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Abstract. If/ is a transcendental entire function and D is a non-wandering component
of the set of normality of the iterates of/such that/" -»• oo in D then log |/"(z)| = O(«)
as «-»oo for z in D. For a wandering component the convergence off to oo in D
may be arbitrarily fast.

1. Introduction
Denote by / a non-linear entire function and set N{f) = {z; (/") is normal in some
neighbourhood of z}, where /", M€N, is the nth iterate of/ The complement of
N(f) in the plane is the Julia set J(f). We recall that J(f) is a non-empty perfect
set and that N(f) is completely invariant in the sense that z belongs to N(f) if
and only if/(z) belongs to N(f) [6]. Thus each component D of N(f) is mapped
by / into some (possibly different) component of N(f): if each f"(D) belongs to
a different component of N(f) the component D is called 'wandering'; if this is
not the case there are integers m>0 and p > l such that fm(D)<= Dx where D, is
a component of N(f) such that / ' (D , ) <= D,.

We wish to study the ways in which /"(z) may tend to oo for z € N(f) as n -» oo.
There are special classes of functions, for example those transcendental / such that
all the singularities of/"1 lie over a finite number of points, for which this is
impossible [5]. In general, however, /"(z) may approach oo either for z in a
wandering component or for z such that, for some maO, /m(z) belongs to an
unbounded periodic component D, of N(f) in which the iterates have limit oo.

In situations where / " approaches a constant finite limit in a non-wandering
component D the classical theory (see e.g. [6]) gives simple asymptotic formulae
for/"(z) as n-*oo. It is perhaps surprising that something can be said even for
infinite limits.

THEOREM 1. Iffis a transcendental entire function, if z belongs to a non-wandering
component of N(f) and i//"(z)-»oo, then

log|/"(z)| = O(n), (n --xx>).

THEOREM 2. Iffis transcendental entire and D is a component of N(f) such that
/ ( D ) c D and f -+<x> in D, then there exist a curve T, which tends to oo in D, and
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positive constants K, L such thatf{Y)<^T and

K\z\<\f{z)\<L\z\, zinT.

THEOREM 3. Ifz belongs to a wandering component ofN(f) then | /"(z)| may approach
oo arbitrarily fast.

Theorem 1 does not hold for polynomials, where O(w) becomes O(K"), for some
K > 0. The correctness of the orders of magnitude in Theorems 1 and 2 will be
shown by a discussion of the example /(z) = e~z + kz, k> 1.

If it is known that / has no wandering components, then Theorem 1 may be used
to test whether certain points are in / ( / ) . It is also interesting that, according to a
recent letter from A. Eremenko to the author, for any non-constant entire function
/ there exist points z (not necessarily belonging to N(f)) such that/"(z)-»oo.

Theorems 1 and 2 improve recent results in [3] and [9].
The paper is a more formal version of a lecture given at the Mathematical Institute

of Academia Sinica, Beijing on 18th May 1987.

2. Proof of Theorems 1 and 2
It is sufficient to prove Theorem 1 for a component D of N(f) which is invariant
in the sense that/(D)c: D. Since f"(z)->oo for some z in D it then follows that D
is unbounded and that /" -»oo locally uniformly in D. It was shown in [2] that any
unbounded component of N(f) is simply-connected. The desired result is thus
contained in the following lemma.

LEMMA 1. Suppose that D is an unbounded simply-connected plane domain and that
g is a function which is analytic in D and such that g(D)c: D, g" ->oo in D. Then for
any zeD we have

log|g"(z)| = O(n) (n->oo).
Further, for any z' e D

log|g"(z')|-log|g"(z)| = O(l) (ii-»oo).

Proof. Take a finite a e 3D. Denote the hyperbolic distance of points z, z' of D with
respect to D by [z, z', D]. Choose any point z = z0 in D and put zn = g"(z0), neN.
Denote H = [z0, zx, D] which is certainly positive since g"{z0) -»oo. The map does
not increase hyperbolic distance, so that [zM, zn+], D]^ H for all n.

Note that if £ TJ are in D and [£, rj, D] = S, then |f - a\ s \rj - a\ • exp (4TT8). For
the function w = log(z —a) maps D onto a simply-connected domain G which
contains no vertical segment of length >2TT. Since any w in G has distance at most
v from dG, it follows from the Koebe distortion theorem as in e.g. [8, p. 6] that the
Poincare metric po|</w| of G satisfies

Po(w)>l/{4d(w,3G)}> l/(47r).

Thus if f' = log ( £ - a ) , r?' = log (T? - a ) , we have

which gives |f — a\ < 177 — a\ exp (4TT5).
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In particular we have

\zn+x-a\<K\zn-a\,

where K =exp {4vH) and so \zn - a\< K"\z0- a\, which implies log \zn\ = O(«) as
n->oo.

Further if z' is another point of D and z'n = g"(z') we put e = [z', z, D] > [z^ ,zn,D]
and obtain

: L, L = exp (4TT£),
zn-a

which implies

log |z^|-log |zB| = O(l) asn^oo.

The result of Theorem 2 is contained in the slightly more general lemma:

LEMMA 2. If g and D satisfy the assumptions of Lemma 1, then there exists a curve
F, which tends to oo in D, and positive constants K, L, such that g(F) c F and

K\z\<\g(z)\<L\z\, zinY.

Proof. In the proof of the previous lemma we join z0 to zx - g(z0) by a path y in D
and change the constant H to H' = sup [z, z', D] for z, z' in y. Then yn = g"y joins
zn to zn+1 and F = U yn is a path. For z in yn we have [z, zn, D] < H', [z, zn+1, D] < H'
and hence, by the argument of the previous lemma

K~l\zn-a\<\z-a\<min{K\zn-a\, K\zn+X-a\),

where K =exp (4TTH'). Thus F->oo. Moreover, for z in yn we have g(z) in yn+1,
so that

and similarly \g{z)-a\>K~2\z-a\.
The proof is complete. •

COROLLARY. If in Lemma 2 we replace the assumption that g(D) <= D by gp(D) c D
for some peN, then we obtain a path Y on which K\z\<\gp(z)\< L\z\. Assuming that
g is an entire function we can at least say that g(z)^<x> on Y.

3. The example f(z) = e z + kz, k > 1
For fixed fc> 1 there is an x0 such that kx-e~x>x for x>x0 . If H denotes the
half plane {Re z > x0} we have / (H) <= H. Moreover it is clear that for real x > x0,
/"(*)->oo. Thus H is contained in a component D of N(f) such that/"->oo in
D,f(D)<= D. Further, D must be simply-connected.

For real x>x 0 we have xn = /"(*)> k"x and xn+x-kxn = exp {-xn). Thus, if
tn=xjk", then

rn+1-<n<{exp(-xor)}/A:"+1,

and so X (tn+x-tn)<oo. Thus

A = lim xnk~"
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is finite and

log (/"(*)) = /i log fc + O(l). (1)

By the final statement of Lemma 1(1) also holds if x is replaced by any z in D.

4. Proof of Theorem 3.
In [1] some entire/were constructed for which N(f) has wandering components
in which / " (z) -> oo much faster than in Theorem 1. To obtain the result of Theorem
3 we modify a rather different argument in [4] to construct an example with the
following properties.

Suppose that 10 <ai<a2<- • •, where an is a sequence with no other restriction
except that an+, - an > 4, so that an may increase as fast as we please. Let Am =
{z: | z - a m | < l } . Then there is an entire function g such that g(Am)a Am+X, and
each Am belongs to a different, simply-connected, wandering component of N(g).
Am+X lies entirely to the right of {Re z = \{am + am+x)}.

First we recollect the following facts, also used in [4]. If F denotes a closed
subset of C and Ca(F) the functions which are continuous on F and analytic in F,
then F is called a Carleman set (for C) if, for any g in Ca(F) and for any positive
continuous function e on F, there is an entire function/such that |g(z) - / (z ) | < e(z),
z e F. By Arakelyan's theorem (e.g. [7, p. 137]) we have (i) C\F must be connected
and also locally connected at oo. If in addition to (i) we have (ii) for each compact
K the union W(K) of those components of F which meet K is relatively compact
in C, then F is indeed a Carleman set ([7, p. 157]).

To construct the example introduce

Lm={z: Rez = \(am + am+l)}, meN,

and let S, Sm be positive numbers so small that | w - iri - log 6| < S implies | e w + 6| < \,
and |w-logam + 1 |<5m implies |eM '-am +, |< | .

Since the set F=Bu{LJm (AmuLm)} is a Carleman set there exists an entire
function h such that

Then g = eh is entire and satisfies g(Am)<^Am+l, and so g"-»°o in each Am,
uniformly. Thus Am e N(g).

Now g maps B into {z; |z + 6| < |} , so that B contains an attractive fixed point £
and g" -» € in B. Further g(Lm) c B so that g" -» £ in Lm and each Lm belongs to a
component of N(g) different from the Am. Thus the Am are wandering components
of N(g), as is, indeed, apparent from the rate at which g" -* oo in Am.

Finally, since by construction g" #0, we have that the 1/g" are entire functions
which converge to the limit 0 in Am and so in the whole component Dm of N(g)
to which Am belongs. Hence Dm is simply-connected.
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