J. Austral. Math. Soc. 19 (Series A) (1975), 290-292.

ON A CLASS OF FINITE GROUPS

J. W. WAMSLEY

(Received 27 November 1972, revised 10 April 1973)

Communicated by G. E. Wall

1.

Let G be a finite P-group. Denote dim $H^1(G, Z_p)$ by d(G) and dim $H^2(G, Z_p)$ by r(G), then d(G) is the minimal number of generators of G and G has a presentation

$$G = F/R = \{x_1, \dots, x_{d(G)} \mid R_1, \dots, R_m\},\$$

where F is free on $x_1, \dots, x_{d(G)}$ and R is the normal closure in F of R_1, \dots, R_m . We have always that $m \ge r(G) = d(R/[F, R])$ and we say that G belongs to a class, \mathscr{G}_P , of the finite p-groups if m = r(G). It is well known (see for example Johnson and Wamsley (1970)) that if G and H are finite p-groups then $r(G \times H) =$ r(G) + r(H) + d(G)d(H) and hence G, $H \in \mathscr{G}_P$ implies $G \times H \in \mathscr{G}_P$, also it is shown in Wamsley (1972) that if G is any finite p-group then there exists an $H \in \mathscr{G}_P$ such that $G \times H$ belongs to \mathscr{G}_P . Let $G^1 = G$ and $G^k = G^{k-1} \times G$ then we show in this note that if G is any finite p-group, there exists an integer n(G), such that $G^k \in \mathscr{G}_P$ for alal $k \ge n(G)$.

2.

Let G be a finite p-group of nilpotency class c, then G has a presentation $G = F/R = \{x_1, \dots, x_{d(G)} | R_1, \dots, R_{r(G)}, S_1, \dots, S_t\}$ where S_1, \dots, S_t are commutators of weight c + 2. Define b(G) to be the minimal t such that G has a presentation of the above form, then $G \in \omega p$ if and only if b(G) = 0.

LEMMA. Suppose H and G are finite p-groups then

$$b(G \times H) \leq \max(b(G) - r(H), 0) + \max(b(H) - r(G), 0)$$

PROOF.

$$G = \{x_1, \dots, x_{d(G)} \mid R_1, \dots, R_{r(G)}, S_j, 1 \le i \le d(G), 1 \le j \le b(G)\},\$$

$$H = \{x'_1, \dots, x'_{d(H)} \mid R'_1, \dots, R'_{r(H)}, S'_j, 1 \le i \le d(H), 1 \le j \le b(H)\}.$$

Let K be presented on generators $x_1, \dots, x_{d(G)}, x'_1, \dots, x'_{d(H)}$ with relators, $[x_i, x'_j], R_m S'^{-1}_m, R'_n S^{-1}_n, S'_n/S_v$, where $1 \le i \le d(G), 1 \le j \le d(H), 1 \le m \le r(G), 1 \le n \le r(H), r(G) + 1 \le u \le b(H), r(H) + 1 \le v \le b(G)$. Then S_n is in the centre of K and hence K is of class c + 1 and therefore class c. Therefore $K = G \times H$ and $b(K) \le \max(b(G) - r(H), 0) + \max(b(H) - r(G), 0)$.

We have inductively that

$$d(G^k) = kd(G)$$
 and $r(G^k) = kr(G) + (k(k-1)/2)d(G)^2$.

Also the lemma states that $b(G^2) \leq 2b(G)$ and hence $b(G^{2k}) \leq 2^k b(G)$. Choose a k such that $b(G) \leq 2^{k-3} d(G)^2$ and consider $G^{2k} \times G^{2k}$. We have,

$$b(G^{2^{k+1}}) \leq 2 \max(b(G^{2^k}) - r(G^{2^k}), 0),$$

and since

$$b(G^{2^k}) \leq 2^k b(G) \leq 2^{2k-3} d(G)^2 \leq r(G^{2^k}),$$

then $b(G^{2^{k+1}}) = 0$.

Let α be such that $b(G^{\alpha}) = 0$ where $\alpha \ge 2^{k+1}$ then we will show that $b(G^{\alpha+1}) = 0$. We have $r(G^{\alpha}) \ge 2^{2k-3}d(G)^2$ and $b(G) \le 2^{k-3}d(G)^2$ whence by the lemma

$$b(G^{\alpha+1}) \leq \max(-r(G), 0) + \max(b(G) - r(G^{\alpha}), 0)$$

$$\leq \max(2^{k-3}d(G)^2 - 2^{2k-3}d(G)^2, 0)$$

$$\leq 0, \text{ and we have proved the following:}$$

THEOREM. Let G be a finite p-group. Then there exists an integer n(G) > 0 such that $G^k \in \mathscr{G}p$ for all $k \ge n(G)$.

References

D. L. Johnson and J. W. Wamsley (1970), 'Minimal relations for certain finite *p*-groups,' *Israel. J. Math.* 8, 349-356.

J. W. Wamsley (1972), 'On a class of groups of prime-power order,' Israel J. Math. 11, 297-298.

School of Mathematics Flinders University South Australia