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Abstract. A group Gisn-centralif G" < Z(G), that is the subgroup of G generated
by n-powers of G lies in the centre of G. We investigate p*-central groups for p a prime
number. For G a finite group of exponent p*, the covering group of G is p*-central.
Using this we show that the exponent of the Schur multiplier of G is bounded by p(lfl],
where c is the nilpotency class of G. Next we give an explicit bound for the order of a
finite p¥-central p-group of coclass r. Lastly, we establish that for G, a finite p-central
p-group, and N, a proper non-maximal normal subgroup of G, the Tate cohomology
H"(G/N, Z(N)) is non-trivial for all n. This final statement answers a question of
Schmid concerning groups with non-trivial Tate cohomology.

2010 Mathematics Subject Classification. 20D15.

1. Introduction. In 1970 Gupta and Rhemtulla introduced the notion of an n-
central group which generalises both the notions of abelian and exponent #n [7]. Let G
be a group and n a natural number. Denote the centre of G by Z(G) and the subgroup
of G generated by nth-powers of elements of G by G".

DEFINITION 1. A group G is n-central if G" < Z(G).

Clearly, a group G is n-central if and only if it satisfies the word [x", y] = 1 for all
elements x and y in G. Thus, the n-central groups form a variety. (We note that some
authors have used the term p-central to mean that all elements of order p in a finite
p-group are central, this is a very different condition.)

Moravec [15, Theorem 2.5] has proved that for G a finitely generated soluble group
of derived length d, then G is n-central if and only if G is isomorphic to a subgroup of
the direct product of a finite soluble n-central group of derived length at most d and a
free abelian group of finite rank. We are interested in p¥-central groups for p a prime
number. Clearly, a finite p*-central group is nilpotent and so, is a finite p-group modulo
an abelian direct factor. Thus, we restrict our attention to finite p*-central p-groups.

Several related concepts have been studied by authors, we recall a few of them. A
group is said to be n-abelian if (xy)" = x"y" for all x, y € G. It is easy to see that in an
n-abelian group [x", y] = [x, y]" = [x", "] = [x, y]”2 for all x, y € G. Thus, a pF-abelian
p-group is p¥-central. Indeed, n-abelian groups have been classified by Alperin [2]:
the variety of n-abelian groups is the join of the varieties of abelian groups, groups
of exponent dividing n and groups of exponent dividing n — 1. More general than an
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n-central group is an n-Bell group, that is one which satisfies the identity [x", y] = [x, "]
forall x,y € G.

With the exception of recent papers of Moravec [15-17], Mann [14] and
Thillaisundaram [23], it seems that little work has been done on n-central groups,
with results often only occurring as a byproduct of results on other classes of groups.
One such example is the result by Kappe and Morse [12, Theorem 13], which shows
that a metabelian p-group G is p-central if and only if the exponent of the derived
group of G divides p and G has nilpotency class at most p. In [15, Theorem 1.3]
Moravec proves that the assumption that G is a p-group can be dropped. In the same
paper Moravec classifies all finitely generated 2-central groups [15, Theorem 2.7] (finite
2-central groups had previously been classified [6]).

It is worth noting that for p odd all p-groups of order of at most p* are p-central.
This is clear for groups of order < p3. For groups of order p*, by the result of Kappe
and Morse mentioned above [12, Theorem 13], we just need to consider groups of
nilpotency class 3, this case is covered in Proposition 2. For p = 2 the dihedral group
of order 16 gives a group of order 24, which is not 2-central. The following presentation
gives, for all primes p, a p-group of order p° that is not p-central

(xy = 1=y, y y = x1),

Recall, the Nottingham group is a finitely generated pro-p group in which the p-powers
in the group drop quickly down the lower central series, for details see [3]. Thus, it is
not surprising that certain finite quotients of the Nottingham group give examples of
p-central groups, for details see [22]. It is also interesting to note that p-groups with
only one non-central conjugacy class size are p-central [10].

In this paper we consider three different aspects of p-central groups. The study of
pF-central groups is a natural setting to study the Schur Multiplier of a finite group of
exponent p¥. The Schur Multiplier M(G) of group G is given by the second cohomology
group H?*(G, C*). When G is finite M(G) is also given by the second integral homology
group H,(G, Z). In Schur’s pioneering work at the beginning of the last century he
proved that all groups have a covering group: H is a covering group of group G if H
has a subgroup 4 isomorphic to M(G) which satisfies 4 < H' N Z(H) and G = H/A.
So the covering group of a group of exponent p* is a p¥-central group. In the next
section we study the interplay between the p-power structure and the commutator
structure of a p-central group. This leads to the following theorem about the exponent
of the Schur multiplier of a finite group of exponent p.

THEOREM 1. Let G be a finite group of exponent p and nilpotency class c. Then the
exponent of M(G) is bounded by p'#1!.

This compares favourably with known results of Ellis [5] and Moravec [16] when p is
large in comparison to the nilpotency class of the group. We note that a finite non-cyclic
group of exponent p has non-trivial mutiplier [13, Corollary 3.4.11].

In the second section we consider p-central groups by coclass. A finite p-group
of order p" and nilpotency class ¢ has coclass n — ¢, this invariant was introduced by
Leedham-Green and Newman and suggests an interesting way to investigate p-groups.
That a finite p*-central p-group of coclass r has bounded order can be proven in a
variety of ways. We use coclass theory to give an explicit bound, which, although not
optimal, seems good.
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THEOREM 2. Let G be a finite p*-central p-group of coclass r. Then the order of G is
bounded by p'®P") where f (k, p, r) is equal to (k + 1)(p — D)p’~" + rwhen p is odd and k >
2, and f(1,p,r) =2p" +r — 1 when p odd. When p is even f(k,2,r) = (2 + k)2 +r
whenk > 2and f(1,2,r) =23 +r — 1.

An interesting link between Schur Multipliers and coclass is given by Eick [4]. She
proves that for an odd prime p there are at most finitely many p-groups G of coclass r
with |M(G)| < s for every r and s. She also shows that this does not hold for p = 2 by
constructing an infinite series of 2-groups with coclass r and trivial Schur Multiplier.
These ideas are explored further by Moravec [17].

In the final section of this paper we look at the Tate cohomology of p-central
groups. Recall that a finite p-group G is regular if given x,y € G there exists s €
y2({x, y)) such that (xy)’ = x”y”s” [18, Lemma 1.2.10]. In [20] Schmid proved that for
G a regular p-group, N a non-trivial normal subgroup of G and Q = G/N non-cyclic
then the O-module 4 = Z(N) has non-trivial cohomology. So in particular if G'is a non-
abelian regular p-group and @ is the Frattini subgroup of G, then H"(G/®, Z(®)) # 0
for all n; Schmid then asks whether this result holds more generally. Abdollahi [1] has
given some cases where the result holds, and in the final section we prove the following
result.

THEOREM 3. Let G be a finite p-central p-group and N a proper, non-trivial normal
subgroup of G that is not maximal. Let Q = G/N, then H'(Q, Z(N)) # 0 for all n.

Notation is standard. Given subsets X and Y of a group G, then [X, Y] denotes
the group generated by commutators [x, y] = x~'y~'xy, where x € X and y € Y. For
n, a natural number, [X, , Y] is defined inductively, [X, Y] =[X, Y] and [X, ,Y] =
[[X,,-1Y], Y]. The lower central series of group G is denoted by y;(G) and defined
inductively as G = y1(G) and y;41(G) = [yi(G), G] for i > 1. We also use G’ to denote
the derived group of G. The centre of G is denoted by Z(G). For H < G we denote the

subgroup generated by elements W' with h e H by HY'.

2. Schur multipliers. The Schur Multiplier of a group G, denoted M(G) and
introduced by Schur in 1904 [21], is given by the second cohomology group H*(G, C*).
For a finite group M(G) can be identified with the second integral homology group
H>(G, Z). The study of Schur Multipliers is closely related to the study of central
extensions of groups. A group H is a covering group of G if H has a subgroup 4 = M(G)
such that G = H/A and A < Z(H) N H'. Schur proved that a covering group always
exists, although it need not be unique. For more background on Schur Multipliers
see [13]. So the covering group of a group of exponent p* is a p*-central group and
information about the derived group of a p*-central group yields information about the
Schur Multiplier of a finite group of exponent p*. This link has already been explored
by Moravec [16].

We focus on p-central groups, and so Schur Multipliers of groups of exponent p.
It is known that the derived group of a p-abelian group has exponent p, so identifying
when a p-central group is p-abelian is useful.

LEMMA 1. 4 finite p-group G is p-abelian if and only if it is p-central and regular.

Proof. Clearly a p-abelian p-group is regular and it is p-central by [8] (or the
comment in the Introduction). For the opposite direction, note that in a regular

https://doi.org/10.1017/50017089512000687 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089512000687

452 RACHEL CAMINA AND ANITHA THILLAISUNDARAM

p-group [x”, y] =1 yields [x, yf’ =1 [9, Sec. III 10.6(b)] and furthermore (G'Y’ = 1
[18, Lemma 1.2.13(i)]. Weichsel [25] showed that G being p-abelian is equivalent to G
being regular and satisfying (G'Y = 1. O

As a finite p-group of nilpotency class less than p is regular [18, Lemma 1.2.11(i)] this
yields the following corollary.

COROLLARY 1. 4 finite p-central group of nilpotency class less than p is p-abelian.

Thus, the Schur Multiplier M(G) of a finite group G of exponent p and nilpotency
class < p — 2 has exponent p. But by examining the interplay between the commutator
and p-power structure of a p-central group we can do better than this. First we quote
a technical lemma.

LeEmMA 2 [18, Corollary 1.1.32]. Let x and y be elements of G, and let p be a prime
and r a positive integer. For a, b € (x, y) define K(a, b) to be the normal closure in (x, y)
of the set of all basic commutators in {a, b} of weight at least p" and of weight at least
two in b, together with the p"~*'th powers of all basic commutators in {a, b} of weight
less than p* and of weight at least two in b for 1 < k < r. Then,

(@) (oY =3 . 21D ox]S) L [y, ox] mod K(x, ).
(i) ¥, ¥ =[x, pF [, 7, 1) [Dx, 3], po13] mod K(x, [, ).
We isolate the next result to ease the proof of the following Proposition.
LEMMA 3. Let G be a group, S C G and p a prime. Suppose L < G satisfies

(»2([S, GD)Y < Land y,([S, GI) < L. Further, suppose s, g € Lforalls € Sandg € G.
Then[S, G < L.

Proof. This follows inductively from Lemma 2(i). Note that an element of [S, G}’
is of the form ([s1, g1]...[sy, g:]) for some s; € S and g; € G for 1 <i <n. Write
x = ([s1,&1]...[S4—1, g.—1]) and by induction suppose x € L. Then applying Lemma
2(i) to (x[s,, g,])’ and noting the hypotheses of the lemma gives the required result. [

The next result shows how p-powers drop in a finite p-central group.

PROPOSITION 1. Let G be a finite p-central group and H a subset of G. Define Hy = H
and Hiyy = [H, ;G] < G fori > 1. Then (H;Y’ < Hi1p—1 foralli > 2.

Proof. Let i>2, xe€ H;_; and y € G. We begin by showing that [x, )} €
(Hi+1)’ Hipp—1. Applying Lemma 2(ii) to [x”, y] yields
1 =[x, yPlx. y. x]% .. [x. y. )1x] mod K(x, [x, y]).
Note that
[x,y. X% [x, p. pox¥ € [Hi-1. G. GV < H,,,

and [x, y, p—1x] € [Hi_1, G] < Hiy,—1. Now consider the normal subgroup K(x, [x, y]).
First note that H; < yi(G) and [H,, ¥,(G)] < H;y;. Thus, commutators of weight at
least p and of weight at least two in [x, y] lie in Hiy,—>. Similarly, p"-powers
of commutators of weight less than p and weight of at least two in [x,y] lie
in (Hyip1). Thus, K(x, [x, y]) < (Hyip1) Hoiyp—1 < (Hip1)’Hi1p,—1 and consequently
[x, YV € (Hix1V Hiyp-1-
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Applying the previous lemma with H;_; = S and L = (H31)’ Hi;p—1, we have
(H:Y < (Hi1Y Hiyp
for i > 2. Substituting the above result for H;, yields

(H:Y < (Hi2V' Hiyp)Hip1 < (Hip2V Higpoy.

Continuing in this manner, and noting G is nilpotent so (H,.x)’ is a strictly descending
series of subgroups, yields

(H) < Hiyp1.
O

COROLLARY 2. Let G be a finite p-central group then (yi(G)Y < yiyp—1(G) for all
i>2.

Using the above proposition we can gain information about the Schur Multiplier of a
finite group of exponent p.

THEOREM 1. Let G be a ﬁnilfz group of exponent p and nilpotency class c. Then the
exponent M(G) is bounded by p'71.

Proof. Suppose H is the covering group of G, then it is sufficient to prove that the
exponent of H’ is bounded by p[ﬂ(j . As G has exponent p it follows that H is a
p-central group, so we can apply the previous proposition and thus (H') <
¥p+1(H). Now proceed inductively. Since (H/)”k < ((H’)”kil)f’, it follows that (H/)”k <
Varkp—1)(H). As yesa(H) = 1, it follows that (H'Y' = 1 when 2 + k(p — 1) > ¢ + 2, the
result follows. ]

This improves known results when p is large compared to c¢. For example, Ellis has
shown that for G a finite p-group of nilpotency class ¢ > 2, the exponent of M(G)
divides (exp G)'“/?! [5]. More recently Moravec has bounded the exponent of M(G) by
pihee ¢l where k is a function dependent on p and the exponent of G [16].

In a previous version of this paper we commented that we did not know of a finite
p-central group which had derived group not of exponent p. By results of Kappe and
Morse [12] such an example would need to have derived length > 3 and p # 2 or 3.
The referee kindly supplied us with the following example. Take the class 10 quotient
of the free group on two generators subject to the laws x*° = 1 and [x°, y] = 1, call
this group G. Using GAP one can readily check that G is a 5-central group of order
5% and exponent 25 satisfying exp(G’) = 25 [19]. In particular, the two generators g
and g, of G satisfy [g1, g2]° # 1. This example demonstrates that the class of p-central
groups is indeed different from the class of p-Levi groups, that is groups which satisfy
[x, '] =[x, yP forall x, y € G [11].

However, our follow-up question, whether the Schur Multiplier of a finite
p-group of exponent p necessarily has exponent p (see the related question of Moravec
[17, Question 1.5]) remains unanswered, since for G in the example above the exponent
of G/(G' N Z(G)) is 25.

3. Coclass. Recall that the coclass of a finite p-group G of order p” and nilpotency
class ¢ is given by n — ¢. As all finite p-groups have finite coclass, the coclass gives a
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useful invariant for investigating finite p-groups. To study p-groups of coclass 1, also
known as p-groups of maximal class, a chain of normal subgroups is introduced:

G=P()>P1>P2>~~>Pn=(1>.

Fori > 2the P; are just the terms of the lower central series and P is a 2-step centralizer,
for more details see [18, Chap. 3]. In a p-group of coclass 1 the p-powers drop in a
uniform way, this gives us the following dichotomy.

PROPOSITION 2. Let p be an odd prime and G a finite p-group of order p" and coclass
1. Then G is p*-central if and only if n < k(p — 1) + 2.

Proof. That G is p*-central if n < p 4 1 follows from [18, Proposition 3.3.2]. For
n > p + 1 we have that G has positive degree of commutativity by [18, Theorem 3.3.5].

So, by [18, Lemma 3.3.1] if 7 ¢ P then # € P,_i. Now to consider P’fk. From [18,

Corollary 3.3.6(i)] it follows that P‘l’A = Piik(p-1) When 1+ k(p — 1) < n and P’l’k =1
otherwise. Thus, G is pX-central if and only if 1 +k(p — 1) > n — 1 which gives the
result. O

More generally we can give a bound on the order of a finite p¥-central group of coclass
r. Although the bound is not best possible (compare with the previous proposition), it
seems better than bounds provided by alternative methods.

THEOREM 2. Let G be a finite p*-central p-group of coclass r. Then the order of G is
bounded by p'*P") where for odd p

, _Jk+D@—-Dp T +r ifk=2
f(k’p’r)_{Ep"+r—1 ik =1

and

e+t 4r ifk=2
f(k’z’r)_{2f+3+r—1 ifle=1.

Proof. Let p be odd and ¢ the nilpotency class of G. When k > 2, suppose ¢ >
(k + 1)(p — 1)p"~! and when k = 1, suppose ¢ > 2p". Equivalently, for p" the order of
G,wehaven > (k+ 1)(p — 1)p'"' + rwhenk > 2andn > 2p" + r when k = 1. By [18,
Theorem 6.3.9], there exists m = m(p, r) = (p — 1)p"~! such that G acts uniserially on
Ym(G) and (y(G)Y = yipq foralli > mand forsomed = (p — 1)p* with0 <s <r— 1.
Since G acts uniserially on y,,,(G), it follows that |y;(G) : y;41(G)| = p for all i > m and
thus (Ym(G))' = Ymira- But m+kd < (k+ 1)(p — 1)p'~! < ¢ and thus (y.(G)Y" does
not lie in the centre of G. Hence, G is not p*-central.

For p = 2 we refer to [18, Theorem 6.3.8], in this case m(2,r) = 2"+ and d = 2°
with 0 < s < r+ 1. We suppose ¢ > (2 + k)2"*! when k > 2 and ¢ > 2"+* when k =
1. Equivalently n > (2 4+ k)2"*! +r when k > 2 and n > 2"+3 4+ r when k = 1. Then
m+kd < (24 k)2'*t! < ¢, and G is not p*-central.

The result follows. O

4. Tate cohomology. Let G be a finite p-group, N a normal subgroup of G and
A = Z(N), the centre of N. Then 4 is a Q = G/N-module and one can investigate the
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Tate cohomology groups H"(Q, A). The Q-module 4 is called cohomologically trivial
if H"(K, A) = 0 for all integers n and all subgroups K of Q. By the result of Uchida
[24] we know that 4 is cohomologically trivial if H"(Q, A) = 0 for just one integer r.
In [20] Schmid investigates when the cohomology is non-trivial, he proves that if G is
a regular p-group and Q = G/N is not cyclic then H"(Q, Z(N)) # 0 for all n. So, in
particular, if G is a non-abelian regular p-group and & is the Frattini subgroup of G
then H"(G/®, Z(®)) # 0 for all n, Schmid then asks whether this holds more generally.
Abdollahi addresses this question in [1] (and uses the alternative definition of p-central
as mentioned in our Introduction) and poses the following more general question:

Question 1 [1, Question 1.2]. For which finite p-groups G and which normal
subgroups N of G do we have H"(%, Z(N)) # 0 for all integers n?

In this section, using the methods of Schmid and Abdollahi, we prove the following.

THEOREM 3. Let G be a finite p-central p-group and N a proper, non-trivial normal
subgroup of G that is not maximal. Let Q = G/N, then H"(Q, Z(N)) # 0 for all n.

By Uchida’s result we will be able to restrict our attention to H%(Q, Z(N)). Recall,
H(Q, A) = Ap/ AT, where Ay denotes the fixed points of 4 under the action of Q,
and A" denotes the image of 4 under the trace map t = 7¢. The trace map is given by
Tgiar>ay, oX.

We analyse the trace map for a finite p-central group G. Let 4 be an abelian normal
subgroup of G, leta € A and x € G. Then ¢! ™+ = ¢z for some central element
zof G. This is clear since a! ¥+ " = xP(xay € Z(G)and & € Z(G). The following
lemma says slightly more, proving that the central element z in the above statement is
the commutator [a, ,—1x] and consequently that @ is a p-Engel element.

LEMMA 4. Let G be a finite p-central p-group and suppose A is a normal abelian
- —1
subgroup of G. Leta € A and x € G then a"*™* " = d@l[a, ,_\x] and[a, ,-1x] € Z(G).

Proof. Apply Lemma 2(i) to (xa)’ and note that K(x, a) = 1. Next we show that
most of the terms in this expression for (xa)? vanish. Let H = (4, x). Then H' =
[4, x] = {[a, x] : a € A} since 4 abelian. Now by applying Lemma 2(ii) to [¢”, x] and
noting that all terms vanish except [, x}J’, we see that [a, x}J’ = 1 and thus H’ has
exponent p. So returning to our expression for (xa)’ yields (xa)’ = x’a’z where z =
la, p—1x] € Z(G). ]

To prove the theorem we need the following proposition due to Schmid.

PRrROPOSITION 3. [20, Proposition 1] Suppose A # 0 is a cohomologically trivial Q-
module where A and Q are finite p-groups. Then for every subgroup H of Q, the centralizer
Co(An)=H.

The ideas behind the proof of the theorem follow very closely the ideas of Schmid [20]
and Abdollahi [1] but are included for completeness.

Proof of Theorem 3. Suppose for a contradiction H"(Q, Z(N)) = 0 for some integer
n. Then by [24, Theorem 4], it follows that 4 = Z(N) is a cohomologically trivial
O-module. Thus, H(H/N, A) = 0, where H is a subgroup of G containing N such
that [H : N| = p. So Ay/y = A™/~. By Lemma 4, for each a € A4, there exists a central
element z, such that v,y (a) = @’z,. Thus, Cg/n(A™¥) = Cg/n(A”) = G/N since G is
p-central. However, Proposition 3 gives Cg/n(A4”) = Cg/n(Au/n) = H/N. The result
follows. ]
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