) has finite
exponential moments of all orders. This proves the ‘⇐’ implication in (48).

The ‘⇒’ implication in (48) is simpler. By the lower bound in Lemma 1 we have

E(eγ |Xt |q ) = E(exp[γ Iq/2t |W1|q ]) ≥ C E(exp[δIq/(2−q)
t ]) (57)

for suitable C, δ > 0. We note that

E(exp[δIq/(2−q)
t ]) ≥ E(exp[δIq/(2−q)

t ] 1{i(t)=0})

= E(exp[δ[(t − τ0)
2D − (−τ0)

2D]q/(2−q)σ 2q/(2−q)
0 ])P(i(t) = 0). (58)

Under the condition

E[exp(ασ 2q/(2−q))] = +∞ for all α > 0,

the last expectation in (58) is infinite, since [(t−τ0)
2D−(−τ0)

2D] > 0 a.s., which is independent
of σ0. Looking back at (57), we have proved the ‘⇒’ implication in (48).

Next we prove (47); hence, we assume that q > (1 −D)−1. Consider first the case q < 2
(which may happen only for D < 1

2 ). By (57),

E(eγ |Xt |q ) ≥ C E(exp[δIq/(2−q)
t ]).

We note that, by the definition of It given in (5), we can write

It ≥
i(t)∑
k=2

σ 2
k−1(τk − τk−1)

2D,

with the convention that the sum is 0 if i(t) < 2. For n ≥ 0, we let Pn denote the conditional
probability P(· | i(t) = n) and we let En be the corresponding expectation. Note that, under
Pn, the random variables (τk − τk−1)

n
k=2 have the same law as the random variables (ξk)nk=2 in

Lemma 2 for n ≥ 2. Consider the events

An := {σ 2
k ≥ a for all k = 2, . . . , n}, Bn :=

{∣∣∣∣{k = 2, . . . , n : ξk > 1

n1+ε

}∣∣∣∣ ≥ n1−ε
}
,

where a > 0 is such that ν([a,+∞)) =: ρ > 0 and ε > 0 will be chosen later. Note that
Pn(An) = ρn−1 while Pn(Bn) → 1 as n → +∞ by Lemma 2. In particular, there exists a
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c > 0 such that Pn(Bn) ≥ c for every n. Clearly, An and Bn are independent under Pn. We
have

ψ(n) := En(exp[δIq/(2−q)
t ])

≥ En(exp[δIq/(2−q)
t ] 1An∩Bn)

≥ cρn−1 exp

[
δaq/(2−q)

(
1

n1+ε

)2Dq/(2−q)
n(1−ε)q/(2−q)

]
= cρn−1 exp[δaq/(2−q)n(1−2D−ε(1+2D))q/(2−q)]. (59)

Note that q > 1/(1 −D) is equivalent to (1 − 2D)q/(2 − q) > 1; therefore, ε can be chosen
small enough so that b := (1 − 2D− ε(1 + 2D))q/(2 − q) > 1. It then follows from (59) that
ψ(n) ≥ d exp[dnb] for every n ∈ N and a suitable d > 0. Therefore,

E(exp[δIq/(2−q)
t ]) = E(ψ(i(t))) = +∞,

because i(t) ∼ Po(λt) and, hence, E(exp[di(t)b]) = ∞ for all d > 0 and b > 1.
Next we consider the case q ≥ 2. Note that

E(eγ |Xt |q ) = E(exp[γ Iq/2t |W1|q ]); (60)

hence, if q > 2, we have E(eγ |Xt |q ) = ∞ because E(exp[c|W1|q ]) = ∞ for every c > 0,
It > 0 a.s., and It is independent of W1. On the other hand, if q = 2, we must have D < 1

2
(recall that we are in the regime q > (1 −D)−1) and the steps leading to (59) have shown that
in this case It is unbounded. It then follows again from (60) that E(eγ |Xt |2) = ∞.

Appendix B. The model of Baldovin and Stella

Let us briefly discuss the model proposed by Baldovin and Stella [6] and [31], motivated
by renormalization group arguments from statistical physics. They first introduced a process
(Yt )t≥0 which satisfies the scaling relation (3) for a given function g, which is assumed to
be even, so that its Fourier transform ĝ(u) := ∫

R
eiuxg(x) dx is real (and even). The process

(Yt )t≥0 is defined by specifying its finite-dimensional laws: for t1 < t2 < · · · < tn, the joint
density of Yt1 , Yt2 , . . . , Ytn is given by

p(x1, t1; x2, t2; . . . ; xn, tn) = h

(
x1√
t1
,
x2 − x1√
t2 − t1

, . . . ,
xn − xn−1√
tn − tn−1

)
, (61)

where h is the function whose Fourier transform ĥ is given by

ĥ(u1, u2, . . . , un) := ĝ(

√
u2

1 + · · · + u2
n). (62)

Note that if g is the standard Gaussian density then (Yt )t≥0 is the ordinary Brownian motion.
For a non-Gaussian g, the expression in (62) is not necessarily the Fourier transform of a
probability on Rn, so some care is needed (we come back to this point in a moment). However,
it is clear from (61) that the increments of the process (Yt )t≥0 corresponding to time intervals
of the same length (that is, for fixed ti+1 − ti) have a permutation invariant distribution and,
therefore, cannot exhibit any decay of correlations.

For this reason, Baldovin and Stella introduced what is probably the most interesting
ingredient of their construction, namely, a special form of time inhomogeneity. They defined
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it in terms of finite-dimensional distributions, but it is simpler to give a pathwise construction:
given a sequence of (possibly random) times 0 < τ1 < τ2 < · · · < τn ↑ +∞ and a fixed
0 < D ≤ 1

2 , they introduced a new process (Xt )t≥0 defined by

Xt := Yt2D for t ∈ [0, τ1), (63)

and, more generally,

Xt := Y(t−τn)2D+∑n
k=1(τk−τk−1)

2D for t ∈ [τn, τn+1). (64)

For D = 1
2 , we clearly have Xt ≡ Yt , while, for D < 1

2 , the process (Xt )t≥0 is obtained from
(Yt )t≥0 by a nonlinear time change, which is ‘refreshed’ at each time τn. This transformation
has the effect of amplifying the increments of the process for t immediately after the times
(τn)n≥1, while the increments tend to become small for larger t .

Let us shed some light on the implicit relations (61)–(62). If a stochastic process (Yt )t≥0 is
to satisfy these relations, it must necessarily have exchangeable increments: by this we mean
(see [21, p. 1210]) that, setting �Y(a,b) := Yb − Ya for short, the distribution of the random
vector (�YI1+y1 , . . . , �YIn+yn)—where the Ij s are intervals and the yj s are real numbers—
does not depend on y1, . . . , yn, as long as the intervals y1 + I1, . . . , yn + In are disjoint. If
we make the (very mild) assumption that (Yt )t≥0 has no fixed point of discontinuity then a
continuous-time version of the celebrated de Finetti theorem ensures that (Yt )t≥0 is a mixture
of Lévy processes; see Theorem 3 of [21] (see also [1]). Actually, more can be said: since,
by (3), the distribution of the increments of (Yt )t≥0 is isotropic, i.e. it has spherical symmetry
in Rn, by Theorem 4 of [21], the process (Yt )t≥0 is necessarily a mixture of Brownian motions.
This means that we have the representation

Yt = σ Wt , (65)

where (Wt )t≥0 is a standard Brownian motion and σ is an independent real random variable (a
random, but time-independent, volatility). If a process (Yt )t≥0 satisfies (65) then, denoting by
ν the law of σ , it is easy to check that relations (61)–(62) hold with

g(x) =
∫

R

1√
2πσ

e−x2/2σ 2
ν(dσ), (66)

or, equivalently,

ĝ(u) =
∫

R

e−σ 2u2/2ν(dσ).

This shows that the functions g for which (61)–(62) provide a consistent family of finite-
dimensional distributions are exactly those that may be expressed as in (66) for some probability
ν on (0,+∞).

Note that a path of (65) is obtained by sampling independently σ from ν and (Wt )t≥0 from
the Wiener measure; hence, this path cannot be distinguished from the path of a Brownian
motion with constant volatility. In particular, the (possible) correlation of the increments of
the process (Yt )t≥0 cannot be detected empirically, and the same observation applies to the
time-inhomogeneous process (Xt )t≥0 obtained by (Yt )t≥0 through (63)–(64). In other words,
the processes obtained through this construction have nonergodic increments.

Nevertheless, Baldovin and Stella claimed to measure nonzero correlations from their
samples: after estimating the function g and the parameters t0 and D on the DJIA time
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series, their simulated trajectories showed good agreement with the clustering of volatility,
as well as with the basic scaling (3) and the multiscaling of moments. The explanation of
this apparent contradiction is that Baldovin and Stella did not simulate the process (Xt )t≥0
defined through the above construction, but rather an autoregressive approximation of it. In
fact, besides making a periodic choice of the times τn := nt0, they fixed a small time step δ and
a natural number N and they first simulated xδ , x2δ, . . . , xNδ according to the true distribution
of (Xδ,X2δ, . . . , XNδ). Then they computed the conditional distribution of X(N+1)δ given
X2δ = x2δ , X3δ = x3δ, . . . , XNδ = xNδ—thus, neglecting xδ—and sampled x(N+1)δ from this
distribution. Similarly, x(N+2)δ is sampled from the conditional distribution of X(N+2)δ given
X3δ = x3δ, . . . , XNδ = xNδ , X(N+1)δ = x(N+1)δ , neglecting both xδ and x2δ , and so on. It is
plausible that such an autoregressive procedure may produce an ergodic process.
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