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Abstract. A group G is n-central if Gn ≤ Z(G), that is the subgroup of G generated
by n-powers of G lies in the centre of G. We investigate pk-central groups for p a prime
number. For G a finite group of exponent pk, the covering group of G is pk-central.
Using this we show that the exponent of the Schur multiplier of G is bounded by p� c

p−1 �,
where c is the nilpotency class of G. Next we give an explicit bound for the order of a
finite pk-central p-group of coclass r. Lastly, we establish that for G, a finite p-central
p-group, and N, a proper non-maximal normal subgroup of G, the Tate cohomology
Hn(G/N, Z(N)) is non-trivial for all n. This final statement answers a question of
Schmid concerning groups with non-trivial Tate cohomology.

2010 Mathematics Subject Classification. 20D15.

1. Introduction. In 1970 Gupta and Rhemtulla introduced the notion of an n-
central group which generalises both the notions of abelian and exponent n [7]. Let G
be a group and n a natural number. Denote the centre of G by Z(G) and the subgroup
of G generated by nth-powers of elements of G by Gn.

DEFINITION 1. A group G is n-central if Gn ≤ Z(G).

Clearly, a group G is n-central if and only if it satisfies the word [xn, y] = 1 for all
elements x and y in G. Thus, the n-central groups form a variety. (We note that some
authors have used the term p-central to mean that all elements of order p in a finite
p-group are central, this is a very different condition.)

Moravec [15, Theorem 2.5] has proved that for G a finitely generated soluble group
of derived length d, then G is n-central if and only if G is isomorphic to a subgroup of
the direct product of a finite soluble n-central group of derived length at most d and a
free abelian group of finite rank. We are interested in pk-central groups for p a prime
number. Clearly, a finite pk-central group is nilpotent and so, is a finite p-group modulo
an abelian direct factor. Thus, we restrict our attention to finite pk-central p-groups.

Several related concepts have been studied by authors, we recall a few of them. A
group is said to be n-abelian if (xy)n = xnyn for all x, y ∈ G. It is easy to see that in an
n-abelian group [xn, y] = [x, y]n = [xn, yn] = [x, y]n

2
for all x, y ∈ G. Thus, a pk-abelian

p-group is pk-central. Indeed, n-abelian groups have been classified by Alperin [2]:
the variety of n-abelian groups is the join of the varieties of abelian groups, groups
of exponent dividing n and groups of exponent dividing n − 1. More general than an
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n-central group is an n-Bell group, that is one which satisfies the identity [xn, y] = [x, yn]
for all x, y ∈ G.

With the exception of recent papers of Moravec [15–17], Mann [14] and
Thillaisundaram [23], it seems that little work has been done on n-central groups,
with results often only occurring as a byproduct of results on other classes of groups.
One such example is the result by Kappe and Morse [12, Theorem 13], which shows
that a metabelian p-group G is p-central if and only if the exponent of the derived
group of G divides p and G has nilpotency class at most p. In [15, Theorem 1.3]
Moravec proves that the assumption that G is a p-group can be dropped. In the same
paper Moravec classifies all finitely generated 2-central groups [15, Theorem 2.7] (finite
2-central groups had previously been classified [6]).

It is worth noting that for p odd all p-groups of order of at most p4 are p-central.
This is clear for groups of order ≤ p3. For groups of order p4, by the result of Kappe
and Morse mentioned above [12, Theorem 13], we just need to consider groups of
nilpotency class 3, this case is covered in Proposition 2. For p = 2 the dihedral group
of order 16 gives a group of order 24, which is not 2-central. The following presentation
gives, for all primes p, a p-group of order p5 that is not p-central

〈x, y : xp3 = 1 = y p2
, y−1xy = x(1+p)〉.

Recall, the Nottingham group is a finitely generated pro-p group in which the p-powers
in the group drop quickly down the lower central series, for details see [3]. Thus, it is
not surprising that certain finite quotients of the Nottingham group give examples of
p-central groups, for details see [22]. It is also interesting to note that p-groups with
only one non-central conjugacy class size are p-central [10].

In this paper we consider three different aspects of p-central groups. The study of
pk-central groups is a natural setting to study the Schur Multiplier of a finite group of
exponent pk. The Schur Multiplier M(G) of group G is given by the second cohomology
group H2(G, �∗). When G is finite M(G) is also given by the second integral homology
group H2(G, �). In Schur’s pioneering work at the beginning of the last century he
proved that all groups have a covering group: H is a covering group of group G if H
has a subgroup A isomorphic to M(G) which satisfies A ≤ H ′ ∩ Z(H) and G ∼= H/A.
So the covering group of a group of exponent pk is a pk-central group. In the next
section we study the interplay between the p-power structure and the commutator
structure of a p-central group. This leads to the following theorem about the exponent
of the Schur multiplier of a finite group of exponent p.

THEOREM 1. Let G be a finite group of exponent p and nilpotency class c. Then the
exponent of M(G) is bounded by p� c

p−1 �.

This compares favourably with known results of Ellis [5] and Moravec [16] when p is
large in comparison to the nilpotency class of the group. We note that a finite non-cyclic
group of exponent p has non-trivial mutiplier [13, Corollary 3.4.11].

In the second section we consider p-central groups by coclass. A finite p-group
of order pn and nilpotency class c has coclass n − c, this invariant was introduced by
Leedham-Green and Newman and suggests an interesting way to investigate p-groups.
That a finite pk-central p-group of coclass r has bounded order can be proven in a
variety of ways. We use coclass theory to give an explicit bound, which, although not
optimal, seems good.
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THEOREM 2. Let G be a finite pk-central p-group of coclass r. Then the order of G is
bounded by pf (k,p,r) where f (k, p, r) is equal to (k + 1)(p − 1)pr−1 + r when p is odd and k ≥
2, and f (1, p, r) = 2pr + r − 1 when p odd. When p is even f (k, 2, r) = (2 + k)2r+1 + r
when k ≥ 2 and f (1, 2, r) = 2r+3 + r − 1.

An interesting link between Schur Multipliers and coclass is given by Eick [4]. She
proves that for an odd prime p there are at most finitely many p-groups G of coclass r
with |M(G)| ≤ s for every r and s. She also shows that this does not hold for p = 2 by
constructing an infinite series of 2-groups with coclass r and trivial Schur Multiplier.
These ideas are explored further by Moravec [17].

In the final section of this paper we look at the Tate cohomology of p-central
groups. Recall that a finite p-group G is regular if given x, y ∈ G there exists s ∈
γ2(〈x, y〉) such that (xy)p = xpypsp [18, Lemma 1.2.10]. In [20] Schmid proved that for
G a regular p-group, N a non-trivial normal subgroup of G and Q = G/N non-cyclic
then the Q-module A = Z(N) has non-trivial cohomology. So in particular if G is a non-
abelian regular p-group and � is the Frattini subgroup of G, then Hn(G/�, Z(�)) �= 0
for all n; Schmid then asks whether this result holds more generally. Abdollahi [1] has
given some cases where the result holds, and in the final section we prove the following
result.

THEOREM 3. Let G be a finite p-central p-group and N a proper, non-trivial normal
subgroup of G that is not maximal. Let Q = G/N, then Hn(Q, Z(N)) �= 0 for all n.

Notation is standard. Given subsets X and Y of a group G, then [X, Y ] denotes
the group generated by commutators [x, y] = x−1y−1xy, where x ∈ X and y ∈ Y . For
n, a natural number, [X, nY ] is defined inductively, [X, 1Y ] = [X, Y ] and [X, nY ] =
[[X, n−1Y ], Y ]. The lower central series of group G is denoted by γi(G) and defined
inductively as G = γ1(G) and γi+1(G) = [γi(G), G] for i ≥ 1. We also use G′ to denote
the derived group of G. The centre of G is denoted by Z(G). For H ≤ G we denote the
subgroup generated by elements hpi

with h ∈ H by Hpi
.

2. Schur multipliers. The Schur Multiplier of a group G, denoted M(G) and
introduced by Schur in 1904 [21], is given by the second cohomology group H2(G, �∗).
For a finite group M(G) can be identified with the second integral homology group
H2(G, �). The study of Schur Multipliers is closely related to the study of central
extensions of groups. A group H is a covering group of G if H has a subgroup A ∼= M(G)
such that G ∼= H/A and A ≤ Z(H) ∩ H ′. Schur proved that a covering group always
exists, although it need not be unique. For more background on Schur Multipliers
see [13]. So the covering group of a group of exponent pk is a pk-central group and
information about the derived group of a pk-central group yields information about the
Schur Multiplier of a finite group of exponent pk. This link has already been explored
by Moravec [16].

We focus on p-central groups, and so Schur Multipliers of groups of exponent p.
It is known that the derived group of a p-abelian group has exponent p, so identifying
when a p-central group is p-abelian is useful.

LEMMA 1. A finite p-group G is p-abelian if and only if it is p-central and regular.

Proof. Clearly a p-abelian p-group is regular and it is p-central by [8] (or the
comment in the Introduction). For the opposite direction, note that in a regular
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p-group [xp, y] = 1 yields [x, y]p = 1 [9, Sec. III 10.6(b)] and furthermore (G′)p = 1
[18, Lemma 1.2.13(i)]. Weichsel [25] showed that G being p-abelian is equivalent to G
being regular and satisfying (G′)p = 1. �
As a finite p-group of nilpotency class less than p is regular [18, Lemma 1.2.11(i)] this
yields the following corollary.

COROLLARY 1. A finite p-central group of nilpotency class less than p is p-abelian.

Thus, the Schur Multiplier M(G) of a finite group G of exponent p and nilpotency
class ≤ p − 2 has exponent p. But by examining the interplay between the commutator
and p-power structure of a p-central group we can do better than this. First we quote
a technical lemma.

LEMMA 2 [18, Corollary 1.1.32]. Let x and y be elements of G, and let p be a prime
and r a positive integer. For a, b ∈ 〈x, y〉 define K(a, b) to be the normal closure in 〈x, y〉
of the set of all basic commutators in {a, b} of weight at least pr and of weight at least
two in b, together with the pr−k+1th powers of all basic commutators in {a, b} of weight
less than pk and of weight at least two in b for 1 ≤ k ≤ r. Then,

(i) (xy)pr ≡ xpr
ypr

[y, x](
pr

2 )[y, 2x](
pr

3 ) . . . [y, pr−1x] mod K(x, y).

(ii) [xpr
, y] ≡ [x, y]p

r
[x, y, x](

pr

2 ) . . . [[x, y], pr−1x] mod K(x, [x, y]).

We isolate the next result to ease the proof of the following Proposition.

LEMMA 3. Let G be a group, S ⊆ G and p a prime. Suppose L ≤ G satisfies
(γ2([S, G]))p ≤ L and γp([S, G]) ≤ L. Further, suppose [s, g]p ∈ L for all s ∈ S and g ∈ G.
Then [S, G]p ≤ L.

Proof. This follows inductively from Lemma 2(i). Note that an element of [S, G]p

is of the form ([s1, g1] . . . [sn, gn])p for some si ∈ S and gi ∈ G for 1 ≤ i ≤ n. Write
x = ([s1, g1] . . . [sn−1, gn−1])p and by induction suppose x ∈ L. Then applying Lemma
2(i) to (x[sn, gn])p and noting the hypotheses of the lemma gives the required result. �
The next result shows how p-powers drop in a finite p-central group.

PROPOSITION 1. Let G be a finite p-central group and H a subset of G. Define H1 = H
and Hi+1 = [H, iG] ≤ G for i ≥ 1. Then (Hi)p ≤ Hi+p−1 for all i ≥ 2.

Proof. Let i ≥ 2, x ∈ Hi−1 and y ∈ G. We begin by showing that [x, y]p ∈
(Hi+1)pHi+p−1. Applying Lemma 2(ii) to [xp, y] yields

1 ≡ [x, y]p[x, y, x](
p
2) . . . [x, y, p−1x] mod K(x, [x, y]).

Note that

[x, y, x](
p
2) . . . [x, y, p−2x]p ∈ [Hi−1, G, G]p ≤ Hp

i+1,

and [x, y, p−1x] ∈ [Hi−1, pG] ≤ Hi+p−1. Now consider the normal subgroup K(x, [x, y]).
First note that Hi ≤ γi(G) and [Hi, γj(G)] ≤ Hi+j. Thus, commutators of weight at
least p and of weight at least two in [x, y] lie in H2i+p−2. Similarly, pth-powers
of commutators of weight less than p and weight of at least two in [x, y] lie
in (H2i+1)p. Thus, K(x, [x, y]) ≤ (H2i+1)pH2i+p−1 ≤ (Hi+1)pHi+p−1 and consequently
[x, y]p ∈ (Hi+1)pHi+p−1.
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Applying the previous lemma with Hi−1 = S and L = (Hi+1)pHi+p−1, we have

(Hi)p ≤ (Hi+1)pHi+p−1

for i ≥ 2. Substituting the above result for Hi+1 yields

(Hi)p ≤ ((Hi+2)pHi+p)Hi+p−1 ≤ (Hi+2)pHi+p−1.

Continuing in this manner, and noting G is nilpotent so (Hi+k)p is a strictly descending
series of subgroups, yields

(Hi)p ≤ Hi+p−1.

�
COROLLARY 2. Let G be a finite p-central group then (γi(G))p ≤ γi+p−1(G) for all

i ≥ 2.

Using the above proposition we can gain information about the Schur Multiplier of a
finite group of exponent p.

THEOREM 1. Let G be a finite group of exponent p and nilpotency class c. Then the
exponent M(G) is bounded by p� c

p−1 �.

Proof. Suppose H is the covering group of G, then it is sufficient to prove that the
exponent of H ′ is bounded by p� c

p−1 �. As G has exponent p it follows that H is a
p-central group, so we can apply the previous proposition and thus (H ′)p ≤
γp+1(H). Now proceed inductively. Since (H ′)pk ≤ ((H ′)pk−1

)p, it follows that (H ′)pk ≤
γ2+k(p−1)(H). As γc+2(H) = 1, it follows that (H ′)pk = 1 when 2 + k(p − 1) ≥ c + 2, the
result follows. �
This improves known results when p is large compared to c. For example, Ellis has
shown that for G a finite p-group of nilpotency class c ≥ 2, the exponent of M(G)
divides (exp G)�c/2� [5]. More recently Moravec has bounded the exponent of M(G) by
pk�log2 c� where k is a function dependent on p and the exponent of G [16].

In a previous version of this paper we commented that we did not know of a finite
p-central group which had derived group not of exponent p. By results of Kappe and
Morse [12] such an example would need to have derived length ≥ 3 and p �= 2 or 3.
The referee kindly supplied us with the following example. Take the class 10 quotient
of the free group on two generators subject to the laws x25 = 1 and [x5, y] = 1, call
this group G. Using GAP one can readily check that G is a 5-central group of order
555 and exponent 25 satisfying exp(G′) = 25 [19]. In particular, the two generators g1

and g2 of G satisfy [g1, g2]5 �= 1. This example demonstrates that the class of p-central
groups is indeed different from the class of p-Levi groups, that is groups which satisfy
[x, yp] = [x, y]p for all x, y ∈ G [11].

However, our follow-up question, whether the Schur Multiplier of a finite
p-group of exponent p necessarily has exponent p (see the related question of Moravec
[17, Question 1.5]) remains unanswered, since for G in the example above the exponent
of G/(G′ ∩ Z(G)) is 25.

3. Coclass. Recall that the coclass of a finite p-group G of order pn and nilpotency
class c is given by n − c. As all finite p-groups have finite coclass, the coclass gives a
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useful invariant for investigating finite p-groups. To study p-groups of coclass 1, also
known as p-groups of maximal class, a chain of normal subgroups is introduced:

G = P0 > P1 > P2 > · · · > Pn = 〈1〉.

For i ≥ 2 the Pi are just the terms of the lower central series and P1 is a 2-step centralizer,
for more details see [18, Chap. 3]. In a p-group of coclass 1 the p-powers drop in a
uniform way, this gives us the following dichotomy.

PROPOSITION 2. Let p be an odd prime and G a finite p-group of order pn and coclass
1. Then G is pk-central if and only if n ≤ k(p − 1) + 2.

Proof. That G is pk-central if n ≤ p + 1 follows from [18, Proposition 3.3.2]. For
n > p + 1 we have that G has positive degree of commutativity by [18, Theorem 3.3.5].

So, by [18, Lemma 3.3.1] if t �∈ P1 then tp ∈ Pn−1. Now to consider Ppk

1 . From [18,

Corollary 3.3.6(i)] it follows that Ppk

1 = P1+k(p−1) when 1 + k(p − 1) ≤ n and Ppk

1 = 1
otherwise. Thus, G is pk-central if and only if 1 + k(p − 1) ≥ n − 1 which gives the
result. �
More generally we can give a bound on the order of a finite pk-central group of coclass
r. Although the bound is not best possible (compare with the previous proposition), it
seems better than bounds provided by alternative methods.

THEOREM 2. Let G be a finite pk-central p-group of coclass r. Then the order of G is
bounded by pf (k,p,r) where for odd p

f (k, p, r) =
{

(k + 1)(p − 1)pr−1 + r if k ≥ 2
2pr + r − 1 if k = 1

and

f (k, 2, r) =
{

(2 + k)2r+1 + r if k ≥ 2
2r+3 + r − 1 if k = 1.

Proof. Let p be odd and c the nilpotency class of G. When k ≥ 2, suppose c >

(k + 1)(p − 1)pr−1 and when k = 1, suppose c ≥ 2pr. Equivalently, for pn the order of
G, we have n > (k + 1)(p − 1)pr−1 + r when k ≥ 2 and n ≥ 2pr + r when k = 1. By [18,
Theorem 6.3.9], there exists m = m(p, r) = (p − 1)pr−1 such that G acts uniserially on
γm(G) and (γi(G))p = γi+d for all i ≥ m and for some d = (p − 1)ps with 0 ≤ s ≤ r − 1.
Since G acts uniserially on γm(G), it follows that |γi(G) : γi+1(G)| = p for all i ≥ m and
thus (γm(G))pk = γm+kd . But m + kd ≤ (k + 1)(p − 1)pr−1 < c and thus (γm(G))pk

does
not lie in the centre of G. Hence, G is not pk-central.

For p = 2 we refer to [18, Theorem 6.3.8], in this case m(2, r) = 2r+2 and d = 2s

with 0 ≤ s ≤ r + 1. We suppose c > (2 + k)2r+1 when k ≥ 2 and c ≥ 2r+3 when k =
1. Equivalently n > (2 + k)2r+1 + r when k ≥ 2 and n ≥ 2r+3 + r when k = 1. Then
m + kd ≤ (2 + k)2r+1 < c, and G is not pk-central.

The result follows. �

4. Tate cohomology. Let G be a finite p-group, N a normal subgroup of G and
A = Z(N), the centre of N. Then A is a Q = G/N-module and one can investigate the
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Tate cohomology groups Hn(Q, A). The Q-module A is called cohomologically trivial
if Hn(K, A) = 0 for all integers n and all subgroups K of Q. By the result of Uchida
[24] we know that A is cohomologically trivial if Hr(Q, A) = 0 for just one integer r.
In [20] Schmid investigates when the cohomology is non-trivial, he proves that if G is
a regular p-group and Q = G/N is not cyclic then Hn(Q, Z(N)) �= 0 for all n. So, in
particular, if G is a non-abelian regular p-group and � is the Frattini subgroup of G
then Hn(G/�, Z(�)) �= 0 for all n, Schmid then asks whether this holds more generally.
Abdollahi addresses this question in [1] (and uses the alternative definition of p-central
as mentioned in our Introduction) and poses the following more general question:

Question 1 [1, Question 1.2]. For which finite p-groups G and which normal
subgroups N of G do we have Hn( G

N , Z(N)) �= 0 for all integers n?

In this section, using the methods of Schmid and Abdollahi, we prove the following.

THEOREM 3. Let G be a finite p-central p-group and N a proper, non-trivial normal
subgroup of G that is not maximal. Let Q = G/N, then Hn(Q, Z(N)) �= 0 for all n.

By Uchida’s result we will be able to restrict our attention to H0(Q, Z(N)). Recall,
H0(Q, A) = AQ/Aτ , where AQ denotes the fixed points of A under the action of Q,
and Aτ denotes the image of A under the trace map τ = τQ. The trace map is given by
τQ : a �→ a

∑
x∈Q x.

We analyse the trace map for a finite p-central group G. Let A be an abelian normal
subgroup of G, let a ∈ A and x ∈ G. Then a1+x+···+xp−1 = apz for some central element
z of G. This is clear since a1+x+···+xp−1 = x−p(xa)p ∈ Z(G) and ap ∈ Z(G). The following
lemma says slightly more, proving that the central element z in the above statement is
the commutator [a, p−1x] and consequently that a is a p-Engel element.

LEMMA 4. Let G be a finite p-central p-group and suppose A is a normal abelian
subgroup of G. Let a ∈ A and x ∈ G then a1+x+···+xp−1 = ap[a, p−1x] and [a, p−1x] ∈ Z(G).

Proof. Apply Lemma 2(i) to (xa)p and note that K(x, a) = 1. Next we show that
most of the terms in this expression for (xa)p vanish. Let H = 〈A, x〉. Then H ′ =
[A, x] = {[a, x] : a ∈ A} since A abelian. Now by applying Lemma 2(ii) to [ap, x] and
noting that all terms vanish except [a, x]p, we see that [a, x]p = 1 and thus H ′ has
exponent p. So returning to our expression for (xa)p yields (xa)p = xpapz where z =
[a, p−1x] ∈ Z(G). �
To prove the theorem we need the following proposition due to Schmid.

PROPOSITION 3. [20, Proposition 1] Suppose A �= 0 is a cohomologically trivial Q-
module where A and Q are finite p-groups. Then for every subgroup H of Q, the centralizer
CQ(AH) = H.

The ideas behind the proof of the theorem follow very closely the ideas of Schmid [20]
and Abdollahi [1] but are included for completeness.

Proof of Theorem 3. Suppose for a contradiction Hn(Q, Z(N)) = 0 for some integer
n. Then by [24, Theorem 4], it follows that A = Z(N) is a cohomologically trivial
Q-module. Thus, H0(H/N, A) = 0, where H is a subgroup of G containing N such
that |H : N| = p. So AH/N = AτH/N . By Lemma 4, for each a ∈ A, there exists a central
element za such that τH/N(a) = apza. Thus, CG/N(AτH/N ) = CG/N(Ap) = G/N since G is
p-central. However, Proposition 3 gives CG/N(Ap) = CG/N(AH/N) = H/N. The result
follows. �
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