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Oscillatory flow around a vertical circular
cylinder placed in an open channel: coherent
structures, sediment entrainment potential and
drag forces
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Flow and turbulent structures generated by the interaction of forced incoming oscillatory
flow with a circular, vertical cylinder placed in an open channel with a horizontal bed
are investigated using eddy-resolving simulations. Validation simulations performed with
a Keulegan–Carpenter (KC) number of 20 and multiple-mode forcing corresponding to
the laboratory experiment of Sumer et al. (J. Fluid Mech., vol. 332, 1997, pp. 41–70)
show that detached eddy simulation (DES) predicts more accurately the amplification of
the bed shear stress beneath the horseshoe vortex system (upstream side of the cylinder)
and the maximum magnitude of the bed shear stress at the downstream (wake) side
of the cylinder compared with unsteady Reynolds-averaged Navier–Stokes simulations.
High-Reynolds-number DES simulations are then conducted with 1.5 ≤ KC ≤ 30.8 and
one-mode sinusoidal forcing of the streamwise velocity in the approaching flow to
investigate the changes in the wake vortex-flow regimes, the coherence of the horseshoe
vortices and the generation of other near-bed coherent structures in the wake during the
oscillatory cycle. The flow is periodic, no horseshoe vortices form and no vortices are
shed in the wake for KC = 1.5. By contrast, for KC ≥ 8 horseshoe vortices are present
over part of the oscillatory cycle and up to three wake vortices are shed over each
half-cycle as KC is increased to 30.8. For an intermediate range of KC numbers, one
(KC = 15.4) or two (KC = 8) of the vortices forming at the back of the cylinder during
each half-cycle are washed around it when the flow reverses. The main horseshoe vortex
and other horizontal near-bed vortices have a large capacity to amplify the bed shear
stresses when the incoming velocity magnitude is significantly less than its peak value.
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Assuming the depth-averaged velocity in the incoming (undisturbed) oscillatory flow is
the same in simulations conducted with different KC numbers, the peak values of the
sediment entrainment potential measured by the mean (cycle-averaged) volumetric flux
of sediment entrained from the bed over one oscillatory cycle occur for 8 ≤ KC ≤ 15.4.
For all KC numbers, the in-line force variation over the oscillatory cycle is fairly well
approximated by the Morison equation. For KC = 1.5, the in-line force is only due to
inertia effects. For KC = 30.8, the maximum and minimum values of the phase-averaged
in-line force are approximatively in phase with those of the incoming flow velocity. For
KC ≥ 15, the phase-averaged in-line force coefficients vary between 0.8 and 1.1 during
most of the oscillatory cycle (e.g. when the incoming flow velocity is not close to zero).
This is different from cases with KC ≤ 8 where the in-line force coefficient is equal to
zero twice during the oscillatory cycle as the in-line force becomes equal to zero for
non-zero values of the incoming velocity. The largest cycle-to-cycle variations of the
in-line force coefficient and in-line force are observed around KC = 8. For KC = 8 and
15.4, the cylinder is subject to relatively large phase-averaged spanwise drag forces that
are comparable to the peak phase-averaged streamwise drag forces. As KC is increased
to 30.8, the phase-averaged spanwise drag force becomes zero over the whole oscillatory
cycle but the cylinder is still subject to large instantaneous spanwise forces over part of the
oscillatory cycle.

Key words: coastal engineering, vortex dynamics, vortex shedding

1. Introduction

Deeper understanding of the physics of oscillatory flow past a solid vertical cylinder
mounted on a channel bed is useful for several engineering applications. Such a flow
serves as a canonical test case for understanding sediment erosion mechanisms and
the relationship between the unsteady forcing of the approaching flow and the capacity
of the flow to induce sediment entrainment and local scour around piles placed in
marine environments. As such, a main application is related to safe design of monopile
foundations of offshore structures (e.g. wind turbines). Of particular concern is the local
scour that can erode the seabed around the base of a foundation due to the action of
waves and/or tidal currents. Depending on the flow conditions in the field, scour holes
with maximum depths of several metres can develop over a short period around offshore
foundation structures. Use of a rock-armour apron around the base of the pile is by far
the most common scour protection measure for this type of structure (Louwersheimer,
Verhagen & Olthof 2009; Petersen et al. 2014). Designing the apron in terms of its
size and the mean diameter of the rock to be used requires accurate information on the
maximum bed shear stress and the positions of the regions of high bed shear induced
by the unsteady flow before scour begins (e.g. for flat-bed conditions around a monopile).
Knowledge of the unsteady forces acting on the submerged part of the structure is essential
for both strength and fatigue design of offshore wind turbines. Other applications include
understanding transport processes and ecological implications for isolated emerged plant
stems in shallow coastal waters, understanding heat transfer for heat exchangers in marine
environments and quantifying fatigue damage by wave-induced loads for the columns of
semi-submersible platforms in marine environments (Kamsanam 2014; Liu et al. 2016;
Zang, Tang & Nepf 2017). In such applications, the approaching flow generally has a
strong oscillatory component due to waves or other unsteady flow conditions in the marine
environment.
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Oscillatory flow around a vertical circular cylinder

The case of a surface-mounted, emerged, circular solid cylinder in steady incoming flow
with flat and deformed (e.g. scoured) bed has been the object of detailed experimental and
numerical studies focusing on the dynamics of the large-scale coherent structures (e.g.
see Dargahi 1989; Sumer & Fredsøe 1997; Akili & Rockwell 2002; Roulund et al. 2005;
Kirkil & Constantinescu 2009, 2012, 2015; Apsilidis et al. 2015; Baykal et al. 2015, 2017).
These studies have shown that at conditions corresponding to the start of the bed scouring
process (e.g. flat-bed conditions), scour is driven by the flow acceleration around the sides
of the cylinder and by the horseshoe vortex system forming around the upstream base of
the cylinder. Though the coherence of the horseshoe vortices is highly variable in time,
the main horseshoe vortex is always present in the flow fields if the degree of bluntness of
the cylinder is sufficiently high. The large erosion potential of the horseshoe vortex system
even for flat-bed conditions was explained by the fact that the main horseshoe vortex is
subject to large-scale bimodal oscillations (Simpson 2001; Kirkil & Constantinescu 2015).
The core of the vortex undergoes sweeping, low-frequency motions towards and away from
the upstream face of the cylinder. As a result, the size of the region where high bed shear
stresses and sediment entrainment are induced at different times in the instantaneous flow
fields is much larger compared with that expected for a relatively stable main horseshoe
vortex that is subject only to small oscillations around its mean-flow position.

The same studies showed that the presence of the channel bed had a noticeable influence
on the billow vortices shed in the wake. While for flat-bed conditions, the anti-symmetric
vortex-shedding mode was present (similar to the von Kármán vortex street for long
cylinders), the cores of the wake vortices were vertical only close to the free surface. Near
the bed, the cores of the wake vortices were stretched and became inclined with respect
to the vertical, which decreased their overall capacity to induce large bed shear stresses.
Another important effect was observed at high Reynolds numbers where the attached
boundary layers on the circular cylinder were turbulent before separation (supercritical
Reynolds numbers) and the flow separated at polar angles larger than 100°. Close to
the bed, where the approaching velocity is small due to the bottom boundary layer, the
flow separated at about 90° and the vortex shedding resembled that observed for long
cylinders at subcritical Reynolds numbers. Wake vortices generated for subcritical flow
conditions have a much-reduced capacity to induce large bed shear stresses compared
with vortices generated for cases where the separation line is vertical until the bed (e.g.
for rectangular and square cylinders, see discussion in Kirkil & Constantinescu 2009) and
to entrain particles from the channel bed. Finally, the presence of the channel bed also
induced strong three-dimensional (3-D) effects at the back of the cylinder where a pair of
streamwise-oriented, counter-rotating vortices formed. These vortices were shown to play
an important role in the weakening of the anti-symmetric mode especially once the scour
hole starts developing (Kirkil, Constantinescu & Ettema 2009).

The structure of oscillatory flow around a surface-mounted cylinder and the dynamics
of the large-scale coherent eddies were less investigated. The dynamics of both the wake
flow on the downstream (lee) side of the cylinder and of the horseshoe vortices forming
around the upstream face of the cylinder is much more complex compared with the case
of an incoming steady current (Sumer, Christiansen & Fredsøe 1997; Baykal et al. 2017).
Similar to the simpler case of oscillatory flow around a long cylinder parallel to the free
surface or of an oscillating long cylinder in steady flow (e.g. see Keulegan & Carpenter
1958; Sarpkaya & Issacson 1981; Williamson 1985; Obasaju, Bearman & Graham 1988),
the Keulegan–Carpenter number, KC = UmT/D (T is the period of the oscillatory flow, Um
is the maximum depth-averaged streamwise velocity at large distances from the cylinder,
D is the cylinder diameter), is the main parameter that determines the structure of the wake
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flow and the number of vortices shed over each half-cycle (Sumer et al. 1997). As opposed
to the case of an incoming steady current, horseshoe vortices are present only over part
of the oscillatory cycle and only for sufficiently high KC numbers. In the case where the
cylinder is placed on a loose bed, the wake vortices may have a larger capacity to entrain
particulates and induce local scour compared with the horseshoe vortices (Sumer et al.
1997).

Given the importance of protecting foundations of wind turbines and bridge piers
against excessive local scour in marine environments, the focus of most of the previous
experimental and numerical investigations was on predicting the scour evolution and the
equilibrium scour bathymetry around surface-mounted vertical piles and investigating the
efficiency of different scour protection measures (e.g. rock armour). Some investigations
focused on predicting the decrease of the scour hole as a result of reducing the amplitude
of the waves approaching the pile, a process called backfilling (Sumer et al. 2003).
Three-dimensional Reynolds-averaged Navier Stokes (RANS) investigations were quite
successful in predicting the temporal evolution of the scour hole at foundations of offshore
structures starting either with an initially flat bed or with a scoured bed in the case of
backfilling (Stahlmann 2014; Baykal et al. 2017). However, no numerical study based
on large-eddy simulation (LES) techniques that can accurately capture the unsteady
dynamics of the energetically important coherent structures in the flow was conducted
for surface-mounted vertical cylinders in oscillatory flow. For example, unsteady RANS
(URANS)-based models cannot capture the aperiodic oscillations of the main horseshoe
vortices forming around the upstream face of a cylinder placed in a steady current. Though
URANS was shown to correctly capture the dependence between the number of wake
vortices shed at the back of a cylinder in oscillatory flow and the KC number (Baykal et al.
2017), some discrepancies between the RANS predictions of the bed shear stresses and
the experimental data were present. In general, RANS accuracy is less than that of LES,
or similar eddy-resolving techniques, in terms of predicting the mean-flow quantities in
complex turbulent flows. Moreover, there is much evidence that RANS is less accurate than
LES in terms of capturing the dynamics of the vortex tubes in the separated shear layers,
the coherence of the shed vortices and the complex interactions among coherent structures
generated around a surface-mounted bluff body (e.g. see Kirkil & Constantinescu 2009;
Keylock, Constantinescu & Hardy 2012). So, LES-based techniques are better suited to
investigate the flow physics and the role of large-scale turbulence in such flows.

Away from the channel bottom, the oscillatory wake flow past a surface-mounted
cylinder is very similar to the oscillatory wake flow past a long, isolated cylinder at
similar KC and Reynolds (Re = UmD/ν, where ν is the molecular viscosity) numbers.
Most oscillatory-flow experimental studies were conducted at low Reynolds numbers
that are far from those encountered in most applications related to marine structures.
For example, Tatsuno & Bearman (1990) discussed the two-dimensional (2-D) and 3-D
flow regimes observed for a circular cylinder oscillating in a tank of water for KC ≤ 12,
Re < 1200 and Stokes numbers β = Re/KC < 100. The same is true for numerical studies
conducted using 2-D and 3-D direct numerical simulations (e.g. see Justensen 1991;
Dutsch et al. 1998; Nehari & Ballio 2004; Elston, Blackburn & Sheridan 2006; Zhao &
Cheng 2014; Tong et al. 2017). Generally, 2-D numerical simulations successfully predict
the 2-D vortex-shedding patterns and the forces acting on the cylinder for relatively low
Reynolds and Stokes numbers. The experimental study of Williamson (1985) provided
detailed information on the wake structure in planes perpendicular to the axis of the
cylinder for flow past an oscillating cylinder in a tank of water for a much wider range
of KC and Stokes numbers (KC ≤ 40 and β < 730). His experiments revealed an increase
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Oscillatory flow around a vertical circular cylinder

KC = TUm/D D/H Rea = aUm/ν TUm/H τm/ρU2
m

1.5 0.325 31 050 0.5 0.0043
8.0 0.325 165 600 2.6 0.00295
15.4 0.325 318 800 5 0.0027
30.8 0.325 637 600 10 0.0024

Table 1. Main non-dimensional flow and geometrical variables for the test cases conducted with purely
oscillatory flow (one-mode forcing).

of the number of shed vortices over each oscillatory cycle with increasing KC number
(e.g. from no vortices shed for KC < 7 to four pairs of vortices shed for KC > 32).
A transverse shedding regime was also observed at intermediate KC numbers
(7 < KC < 15). For sufficiently large KC numbers, the anti-symmetric vortex shedding
generates vortices whose subsequent dynamics may induce significant lift or spanwise
forces on the cylinder (e.g. some of the vortices generated on one side of the cylinder
may be advected to the other side over the next half of the oscillatory cycle) and
a quasi-periodic, multiple-mode variation of the drag and lift forces even for cases
with one mode (e.g. sinusoidal) forcing in the incoming, unidirectional oscillatory flow.
Three-dimensional effects may be important even at relatively low Reynolds and Stokes
numbers (e.g. see Tatsuno & Bearman 1990; Yang & Rockwell 2002). As for the case of
steady incoming flow past a cylinder, 3-D effects are expected to become stronger at much
higher Reynolds numbers than those considered in the aforementioned laboratory-scale
investigations.

The present study investigates the effects of the KC number on flow and turbulence
structure generated by a circular cylinder of diameter D placed in open channel of depth
H in unidirectional, purely oscillatory flow using detached eddy simulation (DES). The
channel bed is horizontal and smooth. Comparison with results of URANS simulations
is also included. Following validation with the experimental data of Sumer et al. (1997)
conducted for a case with multiple-mode forcing of the incoming streamwise velocity,
D/H = 0.5, Re ≈ 7200 and KC ≈ 20 corresponding to experimental Test 14, a series of
high-Reynolds-number simulations are conducted with 1.5 ≤ KC <≤30.8, D/H = 0.325,
Re ≈ 130 000 and one-mode sinusoidal forcing (table 1). The Reynolds number is large
enough for the wake to be strongly turbulent.

Given that a major goal of the present paper is to investigate the physics of oscillatory
flow past cylinders at sufficiently high Reynolds numbers (e.g. Re > 105) where the
turbulence structure is fairly similar that one observed in field studies, the main options are
the use of classical LES with wall functions or of a hybrid RANS–LES approach. Given
the success of DES in simulating high-Reynolds-number separated flows past bluff bodies
(Spalart 2009; Koken & Constantinescu 2011; Rodi, Constantinescu & Stoesser 2013),
the latter approach is used. Away from the walls, the eddy viscosity predicted by DES
is proportional to the square of the local grid spacing and the rate of strain magnitude,
like in a classical Smagorinsky model. As a result, DES behaves as LES with a more
sophisticated near-wall model. Using a one- or two-equation RANS model to solve the flow
inside the viscous sublayer and next to it avoids the use of wall functions and the associated
assumption that the law-of-the-wall is valid near solid surfaces, which is the main reason
why LES with wall functions is not very accurate in complex flows with strong adverse
pressure gradients and massive separation, like the flows investigated in this study. For
flows past surface-mounted cylinders, DES was shown to accurately capture not only the
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wake structure but also the complex dynamics (e.g. bimodal oscillations) of the horseshoe
vortices forming around the upstream face of the cylinder (Kirkil & Constantinescu 2015).

A first goal of the paper is to describe the wake vortex-flow regimes in the presence of
a no-slip bottom boundary for relatively shallow conditions (D/H < 1) and the dynamics
of the horseshoe vortices and of the other near-bed coherent structures generated during
the oscillatory cycles over a fairly large range of KC numbers. A second goal is to
describe the dominant sediment entrainment mechanisms based on the instantaneous and
phase-averaged bed shear stress distributions around the cylinder. Of particular interest is
to describe how the coherent structures forming in the vicinity of the channel bed affect
sediment entrainment and transport and to point to similarities to and differences from
erosion processes observed in the well-studied case of steady incoming flow past a vertical
cylinder placed in a channel. One important research question is what is the variation
of the sediment entrainment capacity of the flow with increasing KC number? A related
question is what is the contribution of the coherent structures whose dynamics is not
quasi-periodic and of the smaller-scale turbulence to the sediment entrainment capacity
of the oscillatory flow? A third goal is to determine the phase-averaged forces acting
on the cylinder during the oscillatory cycle and their standard deviation as a function of
the KC number. One related question is how do the magnitudes of the instantaneous and
phase-averaged spanwise drag forces compare with those of the streamwise drag forces for
different KC numbers?

Section 2 briefly discusses the numerical method, the boundary conditions and the
main flow and geometrical parameters of the test cases. Section 3 compares the DES
and URANS predictions of bed shear stresses with those from an experiment performed
by Sumer et al. (1997) for flow around a vertical cylinder exposed to waves (KC = 20).
Section 4 focuses on the effect of the KC number on the bed shear stress distributions
for oscillatory flow past a vertical cylinder with one-mode sinusoidal forcing. The same
section analyses the wake-vortex-shedding regimes, the horseshoe vortex flow dynamics
and the other flow features and large-scale turbulent structures playing an important role in
the amplification of the bed shear stresses. Section 5 analyses the effect of the KC number
on the volumetric flux of entrained sediment per unit time over the oscillatory cycle and the
average capacity of the oscillatory flow to entrain sediment over the full cycle. Section 6
discusses how the KC number affects the variations of the phase-averaged forces acting
on the cylinder, the phase-averaged in-line force coefficient and their standard deviations
over the oscillatory cycle. The same section discusses the use of Morison’s equation to
provide predictions of the phase-averaged in-line force over the oscillatory cycle. Section 7
summarizes the main findings and presents some conclusions.

2. Numerical model, boundary conditions and test cases

Detached eddy simulation is a hybrid model that combines LES away from the solid
boundaries with RANS close to solid boundaries to account for the unresolved turbulence
(Spalart 2009). In the shear stress transport (SST) version of DES (Strelets 2001),
transport equations are solved for the turbulent kinetic energy, k, and the turbulence
specific dissipation rate, ω. For smooth surfaces, the turbulence length scale used in
the computation of the dissipation rate in the transport equation for k is redefined as
dDES = CDESΔ, where Δ = min(�x,�y,�z). The model constant is CDES = 0.61. The SST
version of DES is less sensitive to grid resolution restrictions compared with the classical
Spalart–Allmaras version of DES (Strelets 2001; Spalart 2009).

At Reynolds numbers at which the boundary layers on the cylinders are laminar at
separation, the performance of DES in predicting mean flow and turbulence statistics for

964 A22-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

36
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.367


Oscillatory flow around a vertical circular cylinder

flow past long (circular) cylinders was shown to be comparable with that of well-resolved
LES and superior to URANS (Travin et al. 2000; Spalart 2009). Detached eddy simulation
was successfully used to predict flow past surface-mounted circular and rectangular
cylinders and arrays of surface-mounted cylinders (e.g. see Kirkil & Constantinescu
2009, 2015; Chang et al. 2011, 2013; Chang, Constantinescu & Tsai 2017, 2020; Zeng
& Constantinescu 2017; Koken & Constantinescu 2020). These studies have shown that
for steady incoming flow conditions, DES can accurately predict the wake structure and
dynamics of the shed billow vortices, the dynamics of the main horseshoe vortices and
their interactions with the vortex tubes shed in the separated shear layers. In particular,
Kirkil & Constantinescu (2009) compared results of well-resolved LES conducted using
the dynamic Smagorinsky model and a fully non-dissipative code with DES for flow
past a surface-mounted circular cylinder with D/H ≈ 1 and a cylinder Reynolds number
of 18 000. The agreement between the two simulations in terms of the predicted mean
velocity, turbulent kinetic energy and total turbulence production term was found to be
very satisfactory both inside the near-wake region and inside the horseshoe vortex system.
Detached eddy simulation successfully captured the bimodal oscillations of the main
horseshoe vortex.

To generate a unidirectional oscillatory flow, an unsteady forcing term, fx, is added to
the streamwise momentum equation. With this modification, the Navier–Stokes equations
are

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ ∂(uiuk)

∂xk
= − ∂p

∂xi
− ∂

∂xk

[
(ν + νt)

(
∂ui

∂xk
+ ∂uk

∂xi

)]
+ fxδi1, (2.2)

where ui is the instantaneous velocity component along the i direction, xi is the i coordinate
(x1 = x, x2 = y, x3 = z), νt is the eddy/subgrid-scale viscosity, p is the instantaneous
pressure, δij is the Kronecker symbol and i = 1 corresponds to the streamwise direction
in which the forcing is applied. The eddy/subgrid-scale viscosity is obtained either from
a RANS model or from DES. The governing equations for the k–ω SST model used to
perform the URANS simulations can be found in Wilcox (2006). The delayed version
of DES, which preserves the RANS mode inside the attached boundary layers, was used
(Spalart 2009). The governing equations for delayed DES are given in Rodi et al. (2013).

A finite-volume method is used to integrate the discretized incompressible
Navier–Stokes equations and the turbulence model equations over each control volume
in a time-accurate way. The Gauss divergence theorem is used to convert volume
integrals to surface integrals. A collocated grid layout is used such that the control
volumes are identical for all transport equations. The convective terms in the momentum
equations are discretized using a blend of second-order-accurate upwind biased scheme
and second-order central scheme. A procedure similar to the classical algorithm of Rhie &
Chow (1983) is used to estimate the advecting velocity at each integrating point in which
a higher-order pressure redistribution term, which scales with the mesh spacing, is added
(Mahesh, Constantinescu & Moin 2004). The second-order backward upwind scheme is
used for time integration. A fully implicit discretization of the governing equations is used
at each time step. Multiple inner iterations are performed at each time step. A coupled
solver with algebraic multigrid and lower–upper factorization technique is used to solve
the discrete system of linearized equations. In the simulations discussed in the present
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Figure 1. Sketch of the computational domain with the main physical dimensions. Series of simulations
were conducted with D/H = 0.5, Lx/H = 15, Ly/H = 7.5 and with D/H = 0.325, Lx/H = 20, Ly/H = 10. The
depth-averaged velocity in the oscillatory flow at large distances from the cylinder is û.

study the mesh was fine enough to resolve the near-wall flow (e.g. viscous sublayer) and
no wall functions were used.

The computational domain used in the numerical simulations is shown in figure 1. The
channel bed is located at z = 0 and the top boundary at z = H(z′ = z/H = 1). The origin
of the system of coordinates is located at the centre of the solid cylinder. The streamwise
direction is x, while the spanwise direction is y. The streamwise and spanwise lengths
of the computational domain are Lx and Ly, respectively. Periodic boundary conditions
are applied in the streamwise direction. Slip-wall boundary conditions are imposed at
the two lateral boundaries for the velocity components and turbulence variables. No-slip
boundary conditions are imposed on the channel bottom and on the cylinder’s surface. The
turbulent kinetic energy is set to zero, while ω is calculated using the standard formula
for smooth walls used with the low-Reynolds-number version of the k–ω model (Zeng,
Constantinescu & Weber 2008). Similar to the oscillatory flow simulations of Baykal
et al. (2017) and to most studies investigating flow past surface-mounted cylinders placed
in open channels with steady incoming flow (e.g. Kirkil & Constantinescu 2015), the top
boundary is modelled as a shear-free slip wall. A zero surface-normal gradient is specified
for the flow and turbulence variables. As opposed to the experiments of Sumer et al.
(1997), the present simulations are conducted with no waves at the free surface. Rather
it is the imposed forcing along the x direction that drives the oscillatory flow. Simulations
were run with a non-dimensional time step of 0.001TUm/H. This low value allowed
resolving the range of energetic frequencies associated with the dynamically important
coherent structures in the flow. After the initial transients were eliminated, phase-averaged
quantities were collected over a time interval of 20 cycles (�t = 20T). The mesh contained
around 5 million cells and 55 points were used to resolve the flow in the vertical direction.
The mesh was refined near the cylinder and close to the bed surface.

The first set of simulations were performed mostly for validation purposes. The
geometrical and flow conditions were close to those of Test 14 (D = 0.04 m, H = 0.08 m,
Um = 0.183 m s−1) in the experimental study of Sumer et al. (1997) conducted in a wave
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flume with a plane bed. The main non-dimensional parameters were D/H = 0.5, KC = 20
and Re = 7200. A multimodal forcing was applied in the DES and URANS simulations
to try to mimic as close as possible the experimentally measured oscillatory streamwise
velocity away from the cylinder (undisturbed flow). After several trials, the final
expression for the non-dimensional forcing was f ′

x = fx(H/U2
m) = (0.626 cos(2πt/T) +

0.312 cos(4πt/T) + 0.158 cos(6πt/T). For both DES and URANS, the non-dimensional,
depth-averaged streamwise velocity at large distances away from the cylinder was û′ =
û/Um = 0.95 sin(2πt/T) + 0.26 sin(4πt/T) + 0.08 sin(6πt/T). Its peak values are close
to 1 and −1. Similar to the experiment, an asymmetry is present between the wave crest
and the wave trough in the streamwise velocity signal over a cycle. The DES and URANS
simulations were performed in a domain with Lx/H = 15 and Ly/H = 7.5. The first grid
point was placed at around 0.15 wall units from the channel bed and at about 1.5 wall
units from the surface of the cylinder, where the non-dimensional distance in wall units,
n+, corresponding to the physical distance to a smooth wall surface, n, is calculated
as n+ = (n/H)(uτ /Um)Re assuming conservatively that the non-dimensional bed shear
velocity is uτ /Um = 0.06.

A second set of mostly DES were performed to study the changes in the flow
physics and oscillatory behaviour of relevant flow variables with increasing KC
number (1.5 ≤ KC ≤ 30.8). All simulations (table 1) were conducted with D/H = 0.325
and Re ≈ 130 000 in a domain with Lx/H = 20 and Ly/H = 10. A non-dimensional
unimodal forcing f ′

x = ax cos(2πt/T) was applied such that the streamwise velocity in
the undisturbed flow is û′ = û/Um = sin(2πt/T) for all cases. The values of the Reynolds
number, Rea, defined with the semi-excursion length, a = UmT/2π, are also included in
table 1. The physical significance of the variable a is the amplitude of the undisturbed
oscillatory flow in a deep oscillatory boundary layer over a smooth wall. The peak |û|
values are reached at t = T/4 and t = 3T/4 and û changes signs at t = T/2. Given the
anti-symmetric oscillatory pattern, the phase-averaged flow can be studied only over half
of the period of the oscillatory cycle. For each of the four test cases, the non-dimensional
amplitude of the applied forcing ax/(Umω) = 1, where ω = 2π/T is the angular frequency.
Formally, one can consider that simulations were performed with constant values of D,
H and Um and varying periods of the oscillatory cycle, T. Given that the first grid point
off each solid surface is situated within the viscous sublayer, the shear stresses on the
solid surfaces are calculated using the definition rather than using the law of the wall. The
maximum phase-averaged bed shear stress recorded during the oscillatory cycle in the
undisturbed flow is denoted τm. Its non-dimensional values are also included in table 1.

The RANS simulations and DES were performed using the same meshes. The
simulations were run on 64 processors of a PC cluster. The RANS solutions became
periodical or quasi-periodical after about 2 weeks. Another 2–3 weeks of physical time
were needed to calculate the phase-averaged flow. The DES was run starting from RANS
after the RANS solution became quasi-periodical. About 3 weeks of simulation time was
needed for the flow to become quasi-periodic in DES. Another 5–7 weeks were needed
to calculate the quasi-periodic flow over 20 shedding cycles. This corresponds to about
100 000 CPU hours per DES. A LES with wall functions at the same Reynolds number
will reduce the computational time by only about 20 %–30 %.

3. Validation simulations

At large distances from the cylinder, the values of the phase-averaged streamwise
velocity, ū, predicted by DES and URANS are close to identical over the whole
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Figure 2. Phase-averaged streamwise velocity profiles, ū′(z/H) = ū/Um, during the oscillatory cycle
(0 ≤ t ≤ 10T/12) predicted by URANS and DES in the symmetry plane (y/H = 0) at x/H =−7.5. The
non-dimensional vertical distance is z′ = z/H. The symbols show the velocity profiles measured by Sumer
et al. (1997) for oscillatory flow with no cylinder present in the flume. The green line shows the theoretical
solution for an oscillatory laminar boundary layer based on the imposed oscillatory flow containing
three modes.

oscillatory cycle. This can be observed from figure 2 that compares the vertical profiles
of the non-dimensional phase-averaged streamwise velocity, ū′ = ū/Um, predicted by
the numerical simulations in the symmetry plane (y/H = 0) at x/H = −7.5 with the
experimental measurements of Sumer et al. (1997) for an oscillatory flow (Re = 7200,
Rea = 11 465) with no cylinder present in the flume and with the theoretical laminar
solution for an oscillatory boundary layer corresponding to the three-mode forcing. The
wave boundary layer was essentially laminar for this test case. The slight disagreement
between the predicted profiles and those obtained from the superposition of theoretical
solutions corresponding to each mode is mainly due to the small effect induced by the
cylinder at the locations of the inlet and outlet sections in the numerical simulations.
Given the multimodal forcing, the velocity profiles at t = t0 and t = t0 + T/2 are not
anti-symmetric. The numerical simulations accurately capture the temporal evolution of
ū′ over the oscillatory cycle outside of the bottom boundary layer where ū′ does not vary
with the distance from the bed. Some small errors are observed over the second half of the
oscillatory cycle (0.5T < t < T). The velocity variation inside the bottom boundary layer at
different times during the oscillatory cycle is also fairly well reproduced by the numerical
simulations (figure 2).

Consistent with the corresponding experimental observations of Sumer et al. (1997),
a horseshoe vortex is observed over about 65 %–70 % of each oscillatory half-cycle in
which the incoming flow is oriented towards one side of the cylinder. Figure 3 compares
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Figure 3. Non-dimensional bed shear stress, τ /τm and τ̄/τm, inside the symmetry plane (y/H = 0) at the
upstream (horseshoe vortex) side of the cylinder at t = T/4 and t = 3T/4 during the oscillatory cycle. Solid
lines represent phase-averaged values. The dashed line shows τ /τm (DES) during one of the oscillatory cycles
when the presence of the horseshoe vortices results in a large amplification of the bed shear stresses close
to one side of the cylinder. The symbols show the experimental data (phase-averaged values) of Sumer et al.
(1997) for KC = 20 (Test 14).

the numerical predictions of the non-dimensional, phase-averaged bed shear stress, τ̄/τm,
inside the symmetry plane (y/H = 0) at two time instances (t = T/4 and t = 3T/4) when the
magnitude of the depth-averaged streamwise velocity in the undisturbed flow is relatively
high (e.g. |û′| is close to 1) and a strongly coherent horseshoe vortex is present near the
upstream base of the cylinder. At both time instances, the bed shear stresses are shown only
on the side containing the horseshoe vortex. The presence of a coherent horseshoe vortex
induces an amplification of the bed shear stress near the upstream face of the cylinder
relative to the incoming flow direction. The peak values of τ̄/τm predicted by the present
URANS simulations are close to −0.55 at t = T/4 and t = 3T/4, in very good agreement
with the peak values predicted by the k–ω URANS simulations of Baykal et al. (2017). The
RANS simulations strongly underestimate the peak values measured by Sumer et al. (1997)
which are close to −1.4 at t = T/4 and −1 at t = 3T/4. By contrast, DES predictions of τ̄/τm
in the y/H = 0 plane are much closer to the experimental measurements. In particular, the
peak values of τ̄/τm are about −1.2 at t = T/4 and −0.87 at t = 3T/4. Consistent with the
experiment and the asymmetric variation of the incoming flow velocity over the oscillatory
cycle, DES predicts a larger magnitude of the peak value of τ̄/τm at t = T/4 compared with
t = 3T/4.

It is also relevant to point out that Sumer et al. (1997) mentioned that over some
of the cycles the peak instantaneous values of τ /τm can be as high as two times the
phase-averaged values. This is also the case in the present DES. Figure 3 also includes the
variation of τ /τm over one of the cycles where the coherence and circulation of the main
horseshoe vortex forming during the trough half-period are very large. For this oscillatory
cycle, the peak values of τ /τm are close to −2 at t = 3T/4. A similar behaviour is also
observed over the crest half-period for some of the oscillatory cycles. Though significant
cycle-to-cycle variations are also observed in the instantaneous distributions of τ /τm in
the RANS simulation, the relative difference between the peak instantaneous value and
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Figure 4. Maximum, phase-averaged bed shear stress magnitude, |τ̄max|/τm, in the y/H = 0 plane at the
downstream (wake) side of the cylinder. The solid lines and square symbols show the peak values recorded
over the first half (crest half-period) of the oscillatory cycle 0 < t < T/2 (u′ > 0) for x/D > 0.5. The dashed
lines and the circle symbols show the peak values recorded over the second half (trough half-period) of the
oscillatory cycle T/2 < t < T (u′ < 0) over the region x/D <−0.5. The symbols show the experimental data of
Sumer et al. (1997) for KC = 20 (Test 14).

the peak phase-averaged value is of the order of only 25 %. Both DES and RANS predict
that the incoming boundary layer separates in the y/H = 0 plane at |xs|/D = 0.8–0.85
(τ̄/τm = 0, xs is measured from the face of the cylinder) at both t = T/4 and t = 3T/4,
in good agreement with the value (|xs|/D ≈ 0.9) measured by Sumer et al. (1997). Overall,
these results show that DES can capture more accurately the variation in the coherence of
the horseshoe vortices forming over part of the oscillatory cycles.

Both RANS and DES predict the shedding of two vortices over each half-cycle, which is
consistent with observations from the corresponding (KC = 20) experiment of Sumer et al.
(1997), the experiments conducted with isolated long cylinders by Williamson (1985) and
several numerical studies (An, Cheng & Zhao 2015; Baykal et al. 2017). Experimental
data suggest that for a fairly large range of KC numbers, the wake vortices forming in
oscillatory flow past a surface-mounted cylinder have a larger capacity to entrain sediment
than the horseshoe vortices. This is also the case for the present test case (KC = 20) for
which the measured maximum phase-averaged bed shear stress magnitude |τ̄max|/τm in
the y/D = 0 plane is close to 2.3 over the crest half-period of the oscillatory cycle and
2.0 over the trough half-period (figure 4). These values are larger than those measured
beneath the horseshoe vortex system (|τ̄max|/τm ≈ 1.4). Similar to the trends observed for
the upstream (horseshoe vortex) side of the cylinder, DES predictions of the peak bed shear
stress magnitudes on the downstream (lee-wake) side of the cylinder (|τ̄max|/τm ≈ 2.2 over
the crest half-period and |τ̄max|/τm = 2.35 over the trough half-period) are fairly close to
the experimental values. Meanwhile, RANS severely underpredicts these values for both
half-periods of the oscillatory cycle (|τ̄max|/τm ≈ 1). The k–ω RANS of Baykal et al.
(2017) predicted |τ̄max|/τm ≈ 1.3. Moreover, DES predictions of the decay of |τ̄max|/τm
away from the cylinder are in very good agreement with the experiment over the trough
half-period.

The largest amplification of the phase-averaged bed shear stress around the cylinder
occurs near the sides of the cylinder in the region of strong flow acceleration forming when
the velocity magnitude of the incoming flow is close to its peak values. Inside this region,
DES predicts |τ̄max|/τm ≈ 3.8 while the experimental measurements of Sumer et al. (1997)
indicate |τ̄max|/τm ≈ 3.5.
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Oscillatory flow around a vertical circular cylinder

4. Effect of the KC number on wake vortex shedding, bed shear stress and horseshoe
vortex system

4.1. Wake structure during the oscillatory cycle
Figure 5 visualizes the vortical structure around the cylinder using the Q criterion
(Dubief & Delcayre 2000). The quantity Q = −0.5∂ui/∂xj × ∂uj/∂xi(H2/U2

m) is the
second invariant of the resolved velocity gradient tensor. For all simulations conducted
with KC ≥ 8, vortices are shed in the wake. Though the cores of these wake vortices
are subject to large-scale deformations along their axes, these vortices remain close to
vertical from the top surface to the bed surface. This is different from the case of a
surface-mounted circular cylinder with steady incoming flow where the cores of the wake
vortices tilt as they approach the bed mostly because of the stretching induced inside
the bottom boundary layer. This finding is consistent with the observations of Baykal
et al. (2017) based on URANS simulations. Present results show that the amplitude of the
along-the-axis deformations of the cores of the wake vortices decreases with decreasing
KC. The distance from the cylinder at which the wake vortices remain coherent increases
with increasing KC number. For KC = 30.8 these vortices remain coherent until about 6D
from the centre of the cylinder. This distance reduces to about 3D for KC = 8.

One important finding is that for all the cases where wake shedding is present, the
near-bed wake region contains a number of horizontal secondary vortices parallel to
the bed (see HSV vortices forming on the downstream side of the cylinder in figure 5).
These vortices play a similar role to the horseshoe vortices (HV vortices in figure 5)
forming around the upstream side of the cylinder in terms of locally enhancing the
instantaneous bed shear stresses. The HSV vortices generally form in between the cores
of the (vertical) wake vortices (e.g. such vortices are observed at t = T/4 in figure 5a
and at t = T/4 and 3T/8 in figure 5b), but some of them can penetrate on the outer
side of the region containing the wake vortices (e.g. this is the case at t = 3T/8 in
figure 5a). For lower KC numbers where the wake shedding near the cylinder becomes
more symmetric, the HSV vortices generally form close to the symmetry plane (see
figure 5c for KC = 8). Additionally, a weaker HSV vortex can form around the downstream
face of the cylinder, similar to the much more coherent horseshoe vortex present around
its upstream face (figure 5c). The HSV vortices are generated mainly because of the
interactions among the shed wake vortices and the presence of the no-slip bed surface.
Similar to the streamwise-oriented secondary ‘finger’ vortices forming in the wake of a
long cylinder (Mahesh et al. 2004), the formation of the near-bed horizontal vortices in
figure 5 is favoured by the large-scale instabilities generated along the (vertical) cores
of the wake vortices. Capturing the dynamics of these secondary vortices requires a
LES-based approach.

The main effect of increasing the KC number is to generate an increasing number
of wake vortices on the downstream (lee) side of the cylinder over each half-period of
the oscillatory cycle. The wake vortex shedding is in the anti-symmetric mode in all
test cases with KC ≥ 15.4 (e.g. see instantaneous vertical vorticity plots in figure 6 for
KC = 30.8). The wake vortex shedding over the oscillatory cycles is fairly regular, which
explains the close-to-symmetric patterns of the phase-averaged vorticity, ωz, in figure 6. By
t = T/4 when the incoming velocity peaks, two counter-rotating vortices have been shed
in the wake and another one is detaching from the cylinder (see ωz panel in figure 6a).
This explains why two pairs of positive/negative vorticity patches are observed in the
distribution of ωzH/Um in figure 6(a). By t = 3T/8 (figure 6b), three counter-rotating
vortices are shed in the wake, with a fourth vortex being attached to the cylinder. The
fourth vortex remains attached to the cylinder until the incoming flow changes direction
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Figure 5. Visualization of the coherent structures in the instantaneous flow fields (DES predictions):
(a) KC = 30.8; (b) KC = 15.4; (c) KC = 8. The Q isosurface (Q = 10.0) is coloured with the distance from
the channel bottom, z′ = z/H. Besides the 3-D view, a vertical view from below the channel bed is included to
better visualize the near-bed (dark blue) vortices that are parallel to the channel bottom. To facilitate discussion
of the effect of vortical structures on the bed shear stress distributions (view from above the channel bed in
figures 8 and 9), the vertical views are rotated by 180° around the x axis. The horseshoe vortices, horizontal
near-bed secondary vortices and main vertical wake vortices are denoted HV, HSV and WV, respectively.
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Figure 6. Non-dimensional phase-averaged and instantaneous vertical vorticity, ωzH/Um and ωzH/Um,
during the oscillatory cycle in the z/H = 0.5 plane for the KC = 30.8 test case (DES predictions): (a) t = T/4
(û′ = 1); (b) t = 3T/8 (û′ = 0.7).

at t = T/2. The interactions and trajectories of the wake vortices are very irregular as the
flow decelerates and the incoming flow velocity approaches zero. The KC = 30.8 case
is characterized by the formation of four wake vortices and the shedding of three of these
vortices every half-cycle. This shedding pattern for KC = 30.8 is somewhat expected given
that Sumer et al. (1997) also observed an increase of the number of shed vortices with
increasing KC with two vortices being shed each half-cycle for 17 < KC < 23.

The anti-symmetric mode weakens considerably as the KC number decreases towards
the threshold value at which vortices are shed in the wake. This can be observed in the
KC = 8 case where the two counter-rotating vortices forming at the back of the cylinder
are fairly symmetric (e.g. see figures 5c and 7b). None of these vortices moves in the
wake of the cylinder between t = 0 and t = T/2. As the incoming flow reverses (t > T/2),
these two vortices are advected along the lateral sides of the cylinder and move into the
new wake region. This is also why the mean vorticity distributions in figure 7(a) (t = T/4)
contain two pairs of counter-rotating vortices. The pair situated around x/D = 1.5 does
not correspond to vortices shed in the wake between t = 0 and t = T/4 but to vortices
forming at the back of the cylinder in the x/D < 0 region between t =−T/2 and t = 0 that
moved into the x/D > 0 region over the next half-period. Consistent with this dynamics,
the vorticity sign is different inside the vortices forming on the two sides of the symmetry
plane (y/D = 0) at t = T/4 (figure 7a). This is different from what is observed in cases
where the shed vortices remain on the side of the cylinder where they originated (e.g. see
ωz distributions in figure 6a,b).

Figures 5(c) and 7(b) visualize the two close-to-symmetric vortices forming at the back
of the cylinder (x/D > 0) in the KC = 8 case at two times (t = 3T/8 and t = T/2) when
their coherence is close to maximum. As these two vortices start moving towards and past
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Figure 7. Non-dimensional vertical vorticity, during the oscillatory cycle in the z/H = 0.5 plane for the KC = 8
test case (DES predictions): (a) ωzH/Um at t = T/4 (û′ = 1); (b) ωzH/Um at t = 3T/8 (û′ = 0.7); (c) ωzH/Um
at t = 5T/8 (û′ = −0.7). The black arrows show the positions of the two vortices forming at the back of the
cylinder (x/D > 0) for 0 < t < T/2. These two vortices move in the x/D < 0 region over the next half-cycle
(T/2 < t < T). The red arrows point to the two vortices that formed in the x/D < 0 region for −T/2 < t < 0 and
were advected in the x/D > 0 region over the next half-cycle.

the cylinder for t > T/2, one vortex becomes more coherent than the other (e.g. higher
circulation) and their advection speeds become different. Moreover, their trajectories are
no longer symmetric with respect to the y/D = 0 plane. This can be observed in the
ωzH/Um distribution at t = 5T/8 (figure 7c) where the (red) wake vortex being advected
in the y/D < 0 region is situated at x/D ≈ 0 while the (blue) wake vortex being advected in
the y/D > 0 region is situated at x/D ≈ −0.9.

The wake shedding in the KC = 15.4 case presents some important similarities to and
differences from those discussed for the KC = 30.8 and KC = 8 cases. For brevity, figures
are not included to illustrate the wake dynamics for this case. In the KC = 15.4 case, only
one vortex is shed in the wake of the cylinder over each half of the oscillatory cycle. This
vortex can be seen on the right-hand side of the cylinder in figure 5(b) at t = T/4 and 3T/8.
Thus, the wake shedding is anti-symmetric. Lowering the KC number from 30.8 to 15.4
decreases the number of shed vortices over each half of the oscillatory cycle from three
to one. However, rather than remaining on the side of the cylinder where it originated, the
vortex shed in the KC = 15.4 case will start moving back towards the cylinder and then
past it as the incoming flow changes direction during the next half-cycle. This is similar
to what was observed in the KC = 8 case except that only one vortex is washed out around
the cylinder each half-cycle, a result also consistent with the experiments of Sumer et al.
(1997). The vortex moving past the cylinder in the KC = 15.4 case strongly interacts with
the vortex forming on the other side of the cylinder over the next half-cycle. Finally, the
degree of cycle-to-cycle variability of the wake shedding is the largest in the KC = 15.4
case. This is because for some oscillatory cycles a second weaker vortex of opposite-sign
circulation to the first wake vortex is shed during one of the half-cycles.

4.2. Bed shear stress distributions
Besides the vortices shed from the cylinder and the horizontal near-bed vortices,
the other vortices with a significant capacity to induce sediment entrainment are the
horseshoe vortices forming around the upstream face of the cylinder. The mechanism
for the formation of horseshoe vortices in oscillatory flow is the same as that for
a surface-mounted cylinder with steady incoming flow. The main difference is that
horseshoe vortices form on both sides of the cylinder during each oscillatory cycle as the
flow accelerates towards the upstream face of the cylinder. The coherence of these vortices
starts decaying and their cores move away from the bed as the flow decelerates. As for the
case of cylinders with steady incoming flow, the coherence of the main horseshoe vortex
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in the instantaneous flow fields varies with the polar angle. Simulation results in figure 5
show that the degree of asymmetry of the necklace vortex with respect to the symmetry
plane is quite high for KC ≥ 8. For example, the legs of the horseshoe vortex are generally
not oriented along the streamwise direction, one leg extends further downstream compared
with the other leg and/or the size of its core is generally highly asymmetric with respect
to the symmetry plane (e.g. see figure 5c for KC = 8). This behaviour is mostly due to
the much stronger interactions between the cores of the shed wake vortices, which remain
vertical as the bed is approached, and the legs of the main horseshoe vortex compared with
the interactions observed for cases with steady incoming flow.

Both the horseshoe vortices and the lower parts of the wake vortices interact with the
bed surface. The passage of these eddies and/or variations in their position and coherence
over time have a great effect on the amplification of the instantaneous bed shear stresses
around the cylinder. In particular, the passage of wake vortices can induce lots of sediment
entrainment at locations where the mean (phase-averaged) value of the bed friction
velocity magnitude is smaller than the critical threshold value for entrainment given by
the Shields diagram or other methods used to estimate this variable for sediment with a
given mean particle diameter, d50 (Cheng, Koken & Constantinescu 2018). Therefore, in
figure 8 we analyse both the distributions of |τ̄ |/τm and |τ |/τm.

For KC = 30.8, the maximum values of |τ̄ |/τm are recorded when the incoming flow
velocity magnitude peaks at t = T/4 and 5T/4. Similar to what is observed for cylinders
mounted on a horizontal surface with an incoming steady current (Kirkil & Constantinescu
2015), the two main regions of high bed shear stress in figure 8(a) are situated between
polar angles of 30° and 60° measured from the symmetry plane (y/D = 0). The peak
values of |τ̄ |/τm inside these regions are close to 5. These values are slightly larger than
those reported by Sumer et al. (1997) for cases when the incoming oscillatory flow was
multimodal. Due to the anti-symmetric vortex shedding, the sizes of these regions are
generally not equal in the instantaneous flow fields (figure 8a). Moreover, instantaneous
bed shear stresses of comparable magnitude can be induced beneath the wake vortex that
detaches from the back of the cylinder (see figures 5a and 8a for t = T/4). In the case of
steady incoming flow, such wake vortices with a high sediment entrainment potential are
generally observed for cylinders with sharp edges that favour the formation of vortices
whose cores remain vertical until the bed surface is reached (Kirkil & Constantinescu
2009). Here, the cross-section of the cylinder does not contain any corner, but the
oscillatory flow favours the formation of wake vortices whose axes remain vertical (see
discussion of figure 5). This explains the much larger capacity of these vortices to entrain
sediment when the incoming flow past the circular cylinder is oscillatory rather than
steady.

Interestingly, as the flow starts decelerating, the region of high bed shear stress around
the upstream face of the cylinder is situated beneath the main horseshoe vortex. This means
that the horseshoe vortex rather than the flow ‘acceleration’ induced by the presence of the
cylinder controls sediment entrainment over part of the oscillatory cycle. As opposed to
the case of cylinders with incoming steady current, a region of high mean (phase-averaged)
bed shear stress is also forming near the back of the cylinder as the flow is decelerating
(e.g. for 0.5 < x/D < 2 in figure 8b). Moreover, additional regions of high instantaneous
bed shear stress (|τ |/τm > 2) are present in the wake at t = T/4 (figure 8a) and t = 3T/8
(figure 8b). As already discussed, some of these patches of high|τ |/τm correspond to the
cores of the shed vortices. However, the elongated patches making a low angle with the
streamwise direction are induced by the near-bed horizontal vortices forming in the wake
(see HSV vortices in figure 5a for t = T/4 and t = 3T/8). As expected, the mean bed shear

964 A22-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

36
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.367


W.-Y. Chang and G. Constantinescu

4

2

4.0

|τ–|/τm

3.5
3.0
2.5
2.0
1.5
1.0
0.5
0

0

–2

–4
–3 0 3

y/D

x/D x/D

6 9

4

2

4.0

|τ|/τm

3.5
3.0
2.5
2.0
1.5
1.0
0.5
0

0

–2

–4
–3 0 3 6 9

4

2

4.0

|τ–|/τm

3.5
3.0
2.5
2.0
1.5
1.0
0.5
0

0

–2

–4
–3 0 3

y/D

6 9

4

2

4.0

|τ|/τm

3.5
3.0
2.5
2.0
1.5
1.0
0.5
0

0

–2

–4
–3 0 3 6 9

4

2

4.0

|τ–|/τm

3.5
3.0
2.5
2.0
1.5
1.0
0.5
0

0

–2

–4
–3 0 3

y/D

6 9

4

2

4.0

|τ|/τm

3.5
3.0
2.5
2.0
1.5
1.0
0.5
0

0

–2

–4
–3 0 3 6 9

(a)

(b)

(c)

Figure 8. Non-dimensional bed shear stresses magnitude, |τ̄ |/τm and |τ |/τm, for the KC = 30.8 test case (DES
predictions): (a) t = T/4 (û′ = 1), (b) t = 3T/8 (û′ = 0.7); (c) t = T/2 (û′ = 0). The black arrows point towards
regions of high |τ |/τm induced by horizontal near-bed vortices (see figure 5a).

stresses are relatively low at times when the incoming flow velocity magnitude is very low
(see figure 8c for t = T/2). However, regions of relatively high |τ |/τm are still generated in
the instantaneous flow fields on the sides and at the back of the cylinder as the incoming
velocity approaches zero. By contrast, the amplification of |τ |/τm at t = T/2 (figure 8c) is
negligible around the upstream face of the cylinder because the horseshoe vortex loses its
coherence and moves away from the bed as the incoming flow velocity approaches zero.

For relatively low KC values, the core of the main horseshoe vortex increases
considerably as the flow starts decelerating (t > T/4). In the KC = 8 case, the horseshoe
vortex maintains its coherence past t = T/2 when the incoming flow reverses and is able
to induce relatively large bed shear stresses beneath it (e.g. see figures 5c and 9b for
t = T/2). On the wake side, the elongated streamwise-oriented horizontal vortex forming
near y/D = 0 and the near-bed vortex forming around the downstream face of the cylinder
induce the largest bed shear stresses in the wake region at t = T/2 (figure 9b). So, for
oscillatory flow conditions, the bed shear stress distributions can be qualitatively very
different from those observed for steady incoming flow especially at times when the
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Figure 9. Non-dimensional bed shear stresses magnitude, |τ |/τm (DES predictions): (a) t = T/4 for KC = 8;
(b) t = T/2 for KC = 8; (c) t = T/4 for KC = 15.4. The black arrow in (b) points towards a region of high |τ |/τm
induced by a horizontal near-bed vortex (see figure 5c for t = T/2).
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Figure 10. Non-dimensional phase-averaged bed shear stress, τ̄/τm, in the symmetry (y/D = 0) plane at
the upstream (x/D < 0) side of the cylinder (DES predictions): (a) KC = 1.5; (b) KC = 8; (c) KC = 15.4;
(d) KC = 30.8. The bed shear stress is plotted at t = 0T (û′ = 0), t = T/8 (û′ = 0.7), t = T/4 (û′ = 1) and
t = 3T/8 (û′ = 0.7).

velocity magnitude in the approaching flow is much lower than the peak approaching flow
velocity.

4.3. Bed shear stresses and horseshoe vortex dynamics in the symmetry plane
Figure 10 compares the distributions of τ̄/τm in the symmetry (y/D = 0) plane at the
upstream (x/D < 0) side of the cylinder at relevant times during the oscillatory cycle. For
KC ≥ 8, a negative peak of τ̄ is observed close to the cylinder when the incoming velocity
magnitude is the highest (t = T/4). This peak is induced by the horseshoe vortex. The
magnitude of τ̄/τm in this region increases with increasing KC to reach 1.2 for KC = 30.8
(figure 10d). The negative peak is not present in the KC = 1.5 case where no horseshoe
vortex forms.

As opposed to the case of steady incoming flow where erosion on the upstream side of
the cylinder, close to its symmetry line, is only driven by the horseshoe vortex, in the
case of oscillatory flow erosion near the upstream face can also be induced by other
mechanisms. This is the case for the KC = 8 (figure 10b) and KC = 15.4 (figure 10c)
simulations where regions with |τ̄/τm| > 1 and |τ/τm| > 1 form during the first half of the
oscillatory cycle (e.g. see also figures 9a and 9c). The peak values of τ̄/τm in figure 10 are
close to 1.4 (t = T/8, x/D ≈ −1.2) for KC = 8 and 1.45 (t = T/8, x/D ≈−1.6) for KC = 15.4.
The peak values beneath the horseshoe vortex are 0.6 (t = T/4) for KC = 8 and 0.8 (t = T/4)
for KC = 15.4. For these two cases, local scour on the upstream side of the cylinder is not
primarily driven by the horseshoe vortices but rather by some of the wake vortices shed on
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Figure 11. Phase-averaged streamwise velocity, ū/Um, in a horizontal plane (z/H = 1) at t = 0T (û′ = 0) in
the KC = 15.4 simulation. The streamlines visualize the vortices that correspond to the two cells forming at
the back of the cylinder (x/D > 0) at earlier times when û′ < 0. The flow is accelerated towards the cylinder
between the cores of these vortices once the two vortices move inside the x/D < 0 region.

the downstream side of the cylinder that start moving towards the cylinder as the direction
of the incoming flow changes during the next half of the oscillatory cycle (see discussion
of figure 7). As these vortices pass the cylinder and move into the ‘upstream’ region, they
accelerate some of the flow next to them which increases the bed shear stress. This is
illustrated in figure 11 for the KC = 15.4 simulation. The two counter-rotating vortices in
the x/D < 0 region originated in the x/D > 0 region during the previous half-period of the
oscillatory cycle when û′ < 0. As they pass the cylinder, they generate between their cores
a strong jet-like flow towards the cylinder. This effect is the strongest at times where the
incoming velocity magnitude is small. As KC further increases, the wake vortices generally
remain on the side of the cylinder where they were shed. This explains why a region with
τ̄/τm > 1 is not present away from the cylinder in the KC = 30.8 simulation (figure 10d).
It is only for such high-KC cases that the horseshoe vortices are the main mechanism for
scour on the upstream side of the cylinder.

On the downstream side of the cylinder, the variation of τ̄/τm in the symmetry plane
(figure 12) is qualitatively similar in the simulations conducted with KC ≥ 8. As expected,
the largest magnitudes are predicted at t = T/4 when the incoming flow velocity magnitude
is the largest. A first region of high values of |τ̄ |/τm is predicted inside the recirculation
region at the back of the cylinder. It is mainly induced by the wake billows as they
detach from the cylinder and start moving downstream (e.g. see VW vortices at t = T/4
in figure 5a,b for KC = 30.8 and 15.4, |τ̄ |/τm distribution for KC = 30.8 in figure 8a and
|τ |/τm distribution for KC = 15.4 in figure 9c). The shedding of the pair of counter-rotating
vortices is more symmetric in the KC = 8 case (see VW vortices in figure 5c and ωz
distribution in figure 7b). As a result, their capacity to accelerate the fluid towards the
cylinder between their cores is also the largest, which explains why the peak negative value
of τ̄/τm in figure 12 is predicted for KC = 8. The position of the peak negative bed shear
stress moves away from the cylinder with increasing KC. A region of high positive values
of τ̄/τm is predicted in the near wake (e.g. see distribution of |τ̄ |/τm between x/D = 3
and x/D = 8 in figure 8a for KC = 30.8 and that of |τ |/τm between x/D = 1.5 and x/D = 4
in figure 9a for KC = 8) as the accelerated flow passing the cylinder moves towards the
symmetry plane behind the flow recirculation region. Results in figure 12 show that the
peak values inside this region decay monotonically with increasing KC, while the distance
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Figure 12. Non-dimensional phase-averaged bed shear stress, τ̄/τm, in the symmetry (y/D = 0) plane at the
downstream (x/D > 0) side of the cylinder (DES predictions). Solid lines show results at t = T/4 (û′ = 1).
Dashed lines show results at t = 3T/8 (û′ = 0.7).
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Figure 13. Non-dimensional instantaneous and phase-averaged bed shear stress, τ /τm and τ̄/τm, along the x
direction (y/D = 0 plane) at the upstream (horseshoe vortex) side of the cylinder at t = T/4 (û′ = 1) and at
t = T/2 (û′ = 0): (a) KC = 15.4; (b) KC = 30.8. Solid lines represent phase-averaged values. Dashed lines are
used for instantaneous values during an oscillatory cycle when relatively large bed shear stress magnitudes are
induced close to the cylinder.

from the cylinder where the peak value is reached increases from x/D = 1.5 for KC = 8 to
x/D = 5.4 for KC = 30.8. The streamwise distance over which the bed shear stress recovers
towards the values in the incoming flow also increases with increasing KC (figure 12). For
KC = 15.4, the peak values of |τ̄/τm| inside the two regions are close to 1.45. However, in
the KC = 8 and 30.8 simulations, the magnitude of τ̄/τm is larger inside the near-wake
region than inside the recirculation region. For these cases, most of the scour on the
downstream (wake) side will occur away from the cylinder if the bed is close to horizontal.

Figure 13 quantifies the variability of the bed shear stresses along the symmetry plane
with respect to the phase-averaged values. During some of the oscillatory cycles the
horseshoe vortex induces bed shear stresses that can be up to 50 %–100 % larger than
the phase-averaged values. This level of amplification with respect to the phase-averaged
values was also observed in the validation test case (KC = 20). A high cycle-to-cycle
variability of the bed shear stresses on the upstream side is also observed especially when
the incoming flow velocity magnitude is small (e.g. at t = T/2 in the x/D > 0 region in
figure 13a) and is mainly due to differences in the coherence/circulation of the wake
vortices and their trajectories as they move on the other side of the cylinder (see discussion
of figure 11). For both KC values, URANS simulations severely underpredict the peak
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Figure 14. Non-dimensional out-of-plane vorticity, ωyH/Um, at t = T/4 (û′ = 1, left-hand panels), t = 3T/8
(û′ = 0.7, middle panels) and t = T/2 (û′ = 0, right-hand panels) during the oscillatory cycle in the y/D = 0
plane visualizing the dynamics of the horseshoe vortices (DES predictions): (a) KC = 30.8; (b) KC = 15.4;
(c) KC = 8.

magnitude of τ̄/τm beneath the horseshoe vortex (e.g. by more than 100 % in the KC = 30.8
case). The RANS simulation also underpredicts the peak values of τ̄/τm induced by the
advection of wake vortices on the upstream side of the cylinder (see predictions for t = T/2
in figure 13a). The maximum bed shear stress predicted by RANS is τ̄/τm = 1 and the
peak value is situated farther from the cylinder compared with DES. The differences
between URANS and DES at t = T/2 are much smaller in the KC = 30.8 case.

Figure 14 provides more information of the dynamics of the main horseshoe vortex
in the symmetry plane. This vortex forms a short time after the incoming flow velocity
becomes positive. As KC decreases, the vortex forms closer to the cylinder. The patch of
vorticity situated near the junction line between the cylinder and the bed in the KC = 15.4
and 30.8 cases is not a horseshoe vortex. When the incoming flow velocity is the largest
(t = T/4), the circulation of the horseshoe increases monotonically with KC. This result is
consistent with the bed shear stress distributions in figure 10 that show τ̄/τm at t = T/4 also
increases with KC beneath the horseshoe vortex. As the flow decelerates (T/4 < t < T/2),
the main horseshoe vortex moves away from the cylinder in the KC = 30 and 15 cases.
This does not happen in the KC = 8 case which is characterized by a large growth of the
core of the horseshoe vortex between t = T/4 and t = 3T/8 (see also figure 5c) when the
flow starts decelerating. In all simulations conducted with KC ≥ 8, the horseshoe vortex
survives past the time the incoming velocity reaches a zero value (e.g. it is still present in
the flow fields at t = T/2 in figure 5c) but completely loses its coherence shortly after the
incoming flow changes direction. An increase in the size of the core during the deceleration
phase (T/4 < t < T/2) does not necessarily translate into an increase of the bed shear stress
magnitude beneath the horseshoe vortex. This is because the increase in the size of the core
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is generally accompanied by an increase of the distance between the axis of the vortex and
the bed surface. Still, the large growth of the circulation in the KC = 8 case between t = T/4
and t = T/2 is sufficient to generate a horseshow vortex with a relatively high capacity to
entrain sediment near t = T/2, when the approaching flow velocity is zero (figure 9b).

5. Volumetric flux of entrained sediment

To characterize in an average way the capacity of the flow to entrain sediment, one
has to consider not only the phase-averaged value of the bed shear stress, τ̄ , but also
the cycle-to-cycle variations of the instantaneous bed shear stresses with respect to the
phase-averaged values. This is similar to the case of a cylinder with incoming steady
flow; besides τ̄ the values of the standard deviation of the bed shear stress should be
considered when evaluating the capacity of the flow to entrain sediment (Sumer et al.
2003; Cheng et al. 2018). In the case where the incoming flow is oscillatory, some of
the largest contributions to the instantaneous stress, τ , are not due to random temporal
variations of the coherence of some of the large-scale, near-bed coherent structures or of
the paths followed by these eddies as they are advected away from the cylinder. Rather,
the main reason for the very high amplification of the bed shear stress during some of the
oscillatory cycles is the departure from the dominant wake-shedding pattern observed over
most of the oscillatory cycles. A good example is the KC = 15 case where sometimes two
vortices are shed during a half-cycle instead of one vortex, which is the case for most of
the half-cycles.

One simple way to assess the effect of varying the KC number on the sediment
entrainment capacity of the flow around the cylinder at conditions corresponding to the
start of the local scour process (e.g. flat bed) is to calculate the phase-averaged flux
of entrained sediment based on the instantaneous flow fields, In. Sediment entrainment
formulas for non-cohesive sediment generally assume the sediment flux is proportional to
(τ − τc)

γ with γ > 1, where τc is the critical value for sediment entrainment for a given
mean particle diameter, d50 (Chou & Fringer 2010). For example, γ = 1.5 in van Rijn’s
(1984) formula to estimate the volumetric flux of sediment entrainment per unit time and
area. This formula is often used in eddy-resolving simulations with a movable bed (e.g. see
Chou & Fringer 2010). In non-dimensional form, the volumetric flux of sediment entrained
from the bed at any given time during the oscillatory cycle with index n can be written as

In(t/T) = 1
ρ1.5U3

mD2

∫
A′

(τ − τc)
1.5 dA′, (5.1)

where A′(t) is the bed region of the whole computational domain where τ(t, x, y) > τc
and 0 < t/T ≤ 1. The phase-averaged flux In(t/T) is the average value of In over the N
cycles used for phase averaging. Given that the series of simulations with varying KC
were performed with constant H, D and Um, one can compare the erosive capability of the
flow associated with local scour around the cylinder by assuming a constant value of τc
that is sufficiently large such that no erosion occurs in the undisturbed flow.

The sediment fluxes were calculated in figure 15 assuming τc/ρU2
m = 0.0048. This

value was higher than the maximum bed shear stress away from the cylinder such
that all entrainment is due to the presence of the cylinder. For example, assuming
a laboratory-scale experiment performed with Um = 0.18 m s−1 and D = 0.04 m, the
aforementioned value of τc will correspond to sediment with d50 = 0.3 mm based on
Shields’ diagram. Relatively large differences are observed between In and the values
of the volumetric flux for some of the oscillatory cycles. Generally, this happens for the
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Figure 15. Non-dimensional volumetric flux of entrained sediment per unit time versus non-dimensional
time, t/T (DES predictions): (a) KC = 1.5; (b) KC = 8; (c) KC = 15.4; (d) KC = 30.8. Results are plotted for
τc/ρU2

m = 0.0048. The symbols show the values of the instantaneous flux, In, for each oscillatory cycle (n = 1
to 20) used to calculate the mean (phase-averaged) flux, In. Also shown is the mean flux calculated using the
phase-averaged bed shear stress, Ī.

cycles in which the wake-shedding pattern and/or the coherence of the shed vortices are
significantly different from those observed for most of the other oscillatory cycles. The
combined effects of the cycle-to-cycle variations of the coherence of the main near-bed
coherent structures and of the smaller-scale turbulent eddies on entrainment can be
estimated by looking at the difference between In and the entrainment flux calculated based
on the phase-averaged bed shear stress, Ī = (1/ρ1.5U3

mD2)
∫

A′ (τ̄ − τc)
1.5 dA′. The values

of Ī are also included in figure 15.
For all KC values the fluxes In and Ī peak at t = T/4 and 3T/4 when the velocity

magnitude in the undisturbed flow is the largest. The largest cycle-to-cycle variation of In
is observed for KC = 15.4. In this case, the maximum values of In/In are larger than 2 over
most of the cycle (figure 15c). This means that the volumetric flux of entrained sediment
over some of the cycles can be much larger than the cycle-averaged value. Consistent with
this result, the standard deviation of In is also the largest for the KC = 15.4 case over most
of the oscillatory cycle (figure 16). It is only when the undisturbed flow velocity is close
to zero (t ≈ 0T and T/2) and the entrainment is negligible that the standard deviation of In
is basically independent of KC (figure 16). The large variation of In in the KC = 15.4 case
is explained by the fact that this is the case with the most irregular wake-shedding pattern
among the four cases analysed in figure 15.
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Figure 16. Standard deviation of the non-dimensional volumetric flux of entrained sediment per unit time
versus non-dimensional time, t/T (DES predictions).
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Figure 17. Mean non-dimensional volumetric flux of entrained sediment over one oscillatory cycle (DES
predictions): (a) τc/ρU2

m = 0.0048; (b) τc/τm = 1.5. The fluxes Fn and F̄ are calculated based on In and
Ī, respectively.

The mean value of the volumetric flux of entrained sediment over one oscillatory cycle
Fn is obtained by integrating In from t/T = 0 to t/T = 1. Similarly, one can calculate the
volumetric flux of sediment entrained over one oscillatory cycle using the values of Ī
rather than In. This flux is denoted F̄. Figure 17(a) shows that Fn peaks for 8 < KC < 15.4
before starting to decrease for KC > 15.4. Meanwhile, F̄ peaks for KC ≈ 8 and then
decreases monotonically with increasing KC. As expected, F̄ = Fn for KC = 1.5 as the
flow is periodic. The ratio F̄/Fn decreases to 0.66 for KC = 8 and is close to 0.5 for
KC > 8. This means that coherent structures whose dynamics is not quasi-periodic (e.g.
some of the shed wake vortices and near-bed vortices parallel to the bed) play a major role
in sediment entrainment at relatively large KC numbers.

Another way to compare the sediment entrainment capacity of the flow among test cases
with varying KC is to choose the values of H, Um and T such that the non-dimensional
bed shear stresses induced in the undisturbed flow region are about the same, which means
that τm/ρU2

m should be independent of KC. In this case, the critical bed shear stress
for sediment entrainment should be the same for all test cases. Figure 17(b) shows the
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Figure 18. Non-dimensional (streamwise) in-line force versus non-dimensional time, t/T (DES predictions):
(a) KC = 1.5; (b) KC = 8; (c) KC = 15.4; (d) KC = 30.8. The open symbols show the values of the instantaneous
in-line force, Fx, for each oscillatory cycle (n = 1 to 20) used to calculate the mean (phase-averaged) drag force,
Fx. The instantaneous and phase-averaged values are very close for KC = 8. Also included (solid red line) is
the in-line force FIF predicted using Morison’s equation.

variations of F̄ and Fn with KC assuming τc/τm = 1.5. Results in figures 17(a) and 17(b)
are qualitatively similar. The only difference is that Fn reaches its maximum for KC = 15.4
when the flux is calculated assuming τc/τm = 1.5.

6. Forces acting on the cylinder

Figures 18 and 19 compare the non-dimensional phase-averaged streamwise and spanwise
forces acting on the solid cylinder, Fx(t/T) and Fy(t/T), for the test cases with unimodal
forcing (1.5 ≤ KC ≤ 30.8) based on DES predictions. Following the usual convention used
for forces acting on obstacles in oscillatory unidirectional flow (e.g. see Williamson 1985),
the total streamwise force will be referred to as the in-line force. The spanwise forces in
the present geometrical set-up with a vertical cylinder correspond to the lift forces for
cases where the cylinder is positioned horizontally (e.g. see Keulegan & Carpenter 1958).
The instantaneous and phase-averaged forces were obtained by integrating the pressure
and shear stresses over the surface of the cylinder, between the channel bottom and the
top surface, and then normalizing by ρU2

aDH, where Ua = 0.622Um is the mean value
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Figure 19. Non-dimensional spanwise force versus non-dimensional time, t/T (DES predictions): (a)
KC = 1.5; (b) KC = 8; (c) KC = 15.4; (d) KC = 30.8. The open symbols show the values of the instantaneous
drag force, Fy, for each oscillatory cycle (n = 1 to 20) used to calculate the mean (phase-averaged) force, Fy.

of |û| over one oscillatory cycle. The phase averaging was conducted over 20 oscillatory
cycles. We checked that phase averaging over the first 10 cycles and over the last 10 cycles
produced very similar results. Given the small height of the bottom boundary layer relative
to the flow depth in the approaching flow (figure 2), no significant variations were observed
in the distributions of the streamwise and spanwise forces per unit height when these forces
were estimated over the whole height of the cylinder (figures 18 and 19) or only over the
part situated outside of the bottom boundary layer.

For cylinders placed in oscillatory and wave flow, the prediction of the in-line force
per unit length acting on the cylinder is modelled using an equation proposed by Morison
et al. (1950) that splits the in-line force into two components due to the inertia and the drag
force contributions. If the phase-averaged, in-line force non-dimensionalized by ρU2

aD is
denoted FIF(t/T), then Morison’s equation for a circular cylinder is

FIF = Cm
π

4
D

TU2
a

∂ û
∂

( t
T

) + Cd
1
2

û|û|
U2

a
= Cm

π

4
1

0.6222KC

∂ û′

∂
( t

T

) + Cd
1
2

û′|û′|
0.6222 , (6.1)

where Cm and Cd are the inertia and drag coefficients, respectively. Keulegan & Carpenter
(1958) evaluated these coefficients based on experiments conducted with a horizontal
cylinder placed below the free surface in a basin with standing waves surging in it. They
found that for a circular cylinder Cm is close to 2.0 for small KC numbers and reaches
a minimum (Cm ≈ 0.7) for KC ≈ 15. It then starts to monotonically increase with KC to
reach Cm ≈ 2.5 for KC = 120. For small KC numbers, Cd increases with KC to reach a
value close to 2.3 for KC = 15. It then gradually decreases with increasing KC to reach

964 A22-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

36
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.367


W.-Y. Chang and G. Constantinescu

KC = TUm/D Cm Cd Fx,max/(ρU2
mDH) Crms

Fx Crms
Fy Fx

rms
Mx

1.5 1.94 0 3.2 20.4 0.0 11.72 10.11
8.0 1.23 1.57 0.75 97.6 92.1 1.97 1.66
15.4 0.65 1.89 0.70 276.8 310.1 1.59 1.31
30.8 1.17 1.54 0.58 1044.6 83.6 1.50 1.24

Table 2. Non-dimensional variables characterizing the forces acting on the cylinder for the test cases
conducted with purely oscillatory flow (one-mode forcing).

the steady flow value (Cd ≈ 1.0) for KC � 100. Using the expression for û′, (6.1) can be
written as

FIF = C1 cos
(

2π
t
T

)
+ C2 sin

(
2π

t
T

) ∣∣∣sin
(

2π
t
T

)∣∣∣ . (6.2)

Figure 18 shows the variation of Fx together with a best-fit function for FIF. One can see
that for all four cases FIF provides a fairly good approximation to Fx over the oscillatory
cycle. Using the C1 and C2 constants given in figure 18, one can calculate Cm and Cd.
Despite the different set-up of the present simulations (e.g. orientation of the cylinder,
Reynolds number) compared with that in the study conducted by Keulegan & Carpenter
(1958), the predicted values of Cm and Cd (table 2) are fairly close to the values inferred
from experiments (see figures 10 and 11 in Keulegan & Carpenter (1958)).

Table 2 also includes the values of the maximum magnitude of the in-line drag force
Fx,max/(ρU2

mDH) recorded over the oscillatory cycles analysed in figure 18. These forces
are on average 15 %–20 % smaller than the values compiled by Keulegan & Carpenter
(1958). The difference is partially due to the boundary layer forming at the channel
bottom in the present simulations conducted with a vertical surface-mounted cylinder.
The phase angles where the maximum force is reached are close to 0° and 45° in the
KC = 1.5 and 8 simulations, respectively. The phase angle is about 90° in the KC = 15.4
and 30.8 simulations. If one accounts for the 90° phase difference in the forcing used in
the experiments and present simulations, the values reported in figure 31 by Keulegan &
Carpenter (1958) are similar to those predicted by the present simulations.

The variations of the in-line and spanwise forces during the oscillatory cycles can be
used to calculate the root-mean-square (r.m.s.) of the two forces. Following Williamson
(1985), the r.m.s. of the in-line and spanwise forces are reported in the form of a force
coefficient where the force acting on the whole cylinder is non-dimensionalized by
(1

2ρ(D2/T2)DH = 1
2ρ(U2

m/KC2)DH). The estimated values of the r.m.s. coefficients for
the in-line (Crms

Fx ) and spanwise (Crms
Fy ) forces are also included in table 2. Williamson

(1985) proposed an empirical formula, Crms
Fx = (160KC2 + 0.69KC4)0.5, that fitted very

well the estimations of the r.m.s. of the in-line force based on his experimental data. The
values given by this formula (Crms

Fx = 19.0, 81.64, 277.0 and 879.1 for KC = 1.5, 8.0, 15.4
and 30.8, respectively) are fairly close to the values estimated from the present simulations
(table 2). The scatter in the experimental data (see figure 22 in Williamson (1985)) is
very high for Crms

Fy no and clear trend can be identified in the variation of Crms
Fy with

KC except for the fact that Crms
Fy is expected to be very small for KC < 6. Most of the

experiments predicted 20 < Crms
Fy < 100 for KC > 6 with a peak measured value close to

180 for KC ≈ 11. The values reported in table 2 are consistent with this range except for
KC = 15.4 where Crms

Fy is close to 310.0. This increase is attributed to the fact that, after
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Figure 20. Standard deviation of the non-dimensional force acting on the cylinder along the streamwise and
spanwise directions (DES predictions): (a) FSD

x ; (b) FSD
y .

formation on one side of the cylinder, most of the shed vortices are advected over the other
side of the cylinder. Large spanwise forces are induced as these very coherent vortices
move near one side of the cylinder. Moreover, this is also the case where the number of
vortices shed over one half-cycle is not always the same.

For KC = 1.5, Fx is well approximated by a cosine function (figure 18a). This means that
for sufficiently small KC numbers, Fx(t) has the same (sinusoidal) shape as the velocity
in the undisturbed flow but is out of phase with it (e.g. Fx(t) ∼ û′(t + T/2)). One should
note that for this case Cd ≈ 0, which confirms that for very small KC numbers the in-line
force in unidirectional oscillatory flow is due only to inertia effects.

Once shedding occurs at the lee side of the cylinder (KC > 6), the in-line force variation
becomes more complex and the phase difference starts decreasing monotonically with
increasing KC (figure 18b–d). The contributions of both the inertia force and the drag
force components are significant in the simulations conducted with KC ≥ 8 (table 2). For
KC = 30.8, the maximum and minimum values of the in-line force are close to in phase
with the maximum and minimum velocities in the undisturbed flow occurring at t = T/4
and t = 3T/4, respectively. Meanwhile, Fx is small, but not equal to 0, at t = 0 and T/2
(figure 18d). The largest cycle-to-cycle variations of the instantaneous in-line force, Fx,
are observed for KC = 8. This information is presented in a more quantitative way in
figure 20(a) that shows the standard deviation of Fx with respect to the phase-averaged
value at representative times during the oscillatory cycle. At lower KC numbers, the largest
standard deviations of Fx occur during the time the incoming flow accelerates towards the
cylinder (e.g. t ≈ T/8 for KC = 8). Once the phase lag between Fx and û′ decreases, the
largest standard deviations occur close to t = T/4 (KC = 15.4 and 30.8). The peak values
of the standard deviation reduce by about 50 % as KC increases from 8 to 15.4. Other
relevant variables characterizing the ‘mean’ magnitude of the in-line forces experienced
by the cylinder over the oscillatory cycle are the r.m.s. of Fx and the momentum of the
in-line force magnitude over the oscillatory cycle Mx = 1

2

∫ 1
0 |Fx| d(t/T). Both Fx

rms
and

Mx show a sharp decay as KC increases from 1.5 to 8. This is followed by a much milder
monotonic decay regime for KC ≥ 8 (see figure 21 and table 2).

Figure 19 shows that for a range of KC numbers the cylinder is subject to significant
phase-averaged spanwise forces during the oscillatory cycle. As expected, for cases with
no shedding the mean and the instantaneous spanwise forces are equal to zero (e.g. see
results for KC = 1.5 in figure 19a). This is because the flow remains symmetric with respect
to the y/D = 0 axis. Interestingly, Fy is also very close to zero during the oscillatory cycle
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Figure 21. Oscillatory behaviour of the phase-averaged, non-dimensional (streamwise) in-line force, Fx (DES
predictions): (a) r.m.s. of Fx; (b) non-dimensional in-line force momentum over the half of the oscillatory cycle
when Fx > 0.

for sufficiently high KC numbers (e.g. see results for KC = 30.8 in figure 19d). However,
for large KC numbers, the cylinder can experience large instantaneous spanwise forces
during some of the cycles. For example, the peak in-line forces occur at t = T/4 and 3T/4
for KC = 30.8. At these times, |Fx| ≈ 2.5 and the peak magnitude of Fx is close to 3. While
for |Fy| ≈ 0, the peak magnitude of Fy is close to 3.5 at t = T/4 and 3T/4. These forces
are mainly induced by some of the highly coherent vortices generated in the flow as they
interact with the cylinder.

For KC = 8 (figure 19b) and KC = 15.4 (figure 19c), the oscillatory flow is characterized
by non-zero mean spanwise forces. The peak magnitude of Fy is close to 2.2 and 5.5,
respectively. These values are significant given that the peak magnitudes of Fx are close
to 2.7 for both KC = 8 and 15.5. The peak values of Fy occur at times when also peak
values are recorded for Fx. This regime characterized by non-zero mean spanwise forces
occurs for cases when at least one of the vortices shed during half of the oscillatory cycle
moves back towards the cylinder and past it during the next half of the oscillatory cycle.
In both cases, the peak magnitudes of Fy occur at times when the magnitude of Fy is also
high (e.g. t = T/8, T/4 and 3T/8 for KC = 8 and t = T/4 for KC = 15.4). This is confirmed
by the variation of the standard deviation of Fy for these two cases shown in figure 20(b).
As KC increases and the flow reaches a regime where the shed wake vortices do not move
back past the cylinder, the standard deviation of Fy decays with increasing KC over most
of the oscillatory cycle (e.g. compare results for KC = 15.4 and 30.8 in figure 20b).

Figure 22 compares the phase-averaged in-line force coefficient for the cylinder,
CFx = Fx/0.5ρû2(t)DH, during the oscillatory cycle. Also shown are the in-line force
coefficients, CFx, calculated using the instantaneous drag force, Fx, for each of the 20
oscillatory cycles used for phase averaging. These coefficients are similar to the standard
streamwise drag coefficients defined in steady flow past cylinders. No values of CFx
were included for the KC = 1.5 case because the solution is periodic (CFx = CFx). The
in-line force coefficient is not defined for t/T = 0 and 0.5 when û = 0. For KC > 15, the
phase-averaged in-line force coefficients do not vary much the oscillatory cycle. This is
different from cases with KC ≤ 8 for which the in-line force coefficient is equal to zero
twice during the oscillatory cycle as the in-line force becomes zero for non-zero values
of the incoming velocity. On average, the largest in-line force coefficients are predicted in
the KC = 1.5 case for which CFx = 9–10 except for times close to T/4 and 3T/4 when the
in-line force and the corresponding in-line force coefficient approach zero.
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Figure 22. In-line force coefficient versus non-dimensional time, t/T (DES predictions): (a) KC = 1.5;
(b) KC = 8; (c) KC = 15.4; (d) KC = 30.8. The open symbols show the values of the instantaneous in-line
force coefficient, CFx, for each oscillatory cycle (n = 1 to 20) used to calculate the mean (phase-averaged)
in-line force coefficient, CFx. The instantaneous and phase-averaged values are very close for KC = 8. To get
the force coefficient, the in-line force is non-dimensionalized with the depth-averaged streamwise velocity in
the undisturbed flow, û(t/T), and the projected area, HD. No values can be calculated for t/T = 0 and 0.5 when
û = 0.

It is also relevant to point out that CFx varies roughly between 0.8 and 1.1 in the
KC = 15.4 and 30.8 cases with Re = 130 000. A value of 1.2 is expected for the total
drag coefficient of long cylinders in steady incoming flow with Re ≈ 105. As the incoming
velocity varies during the oscillatory cycle, the cylinder will experience lower physical
Reynolds numbers. Still, the streamwise drag coefficient will not get below 0.9 as long
as the Reynolds numbers remain larger than 2500, which will correspond to most of
the oscillatory cycle in the cases discussed in this section. This result suggests that
for sufficiently high KC numbers the phase-averaged in-line force coefficients during
the oscillatory cycle are only 10 %–15 % smaller than the mean (time-averaged) drag
coefficient for a case with incoming steady flow at the same Reynolds number. For
circular cylinders, this result assumes that the physical Reynolds numbers defined with
the unsteady undisturbed flow velocity are larger than 2500 and smaller than the Reynolds
number at which the drag crisis starts.

As for the in-line force, the largest cycle-to-cycle variations in the values of CFx occur
at t = T/8 and 5T/8 in the KC = 8 case (figure 22b). By contrast, the standard deviation
of CFx varies much less during the oscillatory cycle in the KC = 15.4 (figure 22c) and
KC = 30.8 (figure 22d) cases.
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7. Summary and conclusions

The better performance of DES compared with URANS in predicting the maximum
amplification of the bed shear stress in front and behind the surface-mounted vertical
cylinder with incoming oscillatory flow was linked to the superior capability of DES to
capture the formation, coherence and dynamics of the energetically important eddies in
the flow. In agreement with previous numerical investigations of this type of flow (e.g.
see Baykal et al. 2017), for sufficiently large KC numbers, DES predicted the formation
and shedding of wake vortices whose cores remained close to vertical over the whole
flow depth. This is different from the behaviour of these vortices in flow past a circular
cylinder with steady incoming flow where the cores of these vortices become inclined and
are severely stretched as they approach the bed surface (Kirkil & Constantinescu 2015).
The fact that the cores remained close to vertical and were subject to minimal stretching
as they interacted with the bed is the main reason why the largest instantaneous bed shear
stresses beneath these vortices were comparable to the peak values recorded in the regions
of strong flow acceleration near the cylinder. Wake vortices whose cores remain vertical as
they reach the bed and that can induce large bed shear stresses can also occur with steady
incoming flow but only for cylinders of non-circular shape that contain sharp corners (e.g.
for rectangular cylinders, see Kirkil & Constantinescu 2009).

Besides the vertical wake vortices, DES predicted the formation of near-bed horizontal
vortices at the back of the cylinder and inside the near-wake region. The formation
mechanism of these vortices is driven by the interaction of the deformed cores of the
vertical wake vortices with the bed surface. Similar to the finger (secondary) vortices
forming in the wake of long cylinders due to the spanwise instabilities propagating along
the cores of the main wake vortices, an eddy-resolving technique is needed to capture the
formation of these near-bed vortices. The peak bed shear stresses occurred in the regions
of strong flow acceleration forming close to the upstream face of the cylinder only at times
when the incoming velocity magnitude was close to its peak values. At other times during
the oscillatory cycle, the amplification of the bed shear stress was mainly driven by the
cores of the wake billows, by the main horseshoe vortex and by some of the near-bed
horizontal vortices.

The capability of DES to accurately predict the bed shear stress distributions around
the cylinder for fixed bathymetry (e.g. flat bed) is particularly relevant for designing
scour protection measures around pile foundations. Calibration of design formulas for the
minimum size of the stone forming the rock apron around the pile requires estimation
of the peak mean shear stress over the rock apron given a certain approach flow and
pile geometry. Such an approach based on 3-D simulations was used by Wu, Zeng &
Constantinescu (2021) for designing riprap apron protections at bridge abutments with
a steady current. That approach can be easily used with a DES solver and extended for
monopile foundations placed in oscillatory flow or for cases where the oscillatory flow is
superimposed with a steady current.

Consistent with previous experimental and URANS studies of oscillatory flow past
cylinders conducted at lower Reynolds numbers (e.g. Sumer et al. 1997; Baykal et al.
2017), the present high-Reynolds-number simulations with unimodal oscillatory flow
showed that the wake structure, the number of vortices shed every half-cycle and the
dynamics of these vortices are mainly dependent on the KC number. The predicted wake
dynamics in the KC = 1.5 case (no vortex shedding, periodic flow) and the KC = 15.4 case
(one vortex shed each half-period) is in good general agreement with the experimental
observations of Sumer et al. (1997) for cases with KC < 23. The shedding of three vortices
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in the KC = 30.8 case is consistent with the increase of the number of shed vortices with
increasing KC observed by Williamson (1985) and Sumer et al. (1997).

The present study showed that for KC numbers close to values where the number of
shed vortices over each half-cycle increases by one (e.g. KC ≈ 17 where the number of
shed vortices increases from one to two), the number of shed vortices is not always the
same for all the half-cycles. For example, in the KC = 15.4 simulation two vortices were
sometimes shed over a half-cycle instead of one vortex. Such cases are characterized by the
largest cycle-to-cycle variation of quantities of engineering interest like the phase-averaged
variation of the flux of sediment entrained from the bed and the drag forces acting on the
cylinder.

For KC numbers only slightly larger than the threshold value for the formation of wake
vortices (KC ≈ 6), the dynamics of the wake vortices is quite different from that observed
at large KC numbers where the anti-symmetric wake-shedding mode dominates, similar
to the case of long cylinders. The KC = 8 simulation revealed that two fairly symmetric
vortices form at the back of the cylinder during each half-cycle. None of these vortices is
advected into the wake during the half-cycle where they form. Rather these vortices move
over the other side of the cylinder during the next half-cycle when the incoming flow
reverses. Previous experimental studies also reported cases where some of the vortices
shed at the back of the cylinder can be washed past the cylinder during the next half-cycle.
The different wake dynamics observed for KC numbers for which two strongly coherent,
counter-rotating vortices move past the cylinder during the next half-cycle was found
to have important consequences in terms of the bed shear stress distributions near the
cylinder. As the two vortices pass the cylinder, they induce a jet-like flow oriented towards
the cylinder between their cores. This phenomenon happens at times when the incoming
flow velocity magnitude is low and the peak velocity amplification is driven by these two
vortices. The phase-averaged bed shear stress magnitudes generated during this part of
the oscillatory cycle can be larger than those induced by the horseshoe vortex when its
coherence is the highest during the oscillatory cycle. For such cases, the sediment erosion
mechanisms close to the cylinder are much more complex that those observed for cylinders
with steady incoming flow.

The availability of the 3-D instantaneous and phase-averaged velocity fields allowed
estimating the variation of the sediment entrainment potential of the flow with the KC
number. If the depth-averaged velocity in the undisturbed oscillatory flow was assumed
constant, results showed that the mean (cycle-averaged) volumetric flux of sediment
entrained from the bed over one oscillatory cycle peaks for 8 < KC < 15.4. The volumetric
flux of entrained sediment calculated using the phase-averaged flow field peaked for
KC ≈ 8 and then decreased monotonically with increasing KC. This component was found
to account for less than 50 % of the flux calculated based on the instantaneous flow fields
for KC ≥ 15.4. This means that coherent structures whose dynamics is not quasi-periodic
(e.g. some of the shed wake vortices and near-bed vortices whose axes are parallel to the
bed) play a major role in sediment entrainment at relatively large KC numbers.

In the KC = 1.5 simulation the flow was periodic. The in-line force acting on the cylinder
was unimodal but out of phase with the incoming velocity forcing. The spanwise force was
equal to zero at all times. For sufficiently high KC numbers for vortices to form at the back
of the cylinder, the phase-averaged in-line force variation became multimodal. Despite
its simplifying assumptions, Morison’s equation was found to approximate reasonably
well the variation of the phase-averaged in-line force during the oscillatory cycle for a
surface-mounted cylinder with 1.5 ≤ KC ≤ 30.8. The inertia term was found to be the
dominant one in the KC = 1.5 simulation. The phase lag between the maximum values of

964 A22-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

36
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.367


W.-Y. Chang and G. Constantinescu

the incoming velocity magnitude and in-line force monotonically decayed with increasing
KC such that the lag was close to zero for KC = 30.8. For KC ≥ 15, the phase-averaged
in-line force coefficients varied between 0.8 and 1.1 during most of the oscillatory cycle.
The corresponding drag coefficient for a cylinder in steady flow at a Reynolds number
defined with the peak incoming velocity is 1.2. This means that for sufficiently high KC
numbers the phase-averaged in-line force coefficient during the oscillatory cycle is only
10 %–15 % smaller than the drag coefficient in steady flow past a cylinder at the same
Reynolds number.

Quantification of the cycle-averaged and instantaneous forces acting on the cylinder
revealed that, for a certain range of KC numbers, the phase-averaged and instantaneous
spanwise forces were non-negligible. Over an intermediate range of KC numbers (e.g.
for KC = 8 and KC = 15.4), the cylinder was subject to phase-averaged spanwise forces
that were comparable to the peak phase-averaged in-line forces. At large KC numbers
(e.g. for KC = 30.8), the phase-averaged spanwise force was equal to zero over the whole
oscillatory cycle but the cylinder was still subject to large instantaneous spanwise forces
over part of the oscillatory cycle. These findings are relevant both for fatigue analysis and
for applications where the cylinder is flexible (e.g. plant stems).

The present study provided detailed information on the flow physics and dynamics of
coherent structures for the most canonical configuration (e.g. isolated, emerged circular
cylinder). Using the knowledge acquired for this limiting case, one can analyse more
complex cases of relevance to practical applications. They include cases in which the
incoming flow has both an oscillatory component and a steady component, cases in which
the cylinder is placed on a surface containing bedforms (Chang & Constantinescu 2013)
and configurations containing an array of cylinders (e.g. offshore wind farms or circular
patches of vegetation with a given porosity).
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