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Abstract

We study the 1-level density of low-lying zeros of Dirichlet L-functions attached to
real primitive characters of conductor at most X. Under the generalized Riemann
hypothesis, we give an asymptotic expansion of this quantity in descending powers
of logX, which is valid when the support of the Fourier transform of the corresponding
even test function φ is contained in (−2, 2). We uncover a phase transition when the

supremum σ of the support of φ̂ reaches 1, both in the main term and in the lower
order terms. A new lower order term appearing at σ = 1 involves the quantity φ̂(1),
and is analogous to a lower order term which was isolated by Rudnick in the function
field case.

1. Introduction

The study of statistics of zeros of L-functions was initiated in Montgomery’s seminal
paper [Mon73] on the pair correlation of zeros of ζ(s). This work inspired Özlük and
Snyder [ÖS93, ÖS99] to prove related results on the 1-level density of low-lying zeros of Dirichlet
L-functions attached to real characters

χd(n) :=

(
d

n

)
,

with d 6= 0.1 These low-lying zeros of Dirichlet L-functions are of particular interest since they
have strong connections with important problems such as the size of class numbers of imaginary
quadratic number fields and Chebyshev’s bias for primes in arithmetic progressions. The
aforementioned results were extended to the n-level density for general n by Rubinstein [Rub01],
and for extended support under the generalized Riemann hypothesis (GRH) by Gao [Gao05,
Gao14]. Note that Gao considered the family

F∗(X) := {L(s, χ8d) : 1 6 |d| 6 X; d is odd and squarefree},

which is known to have significant technical advantages over that of all real characters (see
also [Sou00]). For several years it was not known how to match Gao’s asymptotic with the
random matrix theory predictions. However, this was recently established for n 6 7 by Levinson
and Miller [LM13], and for all n by Entin et al. [ERR13]. In addition, we mention that the
Ratios conjecture of Conrey et al. [CFZ08] has been shown by Conrey and Snaith [CS07] to
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Low-lying zeros of quadratic Dirichlet L-functions

predict a precise expression for the 1-level density; this prediction was confirmed up to a power
saving error term by Miller [Mil08] for a restricted class of test functions. We further remark
that the 1-level density of low-lying zeros has been studied extensively for many other families
of L-functions; cf., e.g., [ILS00, You06, SST16] and the references therein.

In this paper we study the low-lying zeros of real Dirichlet L-functions in the family F∗(X).
Our focus will be on lower order terms in the 1-level density, a statistic for low-lying zeros that
we now introduce in detail. Throughout, φ will denote a real and even Schwartz test function.
Given a (large) positive number X, the 1-level density for the single L-function L(s, χd) is the
sum

DX(χd;φ) :=
∑
γd

φ

(
γd
L

2π

)
,

with γd := −i(ρd − 1
2), where ρd runs over the nontrivial zeros of L(s, χd) (i.e. zeros with 0 <

Re(ρd) < 1). Moreover, we set

L := log

(
X

2πe

)
. (1.1)

We consider a cutoff function w(t), which is an even, nonzero and nonnegative Schwartz function.
The corresponding total weight is given by

W ∗(X) :=
∑∗

d odd

w

(
d

X

)
.

Here and throughout, a star on a sum will denote a restriction to squarefree integers. We then
define the 1-level density of the family F∗(X) as the sum

D∗(φ;X) :=
1

W ∗(X)

∑∗

d odd

w

(
d

X

)
DX(χ8d;φ). (1.2)

Our main theorem is an asymptotic expansion of this quantity in descending powers of logX,
which is valid when supp φ̂ ⊂ (−2, 2). This is a refinement of the results of Özlük and
Snyder [ÖS99] and Katz and Sarnak [KS97].

Theorem 1.1. Fix K ∈ N, assume the GRH and suppose that supp φ̂ ⊂ (−2, 2). Then the 1-level
density of low-lying zeros in the family F∗ of quadratic Dirichlet L-functions whose conductor
is an odd squarefree multiple of 8 is given by

D∗(φ;X) = φ̂(0)− 1

2

∫ 1

−1
φ̂(u) du+

K∑
k=1

Rw,k(φ)

(logX)k
+Ow,φ,K

(
1

(logX)K+1

)
,

where the coefficients Rw,k(φ) are linear functionals in φ that can be given explicitly in terms of

w and the derivatives of φ̂ at the points 0 and 1. The first coefficient is given by

Rw,1(φ) = φ̂(0)

(
log

(
16

eγ+1

)
− 2

∑
p>3

log p

p(p2 − 1)
− 2

∫ ∞
2

θ(t)− t
t2

dt+
2

ŵ(0)

∫ ∞
0

w(x)(log x) dx

)
+ 2φ̂(1)

∫ ∞
1

(
Huh1(u) +

[u]

u
h2(u)

)
du, (1.3)

where θ(t) :=
∑

p6t log p is the Chebyshev function, Hu :=
∑

n6u n
−1 is the uth harmonic number

and h1, h2 are explicit transforms of the weight function w that are defined in § 3.2.
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Theorem 1.1 will follow from the more precise Theorem 3.5, which gives an expression for

D∗(φ;X) with a power saving error term.
We remark that Theorem 1.1 agrees with the Katz–Sarnak prediction [KS99a, KS99b], which

states that

lim
X→∞

D∗(φ;X) = φ̂(0)− 1

2

∫ 1

−1
φ̂(u) du (1.4)

independently of the support of φ̂. Note that the Katz–Sarnak prediction implies much more, in

particular that the family F∗ has symplectic symmetry type (by the work of [SST16], this can

be predicted from the fact that the family is homogeneous orthogonal). The asymptotic (1.4),

which was already obtained by Özlük–Snyder when supp φ̂ ⊂ (−2, 2) (under the GRH), shows

that there is a phase transition when the supremum of supp φ̂ approaches 1. Such a transition is

also present in the lower order terms in Theorem 1.1, because of the terms involving φ̂(m)(1).

The Katz–Sarnak prediction originates from the following function field analogue of the

family F∗(X). Consider the family Hn,q of zeta functions of hyperelliptic curves y2 = Q(x)

defined over Fq, where Q(x) is a monic squarefree polynomial of degree n. Note the relations

n = 2g+ 2 if n is even and n = 2g+ 1 if n is odd, where g is the genus of the hyperelliptic curve.

Using the fact that the monodromy corresponding to the family Hn,q equals the symplectic group

Sp(2g) and an equidistribution theorem of Deligne, Katz and Sarnak proved precise results for

the low-lying zeros of the zeta functions in Hn,q in the limit as both q and n tend to infinity

(see [KS99a, KS99b]).

The family Hn,q with q fixed and n = 2g + 1 was also studied by Rudnick [Rud10]. He

considered the associated 1-level density in the limit as n →∞. Note that this limit is expected

to be a more direct analogue to number fields than the q → ∞ limit. Restricting to the case

when supp φ̂ ⊂ (−2, 2), Rudnick gave the following estimate for the 1-level density of low-lying

zeros of the zeta functions in Hn,q:

φ̂(0)− 1

2

∫ 1

−1
φ̂(u) du+

1

g

(
φ̂(0)

( ∑
P monic irr.

degP

q2 degP − 1
+

1

2

)
− φ̂(1)

q + 1

2(q − 1)

)
+ o

(
1

g

)
(1.5)

(cf. [Rud10, Corollary 3 and the subsequent paragraph]; see also [BCDGL16, Chi16]). Recall

that when translating between function fields and number fields it is customary to set g = logX.

Taking this into account, note the striking similarity between the expression in (1.5) and our

Theorem 1.1; in particular, they both contain a lower order term involving φ̂(0) and φ̂(1). Here

it is interesting that the prediction from the function field situation indicates not only the main

term in the number field case (as in the Katz–Sarnak philosophy), but also lower order terms.

In this connection, we note that a lower order term involving φ̂(1) is also present in the

1-level density of the family of Dirichlet L-functions attached to all characters modulo q (see

[FM15, Theorem 1.2]). However, in this family this term is of order X−1/2/logX and is thus

much smaller than in the family F∗ of real characters.

Next we study the family of all real characters χd ordered by the modulus |d|, that is, we

consider

F(X) := {L(s, χd) : 1 6 |d| 6 X}.

Note that ζ(s) ∈ F(X) and that, for any a ∈ N, the functions L(s, χd) and L(s, χa2d) have

the same nontrivial zeros. The reason why we allow such repetitions is that it simplifies the
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analysis and allows one to obtain significantly sharper error terms2 (compare the error terms in
Theorems 3.5 and 1.2).

Similarly as above, we define the 1-level density of the family F(X) to be the sum

D(φ;X) :=
1

W (X)

∑
d6=0

w

(
d

X

)
DX(χd;φ), (1.6)

where

W (X) :=
∑
d 6=0

w

(
d

X

)
.

Our second main theorem is an asymptotic formula for D(φ;X) valid when supp φ̂ ⊂ (−2, 2).

For convenience, we introduce the notation σ := sup(supp φ̂).

Theorem 1.2. Fix ε > 0. Assume the GRH and suppose that supp φ̂ ⊂ (−2, 2). Let

U1(X) :=
1

2
√

2πeMw(1)

(
Mw

(
1

2

)
− w(0)√

X

)∫ 1

−1

(
X

2πe

)(u−1)/2
φ̂(u) du

and

U2(X) :=
1
2Mw(12)
√

2πeMw(1)

∫ 1

0

(
X

2πe

)(u−1)/2
φ̂(u) du

− 2

Lŵ(0)

∫ ∞
0

(
φ̂

(
1 +

τ

L

)
eτ/2

∑
n>1

ĥ(neτ/2) + φ̂

(
1− τ

L

)∑
n>1

h(neτ/2)

)
dτ,

where Mw denotes the Mellin transform of w and h(t) := ŵ(2πet2). Let further

U(X) :=

{
U1(X) if σ < 1,

U2(X) if 1 6 σ < 2.

Then the 1-level density of low-lying zeros in the family F of all quadratic Dirichlet L-functions
is given by

D(φ;X) = φ̂(0) +

∫ ∞
1

φ̂(u) du

+
φ̂(0)

L

(
log

(
e1−γ

22/3

)
+

2

ŵ(0)

∫ ∞
0

w(x)(log x) dx+ 2
ζ ′(2)

ζ(2)
−
Mw(12)

Mw(1)

ζ(12)

X1/2

)
− 2

L

∞∑
j=1

∑
p

log p

pj

(
1 +

1

p

)−1
φ̂

(
2j log p

L

)

+
1

L

∫ ∞
0

e−x/2 + e−3x/2

1− e−2x

(
φ̂(0)− φ̂

(
x

L

))
dx

+U(X) +Ow,φ,ε(X
η(σ)+ε), (1.7)

where

η(σ) :=


−3

5
if σ < 1,

σ

2
− 1 if 1 6 σ < 2.

2 There are several known examples in the literature of families with repetitions having such advantages (cf. [You06,
FM15, FPS16, SST15]).
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The term U(X) in Theorem 1.2 is O(X(σ−1)/2) when supp φ̂ ⊂ (−1, 1), but is of order

(logX)−1 when φ̂ has mass in a neighborhood of 1 (see Lemma 4.7). Therefore, this term is
responsible for a phase transition at 1. Moreover, Lemma 3.7 shows that

− 2

L

∞∑
j=1

∑
p

log p

pj

(
1 +

1

p

)−1
φ̂

(
2j log p

L

)
= −φ(0)

2
+Oφ

(
1

logX

)
and, combining this with Lemma 4.7 and taking X →∞ in (1.7), we recover the Katz–Sarnak
prediction.

We now briefly describe the tools used in the proofs of Theorems 1.1 and 1.2. The fundamental
tool is an application of Poisson summation to the prime sum in the explicit formula, following
the work of Katz and Sarnak [KS97]. In contrast with our previous work [FPS16], terms with
square index in the resulting sum are now of considerable size and contribute to both the main
term and new lower order terms in the 1-level density. The novelty in the present work is to
transform the terms of square index with an additional application of Poisson summation which
isolates the Katz–Sarnak main term and other tractable terms that are estimated later in the
analysis (see Lemma 3.2).

Finally, we observe that for small support we have an even more precise result for the family
F (which is in fact unconditional). It is interesting to note that the error term we obtain in this
case is significantly sharper than the error term predicted by the corresponding Ratios conjecture
(cf. [CS07, Theorem 3.1]).

Theorem 1.3. Fix ε > 0 and suppose that supp φ̂⊂ (−1, 1). Then the 1-level density of low-lying
zeros in the family F of all quadratic Dirichlet L-functions is given by

D(φ;X) =
φ̂(0)

LW (X)

∑∗

d6=0

w̃

(
d

X

)
log |d| − φ̂(0)

L
log(πeγ25/3)

− 2

L

∞∑
j=1

∑
p

log p

pj

(
1 +

1

p

)−1
φ̂

(
2j log p

L

)

+
1

L

∫ ∞
0

e−x/2 + e−3x/2

1− e−2x

(
φ̂(0)− φ̂

(
x

L

))
dx

+
1

2
√

2πeMw(1)

(
Mw

(
1

2

)
− w(0)√

X

)∫ 1

−1

(
X

2πe

)(u−1)/2
φ̂(u) du

+Ow,φ,ε(X
ξ(σ)+ε), (1.8)

where w̃(y) :=
∑

n>1w(n2y) and

ξ(σ) :=


−1 + σ if

1

2m+ 1
6 σ <

1

2m+ 1
2

,

−4m− 1

4m+ 1
if

1

2m+ 1
2

6 σ <
1

2m− 1
,

for each m > 1.

Remark 1.4. We can also obtain an unconditional result similar to Theorem 1.3 for D∗(φ;X).
However, in this case the error term will be the weaker Oε(X

(σ−1)/2+ε) and hence we choose not
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to provide the details in the present paper. (Note that under the GRH, Proposition 3.1 gives
the sharper error term Oε(X

max{σ/4−1/2, 3σ/4−3/4}+ε).) This setting was previously studied by
Miller [Mil08, Theorem 1.2], who claimed an error term of size

Oε(X
−1/2 +X−(1−3σ/2)+ε +X−3(1−σ)/4+ε).

However, going through the proof of [Mil08, Lemma 3.5], we find3 that the actual error term
resulting from [Mil08] is Oε(X

(σ−1)/2+ε).

2. Preliminary results for the family F∗(X)

2.1 Explicit formula and character sums
We will study the 1-level density via the explicit formula for primitive Dirichlet L-functions.

Lemma 2.1 (Explicit formula). Assume that φ is an even Schwartz test function whose Fourier
transform has compact support. Then the 1-level density defined in (1.2) is given by the formula

D∗(φ;X) =
φ̂(0)

LW ∗(X)

∑∗

d odd

w

(
d

X

)
log |d| − φ̂(0)

L
(γ + log π)

− 2

LW ∗(X)

∑
p,m

log p

pm/2
φ̂

(
m log p

L

)∑∗

d odd

w

(
d

X

)(
8d

pm

)
+

1

L

∫ ∞
0

e−x/2 + e−3x/2

1− e−2x

(
φ̂(0)− φ̂

(
x

L

))
dx. (2.1)

Proof. Let d be an odd squarefree integer. Then χ8d is a primitive character of conductor 8|d|.
Taking F̂ (t) = Φ(12 + it) := φ(tL/(2π)) in [MV07, Theorem 12.13] (whose conditions are satisfied
by our restrictions on φ), we obtain the formula

DX(χ8d;φ) =
φ̂(0)

L

(
log

(
8|d|
π

)
+

Γ′

Γ

(
1

4
+

a

2

))
− 2

L

∑
p,m

χ8d(p
m) log p

pm/2
φ̂

(
m log p

L

)
+

2

L

∫ ∞
0

e−(1/2+a)x

1− e−2x

(
φ̂(0)− φ̂

(
x

L

))
dx,

where

a :=

{
0 if d > 0,

1 if d < 0.

Formula (2.1) then follows by summing over d against the weight function w. 2

We will need the following estimate on a weighted quadratic character sum.

Lemma 2.2. Fix n ∈ N and ε > 0. Under the Riemann hypothesis (RH), we have the estimate∑∗

d odd

w

(
d

X

)(
8d

n

)
= κ(n)

2X

3ζ(2)
ŵ(0)

∏
p|n

(
1 +

1

p

)−1
+Oε,w(|n|3(1−κ(n))/8+εX1/4+ε),

where

κ(n) :=

{
1 if n is an odd square,

0 otherwise.

3 The second, third and fourth terms on the right-hand side of [Mil08, (3.39)] should be multiplied by X (see [Mil08,
(3.36)]).
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Proof. The result follows similarly as in [FPS16, Lemma 2.10]. 2

Remark 2.3. Taking n = 1 in Lemma 2.2 gives the following conditional estimate for the total
weight:

W ∗(X) =
2X

3ζ(2)
ŵ(0) +Oε,w(X1/4+ε). (2.2)

Let us now evaluate the first sum on the right-hand side of (2.1).

Lemma 2.4. Fix ε > 0 and assume the RH. We have the estimate

1

W ∗(X)

∑∗

d odd

w

(
d

X

)
log |d| = logX +

2

ŵ(0)

∫ ∞
0

w(x)(log x) dx+Oε,w(X−3/4+ε).

Proof. The proof is similar to that of [FPS16, Lemma 2.8]. 2

The following consequence of the GRH will be central in our analysis.

Lemma 2.5. Assume the GRH. For m ∈ Z6=0 and y > 1, we have the estimate

Sm(y) :=
∑
p6y

(
m

p

)
log p = δm=2y +O(y1/2 log(2y) log(2|m|y)).

Proof. Write m = a2b, with µ2(b) = 1. Then we clearly have that Sm(y) = Sb(y) + O(log |a|).
Applying [IK04, Theorem 5.15], we have that∑

pe6y
e>1

log p

(
b

pe

)
= δb=1y +O(y1/2 log(2y) log(2|b|y)).

The result follows by trivially bounding the contribution of prime powers. 2

2.2 Poisson summation
In this section we will provide an approximate expression for the prime sum appearing in (2.1).
We first separate the odd and the even prime powers, by writing

S∗odd := − 2

LW ∗(X)

∑
p

m odd

log p

pm/2
φ̂

(
m log p

L

)∑∗

d odd

w

(
d

X

)(
8d

pm

)
, (2.3)

and similarly for S∗even. We will transform (2.3) using Poisson summation.
From now on, we will not necessarily indicate the dependence of the error terms on φ and w.

Lemma 2.6. Fix ε > 0. Assume the GRH and suppose that σ = sup(supp φ̂) <∞. Then, for any
S > 1, we have the estimate

S∗odd = − 2X

LW ∗(X)

∑
s6S
s odd

µ(s)

s2

∑
p-2s

εp log p

p
φ̂

(
log p

L

)∑
t∈Z

((
−2t

p

)
ŵ

(
Xt

s2p

)
− 1

2

(
−t
p

)
ŵ

(
Xt

2s2p

))

+Oε(X
−3/4+ε +Xε(logS)3S−1), (2.4)

where

εp :=

{
1 if p ≡ 1 mod 4,

i if p ≡ 3 mod 4.
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Proof. By Lemma 2.2, the contribution of the terms with m > 3 in (2.3) is Oε(X
−3/4+ε). We

transform the sum over d into a sum over all odd integers using the usual convolution identity
for the indicator function of squarefree integers. This yields the estimate

S∗odd = − 2

LW ∗(X)

∑
s∈N
s odd

µ(s)
∑
u∈Z
u odd

∑
p-2s

log p

p1/2
φ̂

(
log p

L

)
w

(
us2

X

)(
8u

p

)
+Oε(X

−3/4+ε).

We now apply Lemma 2.5 and summation by parts. Note that if u is odd, then 8u is never a
square. It follows that the terms with s > S are

� 1

LX

∑
s>S
s odd

∑
u∈Z
u odd

w

(
us2

X

)
(log(2|u|sX))3�εX

ε(logS)3S−1.

As for the terms with s 6 S, we introduce additive characters using Gauss sums, resulting in the
estimate

S∗odd = − 2

LW ∗(X)

∑
s6S
s odd

µ(s)
∑
p-2s

εp log p

p
φ̂

(
log p

L

) ∑
b mod p

(
b

p

)

×
∑
u∈Z

(
w

(
us2

X

)
e

(
8ub

p

)
− w

(
2us2

X

)
e

(
16ub

p

))
+Oε(X

−3/4+ε +Xε(logS)3S−1).

Applying Poisson summation in the inner sum yields the expression

S∗odd = − 2X

LW ∗(X)

∑
s6S
s odd

µ(s)

s2

∑
p-2s

εp log p

p
φ̂

(
log p

L

) ∑
b mod p

(
b

p

)

×
(∑
v1∈Z

ŵ

(
X

s2

(
v1 −

8b

p

))
− 1

2

∑
v2∈Z

ŵ

(
X

2s2

(
v2 −

16b

p

)))
+Oε(X

−3/4+ε +Xε(logS)3S−1).

The sums over b and vj can be replaced by a single sum over tj := vjp− 2j+2b (j = 1, 2). Using
the fact that for p > 2, we have(

b

p

)
=

(
2

p

)(
8b

p

)
=

(
−2(t1 − v1p)

p

)
=

(
−2t1
p

)
and (

b

p

)
=

(
16b

p

)
=

(
v2p− t2

p

)
=

(
−t2
p

)
,

we end up with the estimate (2.4). 2

Lemma 2.7. Assume the GRH, fix ε > 0 and suppose that σ = sup(supp φ̂) <∞. Then, for any
1 6 S 6 X2, we have that4

S∗odd =
2X

W ∗(X)

∑
s6S
s odd

µ(s)

s2

∫ ∞
0

φ̂(u)
∑
m>1

(
1

2
ŵ

(
m2X1−u

2s2(2πe)−u

)
− ŵ

(
2m2X1−u

s2(2πe)−u

))
du

+Oε(X
−3/4+ε +XεS−1 + SXσ/2−1+ε).

4 This range can be replaced by 1 6 S 6 XM, for any fixed M ∈ N. However, the important range for our analysis
is 1 6 S 6 X2.
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Proof. By the definition of εp, the second part of the main term in (2.4) equals

X

LW ∗(X)

∑
s6S
s odd

µ(s)

s2

∑
p-2s

log p

p
φ̂

(
log p

L

)∑
t∈Z

(
1 + i

2

(
t

p

)
+

1− i
2

(
−t
p

))
ŵ

(
Xt

2s2p

)

=
X

LW ∗(X)

∑
s6S
s odd

µ(s)

s2

∑
p-2s

log p

p
φ̂

(
log p

L

)∑
t>0

((
t

p

)
+

(
−t
p

))
ŵ

(
Xt

2s2p

)
.

Note that we can add back the primes dividing 2s at the cost of an admissible error term.
By Lemma 2.5, we have for t > 0 and y > 1 that

Tt(y) :=
∑
p6y

log p

((
t

p

)
+

(
−t
p

))
= δt=2(y − 1) +O(y1/2 log(2y) log(2|t|y)).

It then follows that∑
t>0

∑
p

log p

p
φ̂

(
log p

L

)((
t

p

)
+

(
−t
p

))
ŵ

(
Xt

2s2p

)
=
∑
t>0

∫ ∞
1

φ̂

(
log y

L

)
ŵ

(
Xt

2s2y

)
dTt(y)

y

= −
∑
t>0

∫ ∞
1

[
y−1φ̂

(
log y

L

)
ŵ

(
Xt

2s2y

)]′
(δt=2(y − 1) +O(y1/2 log(2y) log(2|t|y))) dy

=
∑
t=2

∫ ∞
1

φ̂

(
log y

L

)
ŵ

(
Xt

2s2y

)
dy

y
+Oε(s

2(log(2s))2Xσ/2−1+ε),

by an argument similar to that in the proof of [FPS16, Lemma 4.3].5 As for the first part of the
main term of (2.4), it can be analyzed along the same lines; the quantity analogous to Tt(y) is∑

p6y

log p

((
2t

p

)
+

(
−2t

p

))
= δt=22(y − 1) +O(y1/2 log(2y) log(2|t|y)).

The lemma follows from taking the change of variables u = log y/L and summing over s. 2

3. New lower order terms

In Lemma 2.7, we saw that to understand S∗odd it is important to give a precise estimate of the
term

Is(X) :=

∫ ∞
0

φ̂(u)
∑
m>1

ŵ

(
2m2X1−u

s2(2πe)−u

)
du. (3.1)

Indeed, the lemma implies that for S 6 X2 and under the GRH,

S∗odd =
2X

W ∗(X)

∑
s6S
s odd

µ(s)

s2

(
1

2
I2s(X)− Is(X)

)
+Oε(X

−3/4+ε +XεS−1 + SXσ/2−1+ε). (3.2)

Here and throughout this section we assume that σ = sup(supp φ̂) < ∞. Our strategy will be
to treat the integrals over the intervals [0, 1] and [1, σ] differently; the former will be computed
directly and the latter via an application of Poisson summation.

5 Note that the integrand in the current paper is zero for y > (X/2πe)σ.
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3.1 Small support
In this section we assume that σ < 1. In this range we will not find new lower order terms; these
only appear when σ is at least 1 (see § 3.2).

Proposition 3.1. Fix ε > 0. Assume the GRH and suppose that σ < 1. Then we have the
bound

S∗odd�εX
σ/4−1/2+ε +X3σ/4−3/4+ε.

Proof. Let

T (t) :=
∑
s6t
s odd

µ(s)

s2
=

4

3ζ(2)
+Oε(t

−3/2+ε).

We then have, for 0 6 u 6 1, that∑
s6S
s odd

µ(s)

s2
ŵ

(
2m2X1−u

s2(2πe)−u

)
=

∫ S

0+
ŵ

(
2m2X1−u

t2(2πe)−u

)
dT (t)

= ŵ

(
2m2X1−u

S2(2πe)−u

)
T (S) +

4m2X1−u

(2πe)−u

∫ S

0+
ŵ′
(

2m2X1−u

t2(2πe)−u

)(
4

3ζ(2)
+Oε

(
t−3/2+ε

))dt
t3

�ε S
−3/2+ε

∣∣∣∣ŵ( 2m2X1−u

S2(2πe)−u

)∣∣∣∣+m2X1−u
∫ S

0+

∣∣∣∣ŵ′(2m2X1−u

t2(2πe)−u

)∣∣∣∣ dt

t9/2−ε
.

Note that the part of the last integral for t ∈ (0, X(1−u)/2−ε] is ON,ε((mX)−N ) for any N > 1,
by the rapid decay of ŵ′. Summing over m and integrating over u, we obtain that∑

s6S
s odd

µ(s)

s2
Is(X)�ε

∫ ∞
0
|φ̂(u)|

∑
m>1

(
S−3/2+ε

∣∣∣∣ŵ( 2m2X1−u

S2(2πe)−u

)∣∣∣∣
+m2X1−u

∫ S

X(1−u)/2−ε

∣∣∣∣ŵ′(2m2X1−u

t2(2πe)−u

)∣∣∣∣ dt

t9/2−ε

)
du+X−1

�
∫ ∞
0
|φ̂(u)|

(
S−3/2+ε

S

X(1−u)/2 +
1

X(1−u)/2

∫ S

X(1−u)/2−ε

dt

t3/2−ε

)
du+X−1

� X(σ−1)/2

S1/2−ε +X3σ/4−3/4+ε.

Hence, from (3.2), it follows that for S 6 X2,

S∗odd�ε
X(σ−1)/2

S1/2−ε +X3σ/4−3/4+ε +XεS−1 + SXσ/2−1+ε.

The result follows by taking S = X1/2−σ/4. 2

3.2 Extended support
In this section we will see that when σ > 1, the prime sum S∗odd contains terms of considerable
size, and we will give an asymptotic expansion of these terms in descending powers of logX. For
convenience, we introduce the function

g(y) := ŵ(4πey2). (3.3)
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Lemma 3.2. Suppose that σ = sup(supp φ̂) <∞. Then, for s > 1, the quantity defined in (3.1)
satisfies the estimate

Is(X) =
1

L

∫ ∞
0

(
φ̂

(
1 +

τ

L

)
seτ/2

∑
n>1

ĝ(sneτ/2) + φ̂

(
1− τ

L

)∑
m>1

g

(
meτ/2

s

))
dτ

+
sĝ(0)

2

∫ ∞
1

(
X

2πe

)(u−1)/2
φ̂(u) du− ŵ(0)

2

∫ ∞
1

φ̂(u) du+O(sX−1/2). (3.4)

Proof. Extending the integral in (3.1) to R and making the substitution τ = L(u−1), we obtain

Is(X) =
1

L

∫ ∞
−∞

φ̂

(
1 +

τ

L

)∑
m>1

ŵ

(
4πm2e1−τ

s2

)
dτ +O(sX−1/2).

We denote the integrals over (−∞, 0] and [0,∞) by I−s (X) and I+s (X), respectively. For the
second of these integrals, we apply Poisson summation. We obtain

I+s (X) =
1

L

∫ ∞
0

φ̂

(
1 +

τ

L

)(
− ŵ(0)

2
+

1

2

∑
m∈Z

g

(
me−τ/2

s

))
dτ

=
1

L

∫ ∞
0

φ̂

(
1 +

τ

L

)(
− ŵ(0)

2
+
seτ/2

2

∑
n∈Z

ĝ(sneτ/2)

)
dτ

=
1

L

∫ ∞
0

φ̂

(
1 +

τ

L

)(
seτ/2ĝ(0)

2
− ŵ(0)

2
+ seτ/2

∑
n>1

ĝ(sneτ/2)

)
dτ.

For I−s (X), we substitute τ with −τ , which gives

I−s (X) =
1

L

∫ ∞
0

φ̂

(
1− τ

L

)∑
m>1

g

(
meτ/2

s

)
dτ.

The lemma follows by combining the above formulas for I−s (X) and I+s (X). 2

We define the functions

h1(x) :=
3ζ(2)

ŵ(0)

∑
s>1
s odd

µ(s)

s
(ĝ(2sx)− ĝ(sx)); h2(x) :=

3ζ(2)

ŵ(0)

∑
s>1
s odd

µ(s)

s2

(
1

2
g

(
x

2s

)
− g
(
x

s

))
.

It is a routine exercise to check that h1(x) and h2(x) are smooth for x ∈ R 6=0 and x ∈ R,
respectively. One can also check that for any fixed N > 1 and ε > 0, we have the bounds
h1(x)�N x

−N and (under the RH) h2(x)�ε x
−3/2+ε.

Remark 3.3. One can show that h1 is continuous at 0. Indeed, let f(u) = ĝ(2u)− ĝ(u) and write,
for x 6= 0, ∑

s>1
s odd

µ(s)

s
f(sx) =

∫ ∞
1−

f(tx) dS(t) = −
∫ ∞
1−

xf ′(tx)S(t) dt, (3.5)

where

S(t) =
∑
s6t
s odd

µ(s)

s
� t−1/2+ε

(under the RH). We then apply the (rough) bound f ′(u) � |u|−3/4 (u 6= 0) and conclude that
the right-hand side of (3.5) is � |x|1/4, proving continuity.
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Corollary 3.4. Fix ε > 0 and assume the GRH. Then we have the estimate

S∗odd =

∫ ∞
1

φ̂(u) du+
1

L

∫ ∞
0

(
φ̂

(
1 +

τ

L

)
eτ/2

∑
n>1

h1(ne
τ/2) + φ̂

(
1− τ

L

)∑
n>1

h2(ne
τ/2)

)
dτ

+Oε(X
σ/6−1/3+ε).

Proof. We sum the right-hand side of (3.4) over s. By (3.2) and Remark 2.3, in the range S 6X2

this gives the estimate

S∗odd =
2X

LW ∗(X)

∑
s6S
s odd

µ(s)

s2

(
1

2

∫ ∞
0

[
φ̂

(
1 +

τ

L

)
2seτ/2

∑
n>1

ĝ(2sneτ/2)

+ φ̂

(
1− τ

L

)∑
m>1

g

(
meτ/2

2s

)]
dτ

−
∫ ∞
0

[
φ̂

(
1 +

τ

L

)
seτ/2

∑
n>1

ĝ(sneτ/2) + φ̂

(
1− τ

L

)∑
m>1

g

(
meτ/2

s

)]
dτ

)
+

∫ ∞
1

φ̂(u) du+Oε(X
−1/2+ε +XεS−1 + SXσ/2−1+ε). (3.6)

We can extend the sum over s to all positive odd integers at the cost of the error term
O(XεS−1/2). Changing the order of summation, taking S = X2/3−σ/3 and applying Remark 2.3
gives the result. 2

We summarize the findings of this section in the following theorem.

Theorem 3.5. Fix ε > 0. Assume the GRH and suppose that σ = sup(supp φ̂) < 2. Then the
1-level density of low-lying zeros in the family F∗ of quadratic Dirichlet L-functions whose
conductor is an odd squarefree multiple of 8 is given by

D∗(φ;X) = φ̂(0) +

∫ ∞
1

φ̂(u) du+
φ̂(0)

L

(
log(2e1−γ) +

2

ŵ(0)

∫ ∞
0

w(x)(log x) dx

)
+

1

L

∫ ∞
0

e−x/2 + e−3x/2

1− e−2x

(
φ̂(0)− φ̂

(
x

L

))
dx

− 2

L

∑
p>2
j>1

log p

pj

(
1 +

1

p

)−1
φ̂

(
2j log p

L

)
+ J(X) +Oε(X

σ/6−1/3+ε), (3.7)

where

J(X) :=
1

L

∫ ∞
0

(
φ̂

(
1 +

τ

L

)
eτ/2

∑
n>1

h1(ne
τ/2) + φ̂

(
1− τ

L

)∑
n>1

h2(ne
τ/2)

)
dτ.

Proof. Combining Lemma 2.1 with Lemma 2.4 and Corollary 3.4, and noting that Lemma 2.2
implies the estimate

S∗even = − 2

L

∑
p>2
j>1

log p

pj

(
1 +

1

p

)−1
φ̂

(
2j log p

L

)
+Oε(X

−3/4+ε), (3.8)

we obtain the desired result. 2
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Next we show how to deduce Theorem 1.1 from this result. The key is to expand the various
terms in the right-hand side of (3.7) in descending powers of logX. Note that the term J(X) is
of order (logX)−1 and constitutes a genuine lower order term in the 1-level density D∗(φ;X).

Lemma 3.6. Assume the RH. Then, for any K > 1, we have the expansion

J(X) =

K∑
k=1

cw,kφ̂
(k−1)(1)

Lk
+OK

(
1

LK+1

)
,

where the constants cw,k can be given explicitly. The first of these constants is given by

cw,1 = 2

∫ ∞
1

(
Huh1(u) +

[u]

u
h2(u)

)
du,

where Hu :=
∑

n6u n
−1 is the uth harmonic number.

Proof. By the decay properties of h1 and h2, we have that

J(X) =
1

L

∫ L1/2

0

(
φ̂

(
1 +

τ

L

)
eτ/2

∑
n>1

h1(ne
τ/2) + φ̂

(
1− τ

L

)∑
n>1

h2(ne
τ/2)

)
dτ

+Oε

(
exp

(
−
(

3

4
− ε
)√

L

))
.

We can now expand φ̂ in Taylor series, resulting in the expression

J(X) =
K∑
k=1

φ̂(k−1)(1)

(k − 1)!Lk

∫ L1/2

0

(
τk−1eτ/2

∑
n>1

h1(ne
τ/2) + (−τ)k−1

∑
n>1

h2(ne
τ/2)

)
dτ

+OK(L−K−1)

=
K∑
k=1

φ̂(k−1)(1)

(k − 1)!Lk

∑
n>1

∫ ∞
0

(τk−1eτ/2h1(ne
τ/2) + (−τ)k−1h2(ne

τ/2)) dτ +OK(L−K−1).

Finally, the first summand equals

φ̂(1)

L

∑
n>1

∫ ∞
0

(eτ/2h1(ne
τ/2) + h2(ne

τ/2)) dτ =
2φ̂(1)

L

∑
n>1

∫ ∞
n

(
h1(u)

n
+
h2(u)

u

)
du.

The result follows from interchanging the order of summation and integration. 2

The final ingredient needed in the proof of Theorem 1.1 is an expansion for S∗even of the same
form as that of J(X) in Lemma 3.6.

Lemma 3.7. Suppose that σ = sup(supp φ̂) <∞. Then we have the formula

− 2

L

∑
p>2
j>1

log p

pj

(
1 +

1

p

)−1
φ̂

(
2j log p

L

)
= −φ(0)

2
+

K∑
k=1

dkφ̂
(k−1)(0)

Lk
+OK

(
1

LK+1

)
,

where the coefficients dk are real numbers that can be given explicitly. In particular, we have

d1 = −2
∑
p,j>3

log p

pj

(
1 +

1

p

)−1
− 2 + 3 log 2− 2

∫ ∞
2

θ(t)− t
t2

dt.
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Proof. Let δ = 1/(K + 2) and set ξ = (logX)−1+δ. The sum of the terms with j > 2 equals

− 2

L

∑
pj6Xξ

p>2
j>2

log p

pj

(
1 +

1

p

)−1( K∑
k=0

φ̂(k)(0)

k!

(
2j log p

L

)k
+OK

((
log p2j

L

)K+1))
+O(e−(1/2)(logX)δ)

= − 2

L

K∑
k=0

φ̂(k)(0)

k!Lk

∑
pj6Xξ

p>2
j>2

log p(2j log p)k

pj

(
1 +

1

p

)−1
+OK(L−K−2)

= − 2

L

K∑
k=0

φ̂(k)(0)

k!Lk

∑
p>2
j>2

log p(2j log p)k

pj

(
1 +

1

p

)−1
+OK(L−K−2),

which is of the desired form.
As for the terms with j = 1, we observe that the sum over p 6 Xξ is given by

− 2

L

∑
2<p6Xξ

log p

p

(
1 +

1

p

)−1( K∑
k=0

φ̂(k)(0)

k!

(
2 log p

L

)k
+OK

((
log p

L

)K+1))

= −
K∑
k=0

φ̂(k)(0)

k!Lk+1

∑
2<p6Xξ

(2 log p)k+1

p

(
1 +

1

p

)−1
+OK(L(−1+δ)(K+2))

= −
K∑
k=0

φ̂(k)(0)

k!Lk+1

(
(2ξ logX)k+1

k + 1
+ `k +

∑
n>1

(−1)n
∑
p>2

(2 log p)k+1

pn+1

)
+OK(L−K−1),

where

`k := (2 log 2)k
(

2− k + 3

k + 1
log 2

)
− 2k+1

∫ ∞
2

(θ(t)− t)(log t)k−1(k − log t)

t2
dt.

The terms with p > Xξ are handled by writing

− 2

L

∑
p>Xξ

log p

p

(
1 +

1

p

)−1
φ̂

(
2 log p

L

)
= − 2

L

∫ ∞
Xξ

1

t
φ̂

(
2 log t

L

)
dθ(t) +O(X−ξ)

=
2

L
φ̂

(
2ξ logX

L

)
+

2

L

∫ ∞
Xξ

[
1

t
φ̂

(
2 log t

L

)]′
(t+O(te−c

√
log t)) dt+O(e−c(logX)δ/2)

=
2

L
φ̂

(
2ξ logX

L

)
+

2

L

∫ ∞
Xξ

[
1

t
φ̂

(
2 log t

L

)]′
t dt+O(e−(c/2)(logX)δ/2)

= − 2

L

∫ ∞
Xξ

1

t
φ̂

(
2 log t

L

)
dt+O(e−(c/2)(logX)δ/2)

= −
∫ ∞
2ξ logX/L

φ̂(u) du+O(e−(c/2)(logX)δ/2)

= −1

2
φ(0) +

K∑
k=0

φ̂(k)(0)

(k + 1)!

(
2ξ logX

L

)k+1

+OK(L(−1+δ)(K+2)).

The result follows from combining the above estimates. Note in particular that the terms
involving ξ cancel. 2

We are now ready to prove our main theorem.
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Proof of Theorem 1.1. Combining Theorem 3.5 and Lemmas 3.6 and 3.7, we obtain the formula

D∗(φ;X) = φ̂(0)− φ(0)

2
+

∫ ∞
1

φ̂(u) du+
φ̂(0)

L

(
log(2e1−γ) +

2

ŵ(0)

∫ ∞
0

w(x)(log x) dx

)
+

1

L

∫ ∞
0

e−x/2 + e−3x/2

1− e−2x

(
φ̂(0)− φ̂

(
x

L

))
dx

+
K∑
k=1

dkφ̂
(k−1)(0)

Lk
+

K∑
k=1

cw,kφ̂
(k−1)(1)

Lk
+OK

(
1

LK+1

)
.

Writing the gamma factor as

1

L

∫ ∞
0

e−x/2 + e−3x/2

1− e−2x

(
φ̂(0)− φ̂

(
x

L

))
dx

= −
K−1∑
j=1

φ̂(j)(0)

j!Lj+1

∫ ∞
0

xj(e−x/2 + e−3x/2)

1− e−2x
dx+OK

(
1

LK+1

)
,

the desired result clearly follows. 2

4. The family F(X)

4.1 Preliminaries

For convenience, we define the even smooth function w̃ : R\{0}→ R by

w̃(x) :=
∑
n>1

w(n2x). (4.1)

It follows that w̃(x) decays rapidly as x →∞, and that its Mellin transform satisfies Mw̃(s) =

ζ(2s)Mw(s) (see [FPS16, Lemma 2.3]). Moreover, note that w̃(x) blows up near x = 0. Applying

the explicit formula, we now give an expression for D(φ;X).

Lemma 4.1 (Explicit formula). Assume that φ is an even Schwartz test function whose Fourier
transform has compact support. Then the 1-level density defined in (1.6) is given by the formula

D(φ;X) =
φ̂(0)

LW (X)

∑∗

d6=0

w̃

(
d

X

)
log

(
|d|
π

)
− φ̂(0)

L

(
γ + log 4

(
1− 1

W (X)

∑∗

d>0
d odd

w̃

(
2d

X

)))

− 2

LW (X)

∑
p,m

log p

pm/2
φ̂

(
m log p

L

)∑∗

d 6=0

w̃

(
d

X

)(
d

pm

)
+

2

W (X)
w̃

(
1

X

)
φ

(
iL

4π

)

+
1

L

∫ ∞
0

e−x/2 + e−3x/2

1− e−2x

(
φ̂(0)− φ̂

(
x

L

))
dx. (4.2)

Proof. We first note that DX(χdm2 ;φ) = DX(χd;φ) for any m > 1. Hence, by the definition
of w̃,

W (X)D(φ;X) =
∑
d6=0

w

(
d

X

)
DX(χd;φ) =

∑∗

d6=0

w̃

(
d

X

)
DX(χd;φ). (4.3)
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We also note that the conductor of χd for d squarefree is given by 4b|d|, where

b :=

{
0 if d > 0 is odd,

1 otherwise.

As in the proof of Lemma 2.1, we apply [MV07, Theorem 12.13] and obtain the formula

DX(χd;φ) =
φ̂(0)

L

(
log

(
4b|d|
π

)
+

Γ′

Γ

(
1

4
+

a

2

))
− 2

L

∑
p,m

χd(p
m) log p

pm/2
φ̂

(
m log p

L

)
+ 2δd=1φ

(
iL

4π

)
+

2

L

∫ ∞
0

e−(1/2+a)x

1− e−2x

(
φ̂(0)− φ̂

(
x

L

))
dx.

Formula (4.2) then follows by summing over squarefree d against the weight function w̃. 2

We now give estimates on sums of the weight function w̃. Recall that

W (X) =
∑∗

d6=0

w̃

(
d

X

)
=
∑
d6=0

w

(
d

X

)
is the total weight.

Lemma 4.2. Fix n ∈ N and ε > 0. We have the estimates

W (X) = Xŵ(0) +Oε,w(Xε);∑∗

d6=0

w̃

(
d

X

)(
d

n

)
= κ(n)Xŵ(0)

∏
p|n

(
1 +

1

p

)−1
+Oε,w(|n|1/2−κ(n)/2+εXε),

where

κ(n) :=

{
1 if n = 2,

0 otherwise.

Under the RH, we also have

1

W (X)

∑∗

d6=0

w̃

(
d

X

)
log |d| = logX +

2

ŵ(0)

∫ ∞
0

w(x)(log x) dx+ 2
ζ ′(2)

ζ(2)
−
Mw(12)

Mw(1)
ζ

(
1

2

)
X−1/2

+Oε,w(X−3/4+ε).

Proof. The result follows exactly as in [FPS16, Lemmas 2.5 and 2.8]. 2

4.2 Poisson summation
In this section we analyze

Sodd := − 2

LW (X)

∑
p

m odd

log p

pm/2
φ̂

(
m log p

L

)∑∗

d6=0

w̃

(
d

X

)(
d

pm

)
(4.4)

using Poisson summation (see also § 2.2).6

6 Seven is defined analogously.
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Lemma 4.3. Assume that σ = sup(supp φ̂) < 1, and let m ∈ N be such that 1/(2m+ 1) 6 σ <
1/(2m− 1). Then, for any fixed ε > 0, we have the bound

Sodd�εX
−max{(4m−1)/(4m+1),1−σ}+ε.

Furthermore, if 1 6 σ < 2, then under the GRH we have that

Sodd = − 2X

W (X)

∫ ∞
0

φ̂(u)
∑
m>1

ŵ

(
m2X1−u

(2πe)−u

)
du+Oε(X

σ/2−1+ε). (4.5)

Proof. We proceed as in [FPS16, § 3]. Applying the identity∑∗

d 6=0

w̃

(
d

X

)(
d

p

)
=
∑
k>0

∑
d6=0

w

(
d

X/p2k

)(
d

p

)
and arguing as in [FPS16, Lemmas 3.2 and 3.3], we see that

Sodd = − 2X

LW (X)

∑
06k610 logX

∑
p>X(1−ε)/(2k+1)

εp log p

p1+2k
φ̂

(
log p

L

)∑
t∈Z

(
−t
p

)
ŵ

(
Xt

p1+2k

)
+Oε(X

−1+ε),

where

εp =

{
1 if p ≡ 1 mod 4,

i if p ≡ 3 mod 4.

If σ < 1, then the proof is similar to that of [FPS16, Proposition 3.6]. As for the case σ < 2, we
argue as in [FPS16, Lemma 3.9] and see that the terms with k > 1 are Oε(X

−2/3+ε). Finally, in
the terms with k = 0 we can add back the primes p 6 X1−ε at the cost of a negligible error term.
The resulting sum is handled in a similar way to Lemma 2.7, and the estimate (4.5) follows. 2

4.3 The new lower order terms
In this section we treat the new lower order terms that appear in the family F .

Lemma 4.4. Suppose that σ = sup(supp φ̂) <∞. Then we have the estimate7∫ ∞
0

φ̂(u)
∑
m>1

ŵ

(
m2X1−u

(2πe)−u

)
du =

ĥ(0)

2

∫ ∞
1

(
X

2πe

)(u−1)/2
φ̂(u) du− ŵ(0)

2

∫ ∞
1

φ̂(u) du

+
1

L

∫ ∞
0

(
φ̂

(
1 +

τ

L

)
eτ/2

∑
n>1

ĥ(neτ/2) + φ̂

(
1− τ

L

)∑
n>1

h(neτ/2)

)
dτ +O(X−1/2),

(4.6)

where h(y) := ŵ(2πey2).

Proof. The proof is similar to that of Lemma 3.2. 2

We now give an estimate for the fourth term on the right-hand side of (4.2). For 1 6 σ < 2,
we will see that the term that arose from principal characters in (4.2) will essentially cancel the
main term in Lemma 4.4.

7 Note that the first term on the right-hand side equals Xσ/2−1/2+o(1).
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Lemma 4.5. Fix ε > 0. Then, for σ < 1, we have that

2

W (X)
w̃

(
1

X

)
φ

(
iL

4π

)
=

1

2
√

2πeMw(1)

(
Mw

(
1

2

)
−w(0)√

X

)∫ 1

−1

(
X

2πe

)(u−1)/2
φ̂(u) du+Oε(X

ε−1).

As for 1 6 σ < 2, we have

2

W (X)
w̃

(
1

X

)
φ

(
iL

4π

)
− ĥ(0)X

W (X)

∫ ∞
1

(
X

2πe

)(u−1)/2
φ̂(u) du

=
1
2Mw(12)
√

2πeMw(1)

∫ 1

0

(
X

2πe

)(u−1)/2
φ̂(u) du+O(Xσ/2−1).

Proof. First, an application of Poisson summation shows that, for X > 1 and arbitrary N > 1,

w̃

(
1

X

)
=
X1/2

2

∫
R
w(t2) dt− w(0)

2
+ON (X−N ). (4.7)

Moreover, we have that

φ

(
iL

4π

)
=

∫
R

(
X

2πe

)u/2
φ̂(u) du.

By trivially bounding the integral on the interval (−∞, 0], it follows that for 1 6 σ < 2 we have

2

W (X)
w̃

(
1

X

)
φ

(
iL

4π

)
=
X
∫
Rw(t2) dt

√
2πeW (X)

∫ ∞
0

(
X

2πe

)(u−1)/2
φ̂(u) du+O(Xσ/2−1).

The last step is to apply the Fourier identity∫
R
w(t2) dt =

∫
R
ŵ(t2) dt,

which follows from combining Plancherel’s identity with the fact that |x|−1/2 is its own Fourier
transform. Finally, in the case σ < 1 we use a similar argument but we keep the secondary term
in the expansion (4.7). The result follows. 2

Proof of Theorem 1.3. The proof is obtained by combining Lemmas 4.1–4.3 and 4.5, with the
expression for Seven analogous to (3.8). 2

The rest of the section is devoted to the proof of Theorem 1.2.

Corollary 4.6. Fix ε > 0. Assume the GRH and suppose that 1 6 σ = sup(supp φ̂) < 2. Then
we have the estimate

Sodd +
2

W (X)
w̃

(
1

X

)
φ

(
iL

4π

)
=

∫ ∞
1

φ̂(u) du+ U2(X) +Oε(X
σ/2−1+ε),

where

U2(X) :=
1
2Mw(12)
√

2πeMw(1)

∫ 1

0

(
X

2πe

)(u−1)/2
φ̂(u) du

− 2

Lŵ(0)

∫ ∞
0

(
φ̂

(
1 +

τ

L

)
eτ/2

∑
n>1

ĥ(neτ/2) + φ̂

(
1− τ

L

)∑
n>1

h(neτ/2)

)
dτ.

1213

https://doi.org/10.1112/S0010437X17007059 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007059


D. Fiorilli, J. Parks and A. Södergren

Proof. The proof follows by combining Lemmas 4.3–4.5. 2

In the final lemma we give an expansion of U2(X) in descending powers of logX, which, by

Theorem 1.2, shows that such an expansion is also possible for the 1-level density D(φ;X).

Lemma 4.7. For any K > 1, we have the expansion

U2(X) =
K∑
k=1

vw,kφ̂
(k−1)(1)

Lk
+OK(L−K−1),

where the constants vw,k can be given explicitly. The first of these constants is given by

vw,1 =
Mw(12)

√
2πeMw(1)

− 4

ŵ(0)

∫ ∞
1

(
Huĥ(u) +

[u]

u
h(u)

)
du,

where Hu =
∑

n6u n
−1 is the uth harmonic number.

Proof. The second term in U2(X) can be expanded exactly as in the proof of Lemma 3.6. As for
the first term, we have∫ 1

0

(
X

2πe

)(u−1)/2
φ̂(u) du =

∫ 1

1−L−1/2

(
X

2πe

)(u−1)/2( K∑
k=1

φ̂(k−1)(1)
(u− 1)k−1

(k − 1)!
+O((u− 1)K)

)
du

+O(e−(1/2)
√
L)

= −
K∑
k=1

(−2)kφ̂(k−1)(1)

Lk
+OK(L−K−1),

which completes the proof. 2

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. The proof is achieved by combining Lemmas 4.1–4.3 and 4.5, with the

expression for Seven analogous to (3.8) and Corollary 4.6. 2
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