Ergod. Th. & Dynam. Sys. (1988), **8**, 503-507 Printed in Great Britain

Infinite limits in the iteration of entire functions

I. N. BAKER

Department of Mathematics, Imperial College of Science and Technology, London SW7 2BZ, England

(Received 30 October 1987; revised 8 February 1988)

Abstract. If f is a transcendental entire function and D is a non-wandering component of the set of normality of the iterates of f such that $f^n \to \infty$ in D then $\log |f^n(z)| = O(n)$ as $n \to \infty$ for z in D. For a wandering component the convergence of f^n to ∞ in D may be arbitrarily fast.

1. Introduction

Denote by f a non-linear entire function and set $N(f) = \{z; (f^n) \text{ is normal in some}$ neighbourhood of z}, where f^n , $n \in \mathbb{N}$, is the nth iterate of f. The complement of N(f) in the plane is the Julia set J(f). We recall that J(f) is a non-empty perfect set and that N(f) is completely invariant in the sense that z belongs to N(f) if and only if f(z) belongs to N(f) [6]. Thus each component D of N(f) is mapped by f into some (possibly different) component of N(f): if each $f^n(D)$ belongs to a different component of N(f) the component D is called 'wandering'; if this is not the case there are integers $m \ge 0$ and $p \ge 1$ such that $f^m(D) \subseteq D_1$ where D_1 is a component of N(f) such that $f^p(D_1) \subseteq D_1$.

We wish to study the ways in which $f^n(z)$ may tend to ∞ for $z \in N(f)$ as $n \to \infty$. There are special classes of functions, for example those transcendental f such that all the singularities of f^{-1} lie over a finite number of points, for which this is impossible [5]. In general, however, $f^n(z)$ may approach ∞ either for z in a wandering component or for z such that, for some $m \ge 0$, $f^m(z)$ belongs to an unbounded periodic component D_1 of N(f) in which the iterates have limit ∞ .

In situations where f^n approaches a constant finite limit in a non-wandering component D the classical theory (see e.g. [6]) gives simple asymptotic formulae for $f^n(z)$ as $n \to \infty$. It is perhaps surprising that something can be said even for infinite limits.

THEOREM 1. If f is a transcendental entire function, if z belongs to a non-wandering component of N(f) and if $f^n(z) \rightarrow \infty$, then

$$\log |f^n(z)| = O(n), \qquad (n \to \infty).$$

THEOREM 2. If f is transcendental entire and D is a component of N(f) such that $f(D) \subset D$ and $f'' \to \infty$ in D, then there exist a curve Γ , which tends to ∞ in D, and

I. N. Baker

positive constants K, L such that $f(\Gamma) \subset \Gamma$ and

$$K|z| < |f(z)| < L|z|, \quad z \text{ in } \Gamma.$$

THEOREM 3. If z belongs to a wandering component of N(f) then $|f^n(z)|$ may approach ∞ arbitrarily fast.

Theorem 1 does not hold for polynomials, where O(n) becomes $O(K^n)$, for some K > 0. The correctness of the orders of magnitude in Theorems 1 and 2 will be shown by a discussion of the example $f(z) = e^{-z} + kz$, k > 1.

If it is known that f has no wandering components, then Theorem 1 may be used to test whether certain points are in J(f). It is also interesting that, according to a recent letter from A. Eremenko to the author, for any non-constant entire function f there exist points z (not necessarily belonging to N(f)) such that $f^n(z) \rightarrow \infty$.

Theorems 1 and 2 improve recent results in [3] and [9].

The paper is a more formal version of a lecture given at the Mathematical Institute of Academia Sinica, Beijing on 18th May 1987.

2. Proof of Theorems 1 and 2

It is sufficient to prove Theorem 1 for a component D of N(f) which is invariant in the sense that $f(D) \subset D$. Since $f^n(z) \to \infty$ for some z in D it then follows that D is unbounded and that $f^n \to \infty$ locally uniformly in D. It was shown in [2] that any unbounded component of N(f) is simply-connected. The desired result is thus contained in the following lemma.

LEMMA 1. Suppose that D is an unbounded simply-connected plane domain and that g is a function which is analytic in D and such that $g(D) \subset D$, $g^n \to \infty$ in D. Then for any $z \in D$ we have

$$\log |g^n(z)| = O(n) \qquad (n \to \infty).$$

Further, for any $z' \in D$

$$\log |g^n(z')| - \log |g^n(z)| = \mathcal{O}(1) \qquad (n \to \infty).$$

Proof. Take a finite $\alpha \in \partial D$. Denote the hyperbolic distance of points z, z' of D with respect to D by [z, z', D]. Choose any point $z = z_0$ in D and put $z_n = g^n(z_0), n \in \mathbb{N}$. Denote $H = [z_0, z_1, D]$ which is certainly positive since $g^n(z_0) \to \infty$. The map does not increase hyperbolic distance, so that $[z_n, z_{n+1}, D] \leq H$ for all n.

Note that if ξ , η are in D and $[\xi, \eta, D] = \delta$, then $|\xi - \alpha| \le |\eta - \alpha| \cdot \exp(4\pi\delta)$. For the function $w = \log(z - \alpha)$ maps D onto a simply-connected domain G which contains no vertical segment of length $> 2\pi$. Since any w in G has distance at most π from ∂G , it follows from the Koebe distortion theorem as in e.g. [8, p. 6] that the Poincaré metric $\rho_G |dw|$ of G satisfies

$$\rho_G(w) \ge 1/\{4d(w, \partial G)\} \ge 1/(4\pi).$$

Thus if
$$\xi' = \log (\xi - \alpha)$$
, $\eta' = \log (\eta - \alpha)$, we have

$$\delta = [\xi, \eta, D] = [\xi', \eta', G] \ge (1/(4\pi)) \operatorname{Re}(\xi' - \eta'),$$

which gives $|\xi - \alpha| \le |\eta - \alpha| \exp(4\pi\delta)$.

In particular we have

$$|z_{n+1}-\alpha| < K |z_n-\alpha|,$$

where $K = \exp(4\pi H)$ and so $|z_n - \alpha| < K^n |z_0 - \alpha|$, which implies $\log |z_n| = O(n)$ as $n \to \infty$.

Further if z' is another point of D and $z'_n = g^n(z')$ we put $\varepsilon = [z', z, D] \ge [z'_n, z_n, D]$ and obtain

$$L^{-1} < \left| \frac{z'_n - \alpha}{z_n - \alpha} \right| < L, \qquad L = \exp(4\pi\varepsilon),$$

which implies

$$\log |z'_n| - \log |z_n| = O(1) \qquad \text{as } n \to \infty.$$

The result of Theorem 2 is contained in the slightly more general lemma:

LEMMA 2. If g and D satisfy the assumptions of Lemma 1, then there exists a curve Γ , which tends to ∞ in D, and positive constants K, L, such that $g(\Gamma) \subset \Gamma$ and

 $K|z| < |g(z)| < L|z|, \quad z \text{ in } \Gamma.$

Proof. In the proof of the previous lemma we join z_0 to $z_1 = g(z_0)$ by a path γ in Dand change the constant H to $H' = \sup [z, z', D]$ for z, z' in γ . Then $\gamma_n = g^n \gamma$ joins z_n to z_{n+1} and $\Gamma = \bigcup \gamma_n$ is a path. For z in γ_n we have $[z, z_n, D] \le H', [z, z_{n+1}, D] \le H'$ and hence, by the argument of the previous lemma

$$K^{-1}|z_n-\alpha| < |z-\alpha| < \min(K|z_n-\alpha|, K|z_{n+1}-\alpha|),$$

where $K = \exp(4\pi H')$. Thus $\Gamma \to \infty$. Moreover, for z in γ_n we have g(z) in γ_{n+1} , so that

$$|g(z) - \alpha| \le K |z_{n+1} - \alpha| \le K^2 |z - \alpha|$$

and similarly $|g(z) - \alpha| \ge K^{-2} |z - \alpha|$.

The proof is complete.

COROLLARY. If in Lemma 2 we replace the assumption that $g(D) \subseteq D$ by $g^p(D) \subseteq D$ for some $p \in \mathbb{N}$, then we obtain a path Γ on which $K|z| < |g^p(z)| < L|z|$. Assuming that g is an entire function we can at least say that $g(z) \to \infty$ on Γ .

3. The example $f(z) = e^{-z} + kz, k > 1$

For fixed k > 1 there is an x_0 such that $kx - e^{-x} > x$ for $x \ge x_0$. If H denotes the half plane {Re $z > x_0$ } we have $f(H) \subset H$. Moreover it is clear that for real $x > x_0$, $f^n(x) \to \infty$. Thus H is contained in a component D of N(f) such that $f^n \to \infty$ in D, $f(D) \subset D$. Further, D must be simply-connected.

For real $x > x_0$ we have $x_n = f^n(x) > k^n x$ and $x_{n+1} - kx_n = \exp(-x_n)$. Thus, if $t_n = x_n/k^n$, then

$$t_{n+1} - t_n < \{\exp(-x_0k^n)\}/k^{n+1},$$

and so $\sum (t_{n+1}-t_n) < \infty$. Thus

$$\lambda = \lim x_n k^{-n}$$

is finite and

$$\log (f^{n}(x)) = n \log k + O(1).$$
(1)

By the final statement of Lemma 1 (1) also holds if x is replaced by any z in D.

4. Proof of Theorem 3.

In [1] some entire f were constructed for which N(f) has wandering components in which $f''(z) \rightarrow \infty$ much faster than in Theorem 1. To obtain the result of Theorem 3 we modify a rather different argument in [4] to construct an example with the following properties.

Suppose that $10 < a_1 < a_2 < \cdots$, where a_n is a sequence with no other restriction except that $a_{n+1} - a_n > 4$, so that a_n may increase as fast as we please. Let $A_m = \{z: |z - a_m| \le 1\}$. Then there is an entire function g such that $g(A_m) \subset A_{m+1}$, and each A_m belongs to a different, simply-connected, wandering component of N(g). A_{m+1} lies entirely to the right of {Re $z = \frac{1}{2}(a_m + a_{m+1})$ }.

First we recollect the following facts, also used in [4]. If F denotes a closed subset of \mathbb{C} and $C_a(F)$ the functions which are continuous on F and analytic in \mathring{F} , then F is called a Carleman set (for \mathbb{C}) if, for any g in $C_a(F)$ and for any positive continuous function ε on F, there is an entire function f such that $|g(z) - f(z)| < \varepsilon(z)$, $z \in F$. By Arakelyan's theorem (e.g. [7, p. 137]) we have (i) $\widehat{\mathbb{C}} \setminus F$ must be connected and also locally connected at ∞ . If in addition to (i) we have (ii) for each compact K the union W(K) of those components of \mathring{F} which meet K is relatively compact in \mathbb{C} , then F is indeed a Carleman set ([7, p. 157]).

To construct the example introduce

$$L_m = \{z : \operatorname{Re} z = \frac{1}{2}(a_m + a_{m+1})\}, \quad m \in \mathbb{N}, \\ B = \{z : |z+6| \le 1\},$$

and let δ , δ_m be positive numbers so small that $|w - \pi i - \log 6| < \delta$ implies $|e^w + 6| < \frac{1}{2}$, and $|w - \log a_{m+1}| < \delta_m$ implies $|e^w - a_{m+1}| < \frac{1}{2}$.

Since the set $F = B \cup \{\bigcup_m (A_m \cup L_m)\}$ is a Carleman set there exists an entire function h such that

$$\begin{aligned} |h(z) - \pi i - \log 6| < \delta, & z \in L_m, \\ |h(z) - \pi i - \log 6| < \delta, & z \in B, \\ |h(z) - \log a_{m+1}| < \delta_{m+1}, & z \in A_m. \end{aligned}$$

Then $g = e^h$ is entire and satisfies $g(A_m) \subset A_{m+1}$, and so $g^n \to \infty$ in each A_m , uniformly. Thus $A_m \in N(g)$.

Now g maps B into $\{z; |z+6| < \frac{1}{2}\}$, so that B contains an attractive fixed point ξ and $g^n \to \xi$ in B. Further $g(L_m) \subset B$ so that $g^n \to \xi$ in L_m and each L_m belongs to a component of N(g) different from the A_m . Thus the A_m are wandering components of N(g), as is, indeed, apparent from the rate at which $g^n \to \infty$ in A_m .

Finally, since by construction $g^n \neq 0$, we have that the $1/g^n$ are entire functions which converge to the limit 0 in A_m and so in the whole component D_m of N(g) to which A_m belongs. Hence D_m is simply-connected.

506

REFERENCES

- [1] I. N. Baker. An entire function which has wandering domains. J. Australian Math. Soc. 22 (Ser. A) (1976), 173-176.
- [2] I. N. Baker. The domains of normality of an entire function. Ann. Acad. Sci. Fennicae AI Math. 1 (1975), 277-283.
- [3] I. N. Baker. Iteration of polynomials and transcendental entire functions. J. Australian Math. Soc.
 (A) 30 (1981), 483-495.
- [4] I. N. Baker. Wandering domains for maps of the punctured plane. Ann. Acad. Sci. Fennicae. A1, Math. 12 (1987), 191-198.
- [5] A. Eremenko & M. Lyubich. Iterations of entire functions (Russian). Dokl. Akad. Nauk SSSR 279 (1) (1984), 25-27 and preprint, Kharkov 1984.
- [6] P. Fatou. Sur l'itération des fonctions transcendantes entières. Acta Math. 47 (1926), 337-370.
- [7] D. Gaier. Lectures on Complex Approximation, Birkhäuser: Verlag: Basel-Boston-Berlin, 1987.
- [8] O. Lehto. Univalent functions and Teichmüller spaces, Springer: New York, 1987.
- [9] C. McMullen. Area and Hausdorff dimension of Julia sets of entire functions. Trans. Amer. Math. Soc. 300 (1) (1987), 329-342.