Infinite limits in the iteration of entire functions

I. N. BAKER
Department of Mathematics, Imperial College of Science and Technology, London SW7 2BZ, England

(Received 30 October 1987; revised 8 February 1988)

Abstract

If f is a transcendental entire function and D is a non-wandering component of the set of normality of the iterates of f such that $f^{n} \rightarrow \infty$ in D then $\log \left|f^{n}(z)\right|=\mathrm{O}(n)$ as $n \rightarrow \infty$ for z in D. For a wandering component the convergence of f^{n} to ∞ in D may be arbitrarily fast.

1. Introduction

Denote by f a non-linear entire function and set $N(f)=\left\{z ;\left(f^{n}\right)\right.$ is normal in some neighbourhood of $z\}$, where $f^{n}, n \in \mathbb{N}$, is the nth iterate of f. The complement of $N(f)$ in the plane is the Julia set $J(f)$. We recall that $J(f)$ is a non-empty perfect set and that $N(f)$ is completely invariant in the sense that z belongs to $N(f)$ if and only if $f(z)$ belongs to $N(f)$ [6]. Thus each component D of $N(f)$ is mapped by f into some (possibly different) component of $N(f)$: if each $f^{n}(D)$ belongs to a different component of $N(f)$ the component D is called 'wandering'; if this is not the case there are integers $m \geq 0$ and $p \geq 1$ such that $f^{m}(D) \subset D_{1}$ where D_{1} is a component of $N(f)$ such that $f^{p}\left(D_{1}\right) \subset D_{1}$.

We wish to study the ways in which $f^{n}(z)$ may tend to ∞ for $z \in N(f)$ as $n \rightarrow \infty$. There are special classes of functions, for example those transcendental f such that all the singularities of f^{-1} lie over a finite number of points, for which this is impossible [5]. In general, however, $f^{n}(z)$ may approach ∞ either for z in a wandering component or for z such that, for some $m \geq 0, f^{m}(z)$ belongs to an unbounded periodic component D_{1} of $N(f)$ in which the iterates have limit ∞.

In situations where f^{n} approaches a constant finite limit in a non-wandering component D the classical theory (see e.g. [6]) gives simple asymptotic formulae for $f^{n}(z)$ as $n \rightarrow \infty$. It is perhaps surprising that something can be said even for infinite limits.

Theorem 1. If fis a transcendental entire function, if z belongs to a non-wandering component of $N(f)$ and if $f^{n}(z) \rightarrow \infty$, then

$$
\log \left|f^{n}(z)\right|=\mathrm{O}(n), \quad(n \rightarrow \infty)
$$

Theorem 2. If f is transcendental entire and D is a component of $N(f)$ such that $f(D) \subset D$ and $f^{n} \rightarrow \infty$ in D, then there exist a curve Γ, which tends to ∞ in D, and
positive constants K, L such that $f(\Gamma) \subset \Gamma$ and

$$
K|z|<|f(z)|<L|z|, \quad z \text { in } \Gamma .
$$

Theorem 3. If z belongs to a wandering component of $N(f)$ then $\left|f^{n}(z)\right|$ may approach ∞ arbitrarily fast.

Theorem 1 does not hold for polynomials, where $O(n)$ becomes $O\left(K^{n}\right)$, for some $K>0$. The correctness of the orders of magnitude in Theorems 1 and 2 will be shown by a discussion of the example $f(z)=e^{-z}+k z, k>1$.

If it is known that f has no wandering components, then Theorem 1 may be used to test whether certain points are in $J(f)$. It is also interesting that, according to a recent letter from A. Eremenko to the author, for any non-constant entire function f there exist points z (not necessarily belonging to $N(f)$) such that $f^{n}(z) \rightarrow \infty$.

Theorems 1 and 2 improve recent results in [3] and [9].
The paper is a more formal version of a lecture given at the Mathematical Institute of Academia Sinica, Beijing on 18th May 1987.

2. Proof of Theorems 1 and 2

It is sufficient to prove Theorem 1 for a component D of $N(f)$ which is invariant in the sense that $f(D) \subset D$. Since $f^{n}(z) \rightarrow \infty$ for some z in D it then follows that D is unbounded and that $f^{n} \rightarrow \infty$ locally uniformly in D. It was shown in [2] that any unbounded component of $N(f)$ is simply-connected. The desired result is thus contained in the following lemma.

Lemma 1. Suppose that D is an unbounded simply-connected plane domain and that g is a function which is analytic in D and such that $g(D) \subset D, g^{n} \rightarrow \infty$ in D. Then for any $z \in D$ we have

$$
\log \left|g^{n}(z)\right|=O(n) \quad(n \rightarrow \infty)
$$

Further, for any $z^{\prime} \in D$

$$
\log \left|g^{n}\left(z^{\prime}\right)\right|-\log \left|g^{n}(z)\right|=O(1) \quad(n \rightarrow \infty)
$$

Proof. Take a finite $\alpha \in \partial D$. Denote the hyperbolic distance of points z, z^{\prime} of D with respect to D by $\left[z, z^{\prime}, D\right]$. Choose any point $z=z_{0}$ in D and put $z_{n}=g^{n}\left(z_{0}\right), n \in \mathbb{N}$. Denote $H=\left[z_{0}, z_{1}, D\right]$ which is certainly positive since $g^{n}\left(z_{0}\right) \rightarrow \infty$. The map does not increase hyperbolic distance, so that $\left[z_{n}, z_{n+1}, D\right] \leq H$ for all n.

Note that if ξ, η are in D and $[\xi, \eta, D]=\delta$, then $|\xi-\alpha| \leq|\eta-\alpha| \cdot \exp (4 \pi \delta)$. For the function $w=\log (z-\alpha)$ maps D onto a simply-connected domain G which contains no vertical segment of length $>2 \pi$. Since any w in G has distance at most π from ∂G, it follows from the Koebe distortion theorem as in e.g. [8, p. 6] that the Poincaré metric $\rho_{G}|d w|$ of G satisfies

$$
\rho_{G}(w) \geq 1 /\{4 d(w, \partial G)\} \geq 1 /(4 \pi)
$$

Thus if $\xi^{\prime}=\log (\xi-\alpha), \eta^{\prime}=\log (\eta-\alpha)$, we have

$$
\delta=[\xi, \eta, D]=\left[\xi^{\prime}, \eta^{\prime}, G\right] \geq(1 /(4 \pi)) \operatorname{Re}\left(\xi^{\prime}-\eta^{\prime}\right),
$$

which gives $|\xi-\alpha| \leq|\eta-\alpha| \exp (4 \pi \delta)$.

In particular we have

$$
\left|z_{n+1}-\alpha\right|<K\left|z_{n}-\alpha\right|,
$$

where $K=\exp (4 \pi H)$ and so $\left|z_{n}-\alpha\right|<K^{n}\left|z_{0}-\alpha\right|$, which implies $\log \left|z_{n}\right|=\mathrm{O}(n)$ as $n \rightarrow \infty$.

Further if z^{\prime} is another point of D and $z_{n}^{\prime}=g^{n}\left(z^{\prime}\right)$ we put $\varepsilon=\left[z^{\prime}, z, D\right] \geq\left[z_{n}^{\prime}, z_{n}, D\right]$ and obtain

$$
L^{-1}<\left|\frac{z_{n}^{\prime}-\alpha}{z_{n}-\alpha}\right|<L, \quad L=\exp (4 \pi \varepsilon),
$$

which implies

$$
\log \left|z_{n}^{\prime}\right|-\log \left|z_{n}\right|=O(1) \quad \text { as } n \rightarrow \infty
$$

The result of Theorem 2 is contained in the slightly more general lemma:
Lemma 2. If g and D satisfy the assumptions of Lemma 1 , then there exists a curve Γ, which tends to ∞ in D, and positive constants K, L, such that $g(\Gamma) \subset \Gamma$ and

$$
K|z|<|g(z)|<L|z|, \quad z \text { in } \Gamma .
$$

Proof. In the proof of the previous lemma we join z_{0} to $z_{1}=g\left(z_{0}\right)$ by a path γ in D and change the constant H to $H^{\prime}=\sup \left[z, z^{\prime}, D\right]$ for z, z^{\prime} in γ. Then $\gamma_{n}=g^{n} \gamma$ joins z_{n} to z_{n+1} and $\Gamma=\bigcup \gamma_{n}$ is a path. For z in γ_{n} we have $\left[z, z_{n}, D\right] \leq H^{\prime},\left[z, z_{n+1}, D\right] \leq H^{\prime}$ and hence, by the argument of the previous lemma

$$
K^{-1}\left|z_{n}-\alpha\right|<|z-\alpha|<\min \left(K\left|z_{n}-\alpha\right|, K\left|z_{n+1}-\alpha\right|\right)
$$

where $K=\exp \left(4 \pi H^{\prime}\right)$. Thus $\Gamma \rightarrow \infty$. Moreover, for z in γ_{n} we have $g(z)$ in γ_{n+1}, so that

$$
|g(z)-\alpha| \leq K\left|z_{n+1}-\alpha\right| \leq K^{2}|z-\alpha|
$$

and similarly $|g(z)-\alpha| \geq K^{-2}|z-\alpha|$.
The proof is complete.
Corollary. If in Lemma 2 we replace the assumption that $g(D) \subset D$ by $g^{p}(D) \subset D$ for some $p \in \mathbb{N}$, then we obtain a path Γ on which $K|z|<\left|g^{p}(z)\right|<L|z|$. Assuming that g is an entire function we can at least say that $g(z) \rightarrow \infty$ on Γ.
3. The example $f(z)=e^{-z}+k z, k>1$

For fixed $k>1$ there is an x_{0} such that $k x-e^{-x}>x$ for $x \geq x_{0}$. If H denotes the half plane $\left\{\operatorname{Re} z>x_{0}\right\}$ we have $f(H) \subset H$. Moreover it is clear that for real $x>x_{0}$, $f^{n}(x) \rightarrow \infty$. Thus H is contained in a component D of $N(f)$ such that $f^{n} \rightarrow \infty$ in $D, f(D) \subset D$. Further, D must be simply-connected.

For real $x>x_{0}$ we have $x_{n}=f^{n}(x)>k^{n} x$ and $x_{n+1}-k x_{n}=\exp \left(-x_{n}\right)$. Thus, if $t_{n}=x_{n} / k^{n}$, then

$$
t_{n+1}-t_{n}<\left\{\exp \left(-x_{0} k^{n}\right)\right\} / k^{n+1}
$$

and so $\sum\left(t_{n+1}-t_{n}\right)<\infty$. Thus

$$
\lambda=\lim x_{n} k^{-n}
$$

is finite and

$$
\begin{equation*}
\log \left(f^{n}(x)\right)=n \log k+O(1) . \tag{1}
\end{equation*}
$$

By the final statement of Lemma 1 (1) also holds if x is replaced by any z in D.

4. Proof of Theorem 3.

In [1] some entire f were constructed for which $N(f)$ has wandering components in which $f^{n}(z) \rightarrow \infty$ much faster than in Theorem 1. To obtain the result of Theorem 3 we modify a rather different argument in [4] to construct an example with the following properties.

Suppose that $10<a_{1}<a_{2}<\cdots$, where a_{n} is a sequence with no other restriction except that $a_{n+1}-a_{n}>4$, so that a_{n} may increase as fast as we please. Let $A_{m}=$ $\left\{z:\left|z-a_{m}\right| \leq 1\right\}$. Then there is an entire function g such that $g\left(A_{m}\right) \subset A_{m+1}$, and each A_{m} belongs to a different, simply-connected, wandering component of $N(g)$. A_{m+1} lies entirely to the right of $\left\{\operatorname{Re} z=\frac{1}{2}\left(a_{m}+a_{m+1}\right)\right\}$.

First we recollect the following facts, also used in [4]. If F denotes a closed subset of \mathbb{C} and $C_{a}(F)$ the functions which are continuous on F and analytic in $\stackrel{\circ}{F}$, then F is called a Carleman set (for \mathbb{C}) if, for any g in $C_{a}(F)$ and for any positive continuous function ε on F, there is an entire function f such that $|g(z)-f(z)|<\varepsilon(z)$, $z \in F$. By Arakelyan's theorem (e.g. [7, p. 137]) we have (i) $\hat{\mathbb{C}} \backslash F$ must be connected and also locally connected at ∞. If in addition to (i) we have (ii) for each compact K the union $W(K)$ of those components of $\stackrel{\circ}{F}$ which meet K is relatively compact in \mathbb{C}, then F is indeed a Carleman set ($[7, \mathrm{p} .157]$).

To construct the example introduce

$$
\begin{aligned}
L_{m} & =\left\{z: \operatorname{Re} z=\frac{1}{2}\left(a_{m}+a_{m+1}\right)\right\}, \quad m \in \mathbb{N}, \\
B & =\{z:|z+6| \leq 1\},
\end{aligned}
$$

and let δ, δ_{m} be positive numbers so small that $|w-\pi i-\log 6|<\delta$ implies $\left|e^{w}+6\right|<\frac{1}{2}$, and $\left|w-\log a_{m+1}\right|<\delta_{m}$ implies $\left|e^{w}-a_{m+1}\right|<\frac{1}{2}$.

Since the set $F=B \cup\left\{\bigcup_{m}\left(A_{m} \cup L_{m}\right)\right\}$ is a Carleman set there exists an entire function h such that

$$
\begin{array}{ll}
|h(z)-\pi i-\log 6|<\delta, & z \in L_{m}, \\
|h(z)-\pi i-\log 6|<\delta, & z \in B, \\
\left|h(z)-\log a_{m+1}\right|<\delta_{m+1}, & z \in A_{m} .
\end{array}
$$

Then $g=e^{h}$ is entire and satisfies $g\left(A_{m}\right) \subset A_{m+1}$, and so $g^{n} \rightarrow \infty$ in each A_{m}, uniformly. Thus $A_{m} \in N(g)$.

Now g maps B into $\left\{z ;|z+6|<\frac{1}{2}\right\}$, so that B contains an attractive fixed point ξ and $g^{n} \rightarrow \xi$ in B. Further $g\left(L_{m}\right) \subset B$ so that $g^{n} \rightarrow \xi$ in L_{m} and each L_{m} belongs to a component of $N(g)$ different from the A_{m}. Thus the A_{m} are wandering components of $N(g)$, as is, indeed, apparent from the rate at which $g^{n} \rightarrow \infty$ in A_{m}.

Finally, since by construction $g^{n} \neq 0$, we have that the $1 / g^{n}$ are entire functions which converge to the limit 0 in A_{m} and so in the whole component D_{m} of $N(g)$ to which A_{m} belongs. Hence D_{m} is simply-connected.

REFERENCES

[1] I. N. Baker. An entire function which has wandering domains. J. Australian Math. Soc. 22 (Ser. A) (1976), 173-176.
[2] I. N. Baker. The domains of normality of an entire function. Ann. Acad. Sci. Fennicae AI Math. 1 (1975), 277-283.
[3] I. N. Baker. Iteration of polynomials and transcendental entire functions. J. Australian Math. Soc. (A) 30 (1981), 483-495.
[4] I. N. Baker. Wandering domains for maps of the punctured plane. Ann. Acad. Sci. Fennicae. A1, Math. 12 (1987), 191-198.
[5] A. Eremenko \& M. Lyubich. Iterations of entire functions (Russian). Dokl. Akad. Nauk SSSR 279 (1) (1984), 25-27 and preprint, Kharkov 1984.
[6] P. Fatou. Sur l'itération des fonctions transcendantes entières. Acta Math. 47 (1926), 337-370.
[7] D. Gaier. Lectures on Complex Approximation, Birkhäuser: Verlag: Basel-Boston-Berlin, 1987.
[8] O. Lehto. Univalent functions and Teichmüller spaces, Springer: New York, 1987.
[9] C. McMullen. Area and Hausdorff dimension of Julia sets of entire functions. Trans. Amer. Math. Soc. 300 (1) (1987), 329-342.

