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Abstract
Let 𝜋 be a cuspidal, cohomological automorphic representation of an inner form G of PGL2 over a number field
F of arbitrary signature. Further, let 𝔭 be a prime of F such that G is split at 𝔭 and the local component 𝜋𝔭 of 𝜋 at
𝔭 is the Steinberg representation. Assuming that the representation is noncritical at 𝔭, we construct automorphic
L-invariants for the representation 𝜋. If the number field F is totally real, we show that these automorphic
L-invariants agree with the Fontaine–Mazur L-invariant of the associated p-adic Galois representation. This
generalizes a recent result of Spieß respectively Rosso and the first named author from the case of parallel weight
2 to arbitrary cohomological weights.
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Introduction

The purpose of this article is threefold: First, let 𝜋 be a cuspidal, cohomological automorphic represen-
tation of an inner form G of PGL2 over a number field F of arbitrary signature and 𝔭 be a prime of F
such that G is split at 𝔭 and the local component 𝜋𝔭 of 𝜋 at 𝔭 is the Steinberg representation. We want to
give a general construction of automorphic L-invariants (also known as Teitelbaum, Darmon or Orton
L-invariants) for 𝜋. For representations which are cohomological with respect to the trivial coefficient
system, or in other words for forms of parallel weight 2, these L-invariants have been defined in general
(see, for example, [23]) but for higher weights they have been defined only in certain situations:
1. In case 𝐹 = Q and G is compact at infinity by Teitelbaum in [41],
2. In case 𝐹 = Q and G is split by Orton in [33],
3. In case 𝐹 = Q and G is split at infinity by Rotger and Seveso in [34],
4. In case F is imaginary quadratic and G is split by Barrera-Salazar and Williams in [3] and
5. In case F is totally real and G is compact at infinity by Chida, Mok and Park in [14].
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2 L. Gehrmann and M. R. Pati

An obstacle that might have prevented the construction in general is the following: Whereas in case of
the trivial coefficient system the representation is always ordinary and therefore noncritical at𝔭, this is no
longer true for higher weights. But note that for the cases 1–4 above the representation has still noncritical
slope at 𝔭 and, thus, is noncritical at 𝔭 (see the end of Section 2.4 for a detailed discussion on noncritical
slopes). It seems to the authors of this paper that in [14] it is implicitly assumed that the representation
is noncritical at 𝔭 (see Remark 2.6 for more details). Our first main result (see Definition 3.2) is the
construction of automorphic L-invariants under the assumption that the representation 𝜋 is noncritical
at 𝔭. We point out that our construction of L-invariants is novel as it does not involve the Bruhat–Tits
tree at any stage.

Our second goal is to bridge the gap between works using overconvergent cohomology à la Ash–
Stevens, for example, [3] and [2], and Spieß’ more representation-theoretic approach (cf. [39]). In
particular, we show that the noncriticality condition for classes in overconvergent cohomology that is
discussed in [2] respectively [5] is equivalent to a more representation-theoretic one: Assume for the
moment that 𝜋𝔭 is not necessarily Steinberg but merely has an Iwahori-fixed vector. We explain that
choosing a 𝔭-stabilization of 𝜋, that is, an Iwahori-fixed vector of 𝜋𝔭, yields a cohomology class of a
𝔭-arithmetic subgroup of 𝐺 (𝐹) with values in the dual of a locally algebraic principal series represen-
tation of 𝐺 (𝐹𝔭). Noncriticality is then equivalent to that this class can be lifted uniquely to a class in
the cohomology with values in the continuous dual of the corresponding locally analytic principal se-
ries representation (see Proposition 2.13). The main tool to prove this equivalence is the resolution of
locally analytic principal series representations by Kohlhaase and Schraen (see [31]).

Finally, we show that, if the number field F is totally real the automorphic L-invariants attached to 𝜋
agree with the derivatives of the 𝑈𝔭-eigenvalue of a p-adic family passing through 𝜋 (cf. Theorem 4.3).
This equality is known in case 𝐹 = Q by the work of Bertolini–Darmon–Iovita (see [6]) and Seveso
(see [38]). For Hilbert modular forms of parallel weight 2 the equality was recently proven by Rosso
and the first named author (see [25]). As we do not work with general reductive groups as in loc.cit
the arguments simplify substantially, making them more accessible to people who are only interested in
Hilbert modular forms. Furthermore, it is known that the derivatives of the 𝑈𝔭-eigenvalue agree with
the Fontaine–Mazur L-invariant of the associated Galois representation, if that Galois representation is
noncritical. Thus, we deduce the equality of automorphic and Fontaine–Mazur L-invariants (see [40]
for an independent proof of this equality in case of parallel weight 2). The equality of L-invariants in
parallel weight 2 is necessary for the construction of plectic Stark–Heegner points in recent work of
Fornea and the first named author (cf. [20]). This article should be seen as a precursor for defining
plectic Stark–Heegner cycles for arbitrary cohomological weights.

Notations

All rings will be commutative and unital. The units of a ring R will be denoted by 𝑅×. Given a prime
ideal 𝔪 of a ring R and an R-module M, we write 𝑀𝔪 for the localization of M at 𝔪. If R is a ring
and G is a group, we denote the group algebra of G over R by 𝑅[𝐺]. The trivial character of any group
will be denoted by 1. Given two sets X and Y, we will write F (𝑋,𝑌 ) for the set of all maps from X to
Y. If X and Y are topological spaces, we write 𝐶 (𝑋,𝑌 ) ⊆ F (𝑋,𝑌 ) for the set of all continuous maps.
If Y is a topological group, we denote by 𝐶𝑐 (𝑋,𝑌 ) ⊆ 𝐶 (𝑋,𝑌 ) the subset of functions with compact
support.

Setup

A number field. We fix an algebraic number field 𝐹 ⊆ C with ring of integers O𝐹 . We write 𝑆∞ for the
set of infinite places of F and Σ for the set of all embeddings from F into the algebraic closure Q of Q in
C. The action of complex conjugation on Σ will be denoted by c. We write 𝛿 for the number of complex
places of F. For any place 𝔮 of F, we will denote by 𝐹𝔮 the completion of F at 𝔮. If 𝔮 is a finite place,
we let O𝔮 denote the valuation ring of 𝐹𝔮 and ord𝔮 the additive valuation such that ord𝔮 (𝜛) = 1 for any
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local uniformizer 𝜛 ∈ O𝔮. We write N (𝔮) for the cardinality of the residue field O/𝔮. We normalize
the 𝔮-adic absolute valuation | · |𝔮 by |𝜛 |𝔭 = N (𝔮)−1.

For a finite set S of places of F, we define the ‘S-truncated adeles’ A𝑆 as the restricted product of all
completions 𝐹𝑣 with 𝑣 ∉ 𝑆. In case S is the empty set, we drop the superscript S from the notation. We
will often write A𝑆,∞ instead of A𝑆∪𝑆∞ . If H is an algebraic group over F, we will put 𝐻𝔮 = 𝐻 (𝐹𝔮) for
any place 𝔮 of F. If S is a finite set of places of F, we will write 𝐻𝑆 =

∏
𝔮∈𝑆 𝐻𝔮. Further, we abbreviate

𝐻∞ = 𝐻𝑆∞ .

A quaternion algebra. We fix a quaternion algebra D over F. We denote by ram(𝐷) the set of places of
F at which D is ramified and put

disc(𝐷) =
∏

𝔮∈ram(𝐷) ,𝔮�∞

𝔮.

Let 𝐷× be the group of units of D considered as an algebraic group over F. The centre 𝑍 ⊆ 𝐷× is naturally
isomorphic to the multiplicative group G𝑚. We put 𝐺 = 𝐷×/𝑍. For any place 𝔮 ∉ ram(𝐷), we fix an
isomorphism 𝐷𝔮 � 𝑀2 (𝐹𝔮) that in turn induces an isomorphism𝐺𝔮 � PGL2(𝐹𝔮). For any Archimedean
place 𝔮 ∈ ram(𝐷), we fix an isomorphism of 𝐷𝔮 with the Hamilton quaternions, which yields an
embedding 𝐺𝔮 ↩→ PGL2(C). In particular, we get an injection 𝑗𝜎 : 𝐺 (𝐹) ⊆ 𝐺 (𝐹𝔮)

𝜎∗
↩−→ PGL2(C) for

every embedding 𝜎 ∈ Σ with underlying place 𝔮. We write

𝑗 : 𝐺 (𝐹) ↩−→
∏
𝜎∈Σ

PGL2(C)

for the diagonal embedding.
Let 𝑆∞(𝐷) be the set of all Archimedean places of F at which D is split. We put

𝑞 = #𝑆∞(𝐷).

Let 𝑆R (𝐷) ⊆ 𝑆∞(𝐷) be the subset of real places. We denote by 𝐺+
∞ the connected component of the

identity of 𝐺∞. The group PGL2(C) and the units of the Hamilton quaternions are connected, whereas
PGL2 (R) has two connected components. Therefore, we can identify

𝜋0 (𝐺∞) = 𝐺∞/𝐺
+
∞ � {±1}𝑆R (𝐷) .

If 𝐴 ⊆ 𝐺∞ is a subgroup, we put 𝐴+ = 𝐴 ∩ 𝐺+
∞.

An automorphic representation. Let 𝜋′ = ⊗𝔮𝜋
′
𝔮 be a cuspidal automorphic representation of PGL2(A)

that is cohomological (see Section 1.1.2). If F is totally real, then such automorphic representations
(up to twists by the norm character) are in one-to-one correspondence with cuspidal Hilbert modular
newforms with even weights and trivial Nebentypus. We assume that the local component 𝜋′

𝔮 is either
a twist of the Steinberg representation or supercuspidal for all primes 𝔮 dividing disc(𝐷). Thus, there
exists a Jacquet–Langlands transfer 𝜋 of 𝜋′ to 𝐺 (A), that is, an automorphic representation of 𝐺 (A)
such that 𝜋′

𝔮 � 𝜋𝔮 for all places 𝔮 ∉ ram(𝐷). Moreover, the representation 𝜋𝔮 is one-dimensional for all
𝔮 | disc(𝐷) such that 𝜋′

𝔮 is a twist of the Steinberg representation. We put

𝜋∞ :=
⊗
𝜈∈𝑆∞

𝜋𝜈 and 𝜋∞ :=
⊗
𝜈∉𝑆∞

𝜋𝜈 .

1. Cohomology of p-arithmetic groups

We recollect some basic facts about the cohomology of 𝔭-arithmetic groups with values in duals of
smooth representations.
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1.1. The Eichler–Shimura isomorphism

In this section, we recall how the representation 𝜋 contributes to the cohomology of the locally symmetric
space attached to G.

1.1.1. Weights and coefficient modules
Let 𝑘 ≥ 0 be an even integer. For any ring R, we let 𝑉𝑘 (𝑅) ⊆ 𝑅[𝑋,𝑌 ] be the space of homogeneous
polynomials of degree k with PGL2 (𝑅)-action given by

(𝑔. 𝑓 ) (𝑋,𝑌 ) = det(𝑔)−𝑘/2 𝑓 (𝑏𝑌 + 𝑑𝑋, 𝑎𝑌 + 𝑐𝑋) for 𝑔 =

(
𝑎 𝑏
𝑐 𝑑

)
∈ PGL2(𝑅).

We may attach to 𝑓 ∈ 𝑉𝑘 (𝑅) an R-valued function 𝜓 𝑓 on PGL2(𝑅) via

𝜓 𝑓 (𝑔) = (𝑔. 𝑓 ) (1, 0).

In case 𝑏 =

(
𝑏1 𝑢
0 𝑏2

)
is an upper triangular matrix, we have

𝜓 𝑓 (𝑏𝑔) = (𝑏𝑔. 𝑓 ) (1, 0) = (𝑏.(𝑔. 𝑓 )) (1, 0)

= 𝑏−𝑘/2
1 𝑏𝑘/2

2 · (𝑔. 𝑓 ) (1, 0) (1.1)

= 𝑏−𝑘/2
1 𝑏𝑘/2

2 · 𝜓 𝑓 (𝑔)

for all 𝑔 ∈ PGL2(𝑅).
Given a weight 𝒌 = (𝑘𝜎)𝜎∈Σ ∈ 2Z≥0 [Σ] we define the PGL2(𝑅)

Σ-representation

𝑉𝒌 (𝑅) = ⊗𝜎∈Σ𝑉𝑘𝜎 (𝑅)

and 𝑉𝒌 (𝑅)
∨ as the R-linear dual of 𝑉𝒌 (𝑅). One may view 𝑉𝒌 (C) as a representation of 𝐺 (𝐹) via the

embedding j. In fact, there exists a number field 𝐸 ⊆ C such that every embedding 𝜎 : 𝐹 ↩→ C factors
over E and such that 𝐺 (𝐹) acts on 𝑉𝒌 (𝐸) ⊆ 𝑉𝒌 (C). We fix E for the remainder of the article.

1.1.2. (𝔤, 𝐾+
∞)-cohomology

Let 𝔤 denote the complexification of the Lie algebra of 𝐺∞. We fix a maximal compact subgroup 𝐾∞

of 𝐺∞ with connected component 𝐾+
∞. Let us recall that 𝜋 is cohomological if and only if there exists a

weight 𝒌 = (𝑘𝜎)𝜎∈Σ such that

H•(𝔤, 𝐾+
∞, 𝜋∞ ⊗ 𝑉𝒌 (C)

∨) ≠ 0.

See [8] for the notion of (𝔤, 𝐾+
∞)-cohomology. The weight 𝒌 is uniquely determined by 𝜋∞, and we fix

it from here on. By [28, 3.6.1], the equality

𝑘𝜎 = 𝑘𝑐𝜎 (1.2)

holds for all 𝜎 ∈ Σ. The group 𝜋0 (𝐺∞) � 𝜋0 (𝐾∞) acts on (𝔤, 𝐾+
∞)-cohomology. For every character

𝜖 : 𝜋0 (𝐺∞) → {±1} we have the following dimension formulas for the 𝜖-isotypic component:

dimC H𝑖 (𝔤, 𝐾+
∞, 𝜋∞ ⊗ 𝑉𝒌 (C)

∨) 𝜖 =

(
𝛿

𝑖 − 𝑞

)
. (1.3)

Via the Künneth theorem one may reduce the computation to that of the cohomology for each place
𝔮 | ∞ separately. In case 𝐺𝔮 is split, the computation is spelled out in [28, Section 3.6.2]. The nonsplit
case is trivial.
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1.1.3. Local systems
Let us fix an open compact subgroup 𝐾 ⊆ 𝐺 (A∞) and consider the locally symmetric space

X𝐾 = 𝐺 (𝐹)\𝐺 (A)/𝐾𝐾+
∞

together with the projection map

𝑝𝐾 : 𝐺 (A)/𝐾𝐾+
∞ → X𝐾 .

Let {𝑔1, . . . , 𝑔ℎ} be a set of representatives of the finite double coset

𝐺 (𝐹)+\𝐺 (A∞)/𝐾

and put

Γ𝑔𝑖 = 𝐺 (𝐹)+ ∩ 𝑔𝑖𝐾𝑔
−1
𝑖 .

These are discrete subgroups of the real Lie group 𝐺 (𝐹∞)
+. We may decompose

X𝐾 =
ℎ⋃
𝑖=1

Γ𝑔𝑖\𝐺 (𝐹∞)
+/𝐾+

∞. (1.4)

If K is neat, then Γ𝑔𝑖 is torsion free for every 𝑖 = 1, . . . , ℎ and, thus, the topological space X𝐾 carries
the structure of a locally symmetric space.

We fix a field Ω of characteristic zero. Given an Ω[𝐺 (𝐹)]-module N define the sheaf 𝑁 on X𝐾 by

𝑁 (𝑈) = {𝑠 : 𝑝−1
𝐾 (𝑈) → 𝑁 locally constant | 𝑠(𝑔.𝑢) = 𝑔𝑠(𝑢) ∀𝑔 ∈ 𝐺 (𝐹)}.

In case K is neat, 𝑁 is a local system. In any case, the group of global sections of 𝑁 is given by

Γ(X𝐾 , 𝑁) = F (𝐺 (A)/𝐺 (𝐹∞)
+𝐾, 𝑁)𝐺 (𝐹 ) ,

where 𝐺 (𝐹) acts on F (𝐺 (A)/𝐺 (𝐹∞)
+𝐾, 𝑁) via (𝛾. 𝑓 ) (𝑔) = 𝛾. 𝑓 (𝛾−1𝑔). Right translation defines

commuting actions of the component group 𝜋0 (𝐺∞) and the Hecke algebra T𝐾 (Ω) := Ω[𝐾\𝐺 (A∞)/𝐾]
of level K on 𝑁-valued cohomology H•(X𝐾 , 𝑁).

We assume in the following that K is of the form 𝐾 =
∏

𝔮 𝐾𝔮 and that

(𝜋∞)𝐾 ≠ 0.

Let S be a finite set of primes of F such that S contains every 𝔮 such that 𝐾𝔮 is not maximal and put
𝐾𝑆 =

∏
𝔮∉𝑆 𝐾𝔮. The Hecke algebra

T𝑆
𝐾𝑆

(Ω) := Ω[𝐾𝑆\𝐺 (A𝑆,∞)/𝐾𝑆]

away from S is central in T𝐾 (Ω). We will assume for the rest of this article that 𝜋∞ has a model over
E, which we denote 𝜋∞𝐸 . We may always assume this by enlarging E slightly (see [29, Theorem C]).
If Ω is an extension of E, we put 𝜋∞Ω = 𝜋∞𝐸 ⊗𝐸 Ω. The Hecke algebra T𝑆

𝐾𝑆
(Ω) acts on 𝜋∞Ω . For every

𝔮 ∉ 𝑆, the subgroup 𝐾𝔮 ⊂ 𝐺𝔮 is a maximal open compact subgroup and, thus, by Casselman’s theorem
on newforms (see [13]) we have

dimC(𝜋𝔮)𝐾𝔮 = 1.
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It follows that T𝑆
𝐾𝑆

(Ω) acts on (𝜋∞Ω )
𝐾 via a character

𝜆𝑆𝜋 : T𝑆
𝐾𝑆

(Ω) −→ Ω.

Let 𝔪𝑆𝜋 ⊆ T𝑆
𝐾𝑆

(Ω) be the kernel of 𝜆𝑆𝜋 . It is a maximal ideal. Let M be a T𝐾 (Ω)-module. Since
T𝑆
𝐾𝑆

(Ω) ⊆ T𝐾 (Ω) is a central subalgebra it follows that T𝐾 (Ω) acts on the localization 𝑀𝔪𝑆𝜋
.

Theorem 1.1. Let Ω be any extension of E. For every character 𝜖 : 𝜋0 (𝐺∞) → {±1} we have

dimΩ HomT𝐾 (Ω) ((𝜋
∞
Ω )
𝐾 ,H𝑖 (X𝐾 , 𝑉𝒌 (Ω)∨) 𝜖 ) =

(
𝛿

𝑖 − 𝑞

)
.

Moreover, the localization H𝑖 (X𝐾 , 𝑉𝒌 (Ω)∨)𝔪𝑆𝜋 is equal to the sum of the images of all homomorphisms
from (𝜋∞Ω )

𝐾 to H𝑖 (X𝐾 , 𝑉𝒌 (Ω)∨).

Proof. The Borel–Serre compactification X̄𝐾 of X𝐾 (see [7]) is homotopic to X𝐾 and every local
system – such as𝑉𝒌 (Ω)∨ – naturally extends to it. Moreover, it is homeomorphic to a compact manifold
with boundary and, thus, has a finite triangulation. One deduces that the canonical map

H𝑖 (X𝐾 , 𝑉𝒌 (𝐸)∨) 𝜖 ⊗𝐸 Ω −→ H𝑖 (X𝐾 , 𝑉𝒌 (Ω)∨) 𝜖

is an isomorphism for every extension Ω of E. Thus, we may reduce to the case Ω = C. In that case, the
first claim follows from standard arguments about cohomological representations and Equation (1.3)
(see, for example, [28, Section II] for details in the case G is split).

The second claim follows from strong multiplicity one. �

1.1.4. Cohomology of arithmetic groups
We are going to recast the above cohomology groups in terms of group cohomology. Let 𝐾 ⊆ 𝐺 (A∞)
be an open compact subgroup and N an Ω[𝐺 (𝐹)]-module. The group 𝐺 (𝐹) acts on the space
F (𝐺 (A∞)/𝐾, 𝑁) via (𝛾. 𝑓 ) (𝑔) = 𝛾. 𝑓 (𝛾−1𝑔) and the Hecke algebra T𝐾 (Ω) via right transla-
tion. Thus, we have commuting actions of the component group 𝜋0 (𝐺∞) and the Hecke algebra
T𝐾 (Ω) = Ω[𝐾\𝐺 (A∞)/𝐾] on the spaces

H𝑖 (𝑋𝐾 , 𝑁) := H𝑖 (𝐺 (𝐹)+,F (𝐺 (A∞)/𝐾, 𝑁)).

Lemma 1.2. There are canonical isomorphisms

H•(𝑋𝐾 , 𝑁)
�
−−→ H•(X𝐾 , 𝑁)

that are equivariant with respect to the actions of the component group and the Hecke algebra.

Proof. The proof is rather standard. For the sake of completeness, we give a sketch of it. Since the
homomorphism 𝐺 (𝐹) → 𝜋0 (𝐺 (𝐹∞)) is surjective, Frobenius reciprocity implies that

H0(𝑋𝐾 , 𝑁) = F (𝐺 (A∞)/𝐾, 𝑁)𝐺 (𝐹 )+

= F (𝐺 (A)/𝐺 (𝐹∞)
+𝐾, 𝑁)𝐺 (𝐹 )

= Γ(X𝐾 , 𝑁).

The assignment 𝑁 ↦→ H•(𝑋𝐾 , 𝑁) defines an effaceable 𝛿-functor. Thus, by [26, Proposition 2.2.1] it is
enough to prove that the assignment 𝑁 ↦→ H•(X𝐾 , 𝑁) defines an effaceable 𝛿-functor as well. It suffices
to show that the functor 𝑁 ↦→ 𝑁 from the category of Ω[𝐺 (𝐹)]-modules to the category of sheaves on
X𝐾 sends injective 𝐺 (𝐹)-modules to acyclic sheaves and is exact.
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Firstly, as every injective 𝐺 (𝐹)-modules is a direct summand of a coinduced module, it is enough to
check that sheaves associated to coinduced modules are acyclic. Let V be a Ω-vector space. Consider
the coinduced 𝐺 (𝐹)-module Coind𝐺 (𝐹 )

1 𝑉 as well as the constant sheaf �̃� on 𝐺 (A)/𝐾𝐾+
∞. One readily

computes that

(𝑝𝐾 )∗(�̃�) � Coind𝐺 (𝐹 )
1 𝑉.

Since the fibres of 𝑝𝐾 are discrete, the higher direct images 𝑅𝑞 (𝑝𝐾 ) (�̃�) vanish and we get

H•(𝐺 (A)/𝐾𝐾+
∞, �̃�) � H•(X𝐾 , (𝑝𝐾 )∗(�̃�)) � H•(X𝐾 ,Coind𝐺 (𝐹 )

1 𝑉).

Since 𝐺 (A)/𝐾𝐾+
∞ is a disjoint union of contractible spaces, the claim follows.

Secondly, to prove exactness it is enough to check exactness at the level of stalks. Let x be a point
of X𝐾 and 𝑔𝑖 ∈ 𝐺 (𝐹)+ such that x lives in the connected component corresponding to 𝑔𝑖 with respect
to the decomposition (1.4). Consider a preimage 𝑥 ∈ 𝐺 (𝐹∞)

+/𝐾+
∞ of x and denote by Γ𝑔𝑖�̃� ⊆ Γ𝑔𝑖 the

stabilizer of 𝑥 in Γ𝑔𝑖 . The stalk of 𝑁 at x is given by

𝑁 𝑥 � 𝑁Γ
𝑔𝑖
�̃� .

Exactness follows since the group Γ𝑔𝑖�̃� is finite and, hence, taking invariance in characteristic zero is
exact. �

1.2. Cohomology of 𝔭-arithmetic groups

Let 𝔭 be a prime of F and Ω a field of characteristic zero. Given an open compact subgroup
𝐾𝔭 ⊆ 𝐺 (A𝔭,∞), an Ω[𝐺𝔭]-module M and an Ω[𝐺 (𝐹)]-module N, we let 𝐺 (𝐹) act on the Ω-vector
space F (𝐺 (A𝔭,∞)/𝐾𝔭,HomΩ(𝑀, 𝑁)) via (𝛾. 𝑓 ) (𝑔) (𝑚) = 𝛾. 𝑓 (𝛾−1𝑔) (𝛾−1(𝑚)) and put

H𝑖Ω(𝑋
𝔭
𝐾𝔭 , 𝑀, 𝑁) := H𝑖 (𝐺 (𝐹)+,F (𝐺 (A𝔭,∞)/𝐾𝔭,HomΩ(𝑀, 𝑁))).

These cohomology groups carry commuting actions of the component group 𝜋0 (𝐺∞) and the Hecke
algebra

T
𝔭
𝐾𝔭 (Ω) := Ω[𝐾𝔭\𝐺 (A𝔭,∞)/𝐾𝔭] .

In case 𝑀 = Ω with the trivial 𝐺𝔭-action, we put

H𝑖 (𝑋𝔭
𝐾𝔭 , 𝑁) := H𝑖Ω(𝑋

𝔭
𝐾𝔭 ,Ω, 𝑁).

Suppose that 𝑀 = 𝑀1 ⊗Ω 𝑀2 with both 𝑀1 and 𝑀2 being Ω[𝐺𝔭]-modules. Then by definition, we have

H𝑖Ω (𝑋
𝔭
𝐾𝔭 , 𝑀1 ⊗ 𝑀2, 𝑁) = H𝑖Ω(𝑋

𝔭
𝐾𝔭 , 𝑀1,HomΩ(𝑀2, 𝑁)), (1.5)

where 𝐺 (𝐹) acts on 𝑀2 via the embedding 𝐺 (𝐹) ↩→ 𝐺𝔭 . For later purposes, we also define the
following continuous variant: Let A be an affinoid Q𝑝-algebra. Given a continuous A-module M with a
continuous 𝐺𝔭-action and an 𝐴[𝐺 (𝐹)]-module N that is finitely generated and free over A, we put

H𝑖𝐴,ct(𝑋
𝔭
𝐾𝔭 , 𝑀, 𝑁) := H𝑖 (𝐺 (𝐹)+,F (𝐺 (A𝔭,∞)/𝐾𝔭,Hom𝐴,ct(𝑀, 𝑁))).

It also carries actions by the Hecke algebra T𝔭𝐾𝔭 (𝐴) := 𝐴[𝐾𝔭\𝐺 (A𝔭,∞)/𝐾𝔭] and the component group
𝜋0 (𝐺∞).

Let us discuss an example of the above construction. First, we are going to recall the notion of compact
induction: Let 𝐾𝔭 ⊂ 𝐺𝔭 be an open compact subgroup and L a Ω[𝐾𝔭]-module. The compact induction
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c-ind𝐺𝔭

𝐾𝔭
𝐿 of L to 𝐺𝔭 is given by the set of functions 𝑓 : 𝐺𝔭 → 𝐿 that satisfy 𝑓 (𝑔𝑘) = 𝑘−1. 𝑓 (𝑔) for all

𝑔 ∈ 𝐺𝔭, 𝑘 ∈ 𝐾𝔭 and have finite support modulo 𝐾𝔭. The group 𝐺𝔭 acts on c-ind𝐺𝔭

𝐾𝔭
𝐿 via left translation.

If L is a Ω[𝐺𝔭]-module, the map

𝐿 ⊗Ω c-ind𝐺𝔭

𝐾𝔭
Ω −→ c-ind𝐺𝔭

𝐾𝔭
𝐿, 𝑙 ⊗ 𝑓 ↦−→ [𝑔 ↦→ 𝑓 (𝑔) · 𝑔−1.𝑙] (1.6)

is a 𝐺𝔭-equivariant isomorphism. For any Ω[𝐺 (𝐹)]-module N, the bilinear pairing

F (𝐺𝔭/𝐾𝔭, 𝑁) × c-ind𝐺𝔭

𝐾𝔭
Ω −→ 𝑁, ( 𝑓1, 𝑓2) ↦−→

∑
𝑘∈𝐺𝔭/𝐾𝔭

𝑓1(𝑔) · 𝑓2(𝑔)

induces an isomorphism

F (𝐺𝔭/𝐾𝔭, 𝑁)
�
−−→ HomΩ(c-ind𝐺𝔭

𝐾𝔭
Ω, 𝑁)

of 𝐺 (𝐹)-modules. This in turn induces a canonical T𝔭𝐾𝔭 (Ω)-equivariant isomorphism

H𝑖Ω(𝑋
𝔭
𝐾𝔭 , c-ind𝐺𝔭

𝐾𝔭
Ω, 𝑁) � H𝑖 (𝑋𝐾𝔭×𝐾𝔭 , 𝑁)

for every 𝑖 ≥ 0. More generally, by using Equation (1.5) we get canonical T𝔭𝐾𝔭 (Ω)-equivariant isomor-
phisms

H𝑖Ω (𝑋
𝔭
𝐾𝔭 , c-ind𝐺𝔭

𝐾𝔭
𝐿, 𝑁) � H𝑖 (𝑋𝐾𝔭×𝐾𝔭 ,HomΩ (𝐿, 𝑁)). (1.7)

Consider the projective limit

H̃𝑖 (𝑋𝐾𝔭 , 𝑁) = lim
−−→
𝐾𝔭

H𝑖 (𝑋𝐾𝔭×𝐾𝔭 , 𝑁)

taken over all open compact subgroups 𝐾𝔭 ⊆ 𝐺𝔭 . This space carries commuting actions of 𝜋0 (𝐺∞), 𝐺𝔭

and T𝔭𝐾𝔭 (Ω). Since Ω has characteristic 0, one deduces that the canonical map

H𝑖 (𝑋𝐾𝔭×𝐾𝔭 , 𝑁) −→ H̃𝑖 (𝑋𝐾𝔭 , 𝑁)𝐾𝔭

is an isomorphism for all open compact subgroups 𝐾𝔭 ⊆ 𝐺𝔭. Thus, H̃𝑖 (𝑋𝐾𝔭 , 𝑁) is a smooth represen-
tation of 𝐺𝔭. Moreover, it is admissible in case N is finite-dimensional. The goal of this section is to
compare HomΩ[𝐺𝔭 ] (𝑀, H̃𝑖 (𝑋𝐾𝔭 , 𝑁)) and H𝑖Ω (𝑋

𝔭
𝐾𝔭 , 𝑀, 𝑁) in certain situations.

Lemma 1.3. Let M be a smooth Ω[𝐺𝔭]-representation of finite length. Then, there exists a resolution

0 −→ 𝑃1 −→ 𝑃0 −→ 𝑀 −→ 0,

where 𝑃𝑖 , 𝑖 = 0, 1 are finitely generated projective smooth representations.

Proof. In case 𝔭 ∈ ram(𝐷), the group 𝐺𝔭 is compact. Thus, the category of smooth representations
of 𝐺𝔭 with Ω-coefficients is semisimple and M is projective itself. In case D is split at 𝔭 and therefore
𝐺𝔭 � PGL2(𝐹𝔭), this is a consequence of the main theorem of [36]. �

Let 𝜋𝔭,∞ be the restricted tensor product of all local components of 𝜋 away from 𝔭 and ∞. This
is a smooth irreducible representation of 𝐺 (A𝔭,∞). We fix models 𝜋𝔭,∞𝐸 , respectively 𝜋𝔭,𝐸 of 𝜋𝔭,∞,
respectively 𝜋𝔭 over E and a 𝐺 (A∞)-equivariant isomorphism

𝜋𝔭,∞𝐸 ⊗𝐸 𝜋𝔭,𝐸 � 𝜋∞𝐸 .
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From now on, Ω will always be an extension of E and we put 𝜋𝔭,∞Ω = 𝜋𝔭,∞𝐸 ⊗𝐸 Ω as well as 𝜋𝔭,Ω =
𝜋𝔭,𝐸 ⊗𝐸 Ω. Further, we assume that 𝐾𝔭 is of the form 𝐾𝔭 =

∏
𝔮≠𝔭 𝐾𝔮 and that (𝜋𝔭,∞Ω )𝐾

𝔭
≠ 0. We fix a

finite set S of primes of F as before such that 𝔭 ∈ 𝑆. In particular, the Hecke algebra 𝑇𝑆
𝐾𝑆

(Ω) is a central
subalgebra of T𝔭𝐾𝔭 (Ω).

Proposition 1.4. Let M be a smooth Ω[𝐺𝔭]-representation of finite length. There are isomorphisms

H𝑞Ω(𝑋
𝔭
𝐾𝔭 , 𝑀,𝑉𝒌 (Ω)

∨)𝔪𝑆𝜋
�
−−→ HomΩ[𝐺𝔭 ] (𝑀, H̃𝑞 (𝑋𝐾𝔭 , 𝑉𝒌 (Ω)

∨)𝔪𝑆𝜋 )

that are functorial in M and equivariant under the actions ofT𝔭𝐾𝔭 (Ω) and 𝜋0 (𝐺∞). Furthermore, we have

dimΩ H𝑑Ω (𝑋
𝔭
𝐾𝔭 , 𝑀,𝑉𝒌 (Ω)

∨) < ∞

for all 𝑑 ≥ 0.

Proof. If 𝑀 = 𝑃 is projective, there are functorial isomorphisms

H𝑑Ω (𝑋
𝔭
𝐾𝔭 , 𝑃,𝑉𝒌 (Ω)

∨)
�
−−→ HomΩ[𝐺𝔭 ] (𝑃, H̃

𝑑
(𝑋𝐾𝔭 , 𝑉𝒌 (Ω)

∨)) (1.8)

for all 𝑑 ≥ 0 by [24, Lemma 3.5(b)]. In particular, we have

H𝑑Ω(𝑋
𝔭
𝐾𝔭 , 𝑃,𝑉𝒌 (Ω)

∨)𝔪𝑆𝜋 = 0

for all 𝑑 < 𝑞 by Theorem 1.1. Thus, the short exact sequence

0 −→ 𝑃1 −→ 𝑃0 −→ 𝑀 −→ 0

of Lemma 1.3 induces the exact sequence

0 → H𝑞Ω (𝑋
𝔭
𝐾𝔭 , 𝑀,𝑉𝒌 (Ω)

∨)𝔪𝑆𝜋 → H𝑞Ω(𝑋
𝔭
𝐾𝔭 , 𝑃0, 𝑉𝒌 (Ω)

∨)𝔪𝑆𝜋 → H𝑞Ω (𝑋
𝔭
𝐾𝔭 , 𝑃1, 𝑉𝒌 (Ω)

∨)𝔪𝑆𝜋 ,

and the first claim follows from the isomorphism (1.8) for 𝑃 = 𝑃0, 𝑃1.
Since H̃𝑑 (𝑋𝐾𝔭 , 𝑉𝒌 (Ω)∨) is admissible, the isomorphism (1.8) implies that

dimΩ H𝑑Ω(𝑋
𝔭
𝐾𝔭 , 𝑃,𝑉𝒌 (Ω)

∨)𝔪𝑆𝜋 < ∞ ∀𝑑 ≥ 0

in case P is finitely generated and projective. For M of finite length, consider again the long exact
sequence induces by the short exact sequence of Lemma 1.3. �

Remark 1.5. A typical projective smooth representation is the compact induction c-ind𝐺𝔭

𝐾𝔭
Ω of the

trivial representation from an open compact subgroup 𝐾𝔭 ⊆ 𝐺𝔭. In that case, the result of [24] used
above simply follows from the composition of isomorphisms

H𝑑Ω(𝑋
𝔭
𝐾𝔭 , c-ind𝐺𝔭

𝐾𝔭
Ω, 𝑁) �H𝑑Ω(𝑋𝐾𝔭×𝐾𝔭 , 𝑁)

�H̃𝑑 (𝑋𝐾𝔭 , 𝑁)𝐾𝔭

�HomΩ[𝐺𝔭 ] (c-ind𝐺𝔭

𝐾𝔭
Ω, H̃𝑑 (𝑋𝐾𝔭 , 𝑁)),

where the first isomorphism is a special case of Equation (1.7) and the third follows from Frobenius
reciprocity.
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Proposition 1.4 together with Theorem 1.1 implies the following:

Corollary 1.6. Let 𝜖 : 𝜋0 (𝐺∞) → {±1} be a character and M an irreducible smooth Ω[𝐺𝔭]-
representation. Then

H𝑞Ω(𝑋
𝔭
𝐾𝔭 , 𝑀,𝑉𝒌 (Ω)

∨) 𝜖
𝔪𝑆𝜋

= 0

unless 𝑀 � 𝜋𝔭,Ω. Furthermore, there is an isomorphism

H𝑞Ω(𝑋
𝔭
𝐾𝔭 , 𝜋𝔭,Ω, 𝑉𝒌 (Ω)

∨) 𝜖
𝔪𝑆𝜋
� (𝜋𝔭,∞Ω )𝐾

𝔭

of T𝔭𝐾𝔭 (Ω)-modules. In particular, it is an absolutely irreducible T𝔭𝐾𝔭 (Ω)-module.

Remark 1.7. The corollary above was implicitly proven in [39] under the assumption that the local
representation 𝜋𝔭 has an Iwahori-fixed vector by using an explicit resolution of 𝜋𝔭 constructed via the
Bruhat–Tits tree.

1.3. The Steinberg case

We now assume that D is split at 𝔭. We define the Ω-valued smooth Steinberg representation St∞𝔭 (Ω)
of 𝐺𝔭 as the space of locally constant Ω-valued functions on P1 (𝐹𝔭) modulo constant functions. The
group 𝐺𝔭 � PGL2(𝐹𝔭) naturally acts on P1(𝐹𝔭) and thus also on St∞𝔭 (Ω). We assume for the moment
that 𝜋𝔭 � St∞𝔭 (C). Then, Corollary 1.6 implies that the T𝔭𝐾𝔭 (Ω)-module H𝑞Ω (𝑋

𝔭
𝐾𝔭 , St∞𝔭 (Ω), 𝑉𝒌 (Ω)∨) 𝜖𝔪𝑆𝜋

is irreducible.
Given smooth Ω-representations V and W of 𝐺𝔭, we denote by Ext𝑖∞(𝑉,𝑊) the Ext-groups in the

category of smooth representations. It is well known that

dimΩ Ext𝑖∞(Ω, St∞𝔭 (Ω)) =

{
1 if 𝑖 = 1
0 otherwise

(1.9)

and

dimΩ Ext𝑖∞(St∞𝔭 (Ω), St∞𝔭 (Ω)) =

{
1 if 𝑖 = 0
0 otherwise.

(1.10)

The above calculations follow directly from the existence of the following two projective resolutions:

0 −→ c-ind𝐺𝔭

𝐽𝔭
𝜒− −→ c-ind𝐺𝔭

𝐾𝔭
Ω −→ Ω −→ 0

and

0 −→ c-ind𝐺𝔭

𝐾𝔭
Ω −→ c-ind𝐺𝔭

𝐽𝔭
𝜒− −→ St∞𝔭 (Ω) −→ 0.

Here 𝐾𝔭 = PGL2(O𝔭) is a maximal compact subgroup, 𝐽𝔭 ⊂ 𝐺𝔭 is an open compact subgroup that
contains an Iwahori subgroup as a normal subgroup and 𝜒− : 𝐽𝔭 → {±1} is a nontrivial character
that is trivial on the Iwahori subgroup. The exactness of the first sequence is just a reformulation of
the contractibility of the Bruhat–Tits tree. The second follows from the fact that the cohomology with
compact support of the Bruhat–Tits tree is the Steinberg representation (see, for example, [39, equation
(18)]). To keep with our promise not to use the Bruhat–Tits tree, let us mention that alternative
calculations of these Ext-groups that do not invoke the Bruhat–Tits tree – and work for more general
reductive groups – can be found in [32] and [15].
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Let E∞ be the unique (up to multiplication by a scalar) nontrivial extension of Ω by St∞𝔭 (Ω), that is,
there exists a nonsplit exact sequence

0 −→ St∞𝔭 (Ω) −→ E∞ −→ Ω −→ 0 (1.11)

of 𝐺𝔭-modules. The short exact sequence (1.11) induces the short exact sequence

0 −→ 𝑉𝒌 (Ω)
∨ −→ HomΩ(E∞, 𝑉𝒌 (Ω)

∨) −→ HomΩ (St∞𝔭 (Ω), 𝑉𝒌 (Ω)
∨) −→ 0,

which in turn induces the boundary map

H𝑑Ω(𝑋
𝔭
𝐾𝔭 , St∞𝔭 (Ω), 𝑉𝒌 (Ω)

∨) −→ H𝑑+1
Ω (𝑋𝔭

𝐾𝔭 , 𝑉𝒌 (Ω)
∨)

in cohomology. Given a character 𝜖 : 𝜋0 (𝐺∞) → {±1}, we write

𝑐𝑑,𝜖∞ : H𝑑Ω (𝑋
𝔭
𝐾𝔭 , St∞𝔭 (Ω), 𝑉𝒌 (Ω)

∨) 𝜖
𝔪𝑆𝜋

−→ H𝑑+1
Ω (𝑋𝔭

𝐾𝔭 , 𝑉𝒌 (Ω)
∨) 𝜖

𝔪𝑆𝜋
(1.12)

for the induced map on the 𝔪𝑆𝜋-localization of the 𝜖-isotypic part. It is a homomorphism of T𝔭𝐾𝔭 (Ω)-
modules.

The following generalization of [39, Lemma 6.2 (b)] holds. Its proof is an adaption of that of
[24, Lemma 3.7].

Lemma 1.8. The map

𝑐𝑑,𝜖∞ : H𝑑Ω (𝑋
𝔭
𝐾𝔭 , St∞𝔭 (Ω), 𝑉𝒌 (Ω)

∨) 𝜖
𝔪𝑆𝜋

−→ H𝑑+1
Ω (𝑋𝔭

𝐾𝔭 , 𝑉𝒌 (Ω)
∨) 𝜖

𝔪𝑆𝜋

is an isomorphism for every sign character 𝜖 : 𝜋0 (𝐺∞) → {±1} and every 𝑑 ≥ 0.

Proof. We have to show that

H𝑑Ω (𝑋
𝔭
𝐾𝔭 , E∞, 𝑉𝒌 (Ω)

∨) 𝜖
𝔪𝑆𝜋

= 0

for all 𝑑 ≥ 0. Let

0 −→ 𝑃1 −→ 𝑃0 −→ E∞ −→ 0 (1.13)

be a projective resolution of E∞ as in Lemma 1.3. Again, by [24, Lemma 3.5(b)] we have

H𝑑Ω(𝑋
𝔭
𝐾𝔭 , 𝑃𝑖 , 𝑉𝒌 (Ω)

∨) 𝜖
𝔪𝑆𝜋

�
−−→ HomΩ[𝐺𝔭 ] (𝑃𝑖 , H̃

𝑑
(𝑋𝐾𝔭 , 𝑉𝒌 (Ω)

∨) 𝜖
𝔪𝑆𝜋

)

for all 𝑑 ≥ 0 and 𝑖 = 0, 1. As a 𝐺𝔭-module H̃𝑑 (𝑋𝐾𝔭 , 𝑉𝒌 (Ω)∨) 𝜖𝔪𝑆𝜋
is isomorphic to some copies of St∞𝔭 (Ω)

by our assumption and Theorem 1.1. Thus, analyzing the long exact sequence induced from Equation
(1.13) it is enough to show that

Ext𝑑∞(E∞, St∞𝔭 (Ω)) = 0

for all 𝑑 ≥ 0. But this follows directly from applying Ext𝐺𝔭 (·, St∞𝔭 (Ω)) to the short exact sequence (1.11)
and the computations (1.9) and (1.10) of dimensions of smooth Ext-groups. �

2. Stabilizations

We explain the connection between overconvergent cohomology and the cohomology of 𝔭-arithmetic
subgroups with values in duals of locally analytic principal series representations. We fix a prime 𝔭 of
F, at which the quaternion algebra D is split, and an embedding
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12 L. Gehrmann and M. R. Pati

𝜄𝑝 : Q ↩−→ Q𝑝 ,

where p denotes the rational prime underlying 𝔭. We define 𝐸𝑝 to be the completion of E with respect
to the topology induced by 𝜄𝑝 .

2.1. Smooth principal series

We will give a representation-theoretic description of 𝔭-stabilizations as in [21, Section 2.2]. Most of
the basic results on smooth representations of PGL2 over local fields that are used in this section can be
found in [12, Section 4.5].

As mentioned before, we may identify 𝐺𝔭 with PGL2(𝐹𝔭). Let B be the standard Borel subgroup of
𝐺𝔭 of upper triangular matrices. Given a smooth Ω-representation 𝜏 of B its smooth parabolic induction
is the space

𝑖𝐵 (𝜏) = { 𝑓 : 𝐺𝔭 → 𝜏 locally constant | 𝑓 (𝑏𝑔) = 𝑏. 𝑓 (𝑔) ∀𝑏 ∈ 𝐵, 𝑔 ∈ 𝐺𝔭}.

The group 𝐺𝔭 acts on 𝑖𝐵 (𝜏) via right translation. We identify the spaces of locally constant characters
on B with those on 𝐹×

𝔭 by mapping a locally constant character 𝜒 : 𝐹×
𝔭 −→ Ω× to the character

𝐵 −→ Ω×,

(
𝑏1 𝑢
0 𝑏2

)
↦−→ 𝜒(𝑏1/𝑏2). (2.1)

Definition 2.1. A 𝔭-stabilization (𝜒, 𝜗) of 𝜋Ω consists of a locally constant character 𝜒 : 𝐹×
𝔭 −→ Ω×

together with a nonzero 𝐺𝔭-equivariant homomorphism

𝜗 : 𝑖𝐵 (𝜒) −→ 𝜋𝔭,Ω.

Let (𝜒, 𝜗) be a𝔭-stabilization of 𝜋Ω. Since 𝜋𝔭,Ω is irreducible,𝜗 is automatically surjective. Moreover,
(𝜒, 𝜗) induces a 𝔭-stabilization of 𝜋Ω′ for every extension Ω′ of Ω. By the classification of smooth
irreducible representations of 𝐺𝔭, we know that 𝜋𝔭 is either supercuspidal or a quotient of a smooth
parabolic induction as above (withΩ = C). In the first case, 𝜋Ω admits no𝔭-stabilization. In the later case,
there always exists a finite extension Ω′ of Ω such that 𝜋Ω′ admits a 𝔭-stabilization (𝜒, 𝜗). Furthermore,
the map 𝜗 is unique up to multiplication with a scalar. The character 𝜒 is in general not unique. Suppose
𝜋Ω′ admits a 𝔭-stabilization (𝜒, 𝜗). If 𝜗 is an isomorphism, then 𝜒2 ≠ 1 and 𝜒2 ≠ | · |2𝔭 . Moreover,
𝑖𝐵 (𝜒) is isomorphic to 𝑖𝐵 (𝜒

−1 | · |𝔭) but to no other principal series. Thus, as long as 𝜒2 ≠ | · |𝔭 there are
two essentially different 𝔭-stabilizations.

If 𝜗 is not an isomorphism, then 𝜒2 = 1 and the kernel of 𝜗 is one-dimensional generated by the
function 𝑔 ↦→ 𝜒(det(𝑔)). Moreover, the sequence

0 −→ ker(𝜗) −→ 𝑖𝐵 (𝜒) −→ 𝜋𝔭,Ω −→ 0

is nonsplit. We have 𝜋𝔭,Ω � St∞𝔭 (Ω) ⊗ 𝜒 in this case.
From the discussion above and Proposition 1.4, we get the following:

Corollary 2.2. Suppose 𝜋Ω admits a 𝔭-stabilization (𝜒, 𝜗). Then for every character
𝜖 : 𝜋0 (𝐺∞) → {±1}, there is an isomorphism

H𝑞Ω(𝑋
𝔭
𝐾𝔭 , 𝑖𝐵 (𝜒), 𝑉𝒌 (Ω)

∨) 𝜖
𝔪𝑆𝜋
� (𝜋𝔭,∞Ω )𝐾

𝔭

of T𝐾𝔭 (Ω)-modules. In particular, it is an absolutely irreducible T𝐾𝔭 (Ω)-module.
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Remark 2.3. We will be mostly interested in the case that the representation 𝜋𝔭 admits an invariant
vector under the Iwahori group

𝐼𝔭 = {𝑔 ∈ PGL2 (O𝔭) | 𝑔 is upper triangular mod 𝔭}.

It is well known that having an Iwahori-fixed vector is equivalent to having a 𝔭-stabilization (𝜒, 𝜗) with
respect to an unramified character 𝜒, that is, 𝜒(O×

𝔭 ) = 1.

2.2. Noncritical 𝔭-stabilizations

Composing an embedding 𝜎 : 𝐹 ↩→ 𝐸 ⊆ Qwith 𝜄𝑝 induces a p-adic topology on F. We define Σ𝔭 ⊆ Σ to
be the set of all embeddings inducing the topology coming from our chosen prime𝔭 and put Σ𝔭 = Σ\Σ𝔭.
We identify Σ𝔭 ⊆ Σ with the set of embeddings 𝐹𝔭 ↩→ 𝐸𝑝 .

Suppose Ω is a finite extension of 𝐸𝑝 , which we will do from now on. We may decompose

𝑉𝒌 (Ω) = 𝑉𝒌𝔭 (Ω) ⊗Ω 𝑉𝒌𝔭 (Ω)

with

𝑉𝒌𝔭 (Ω) =
⊗
𝜎∈Σ𝔭

𝑉𝑘𝜎 (Ω) and 𝑉𝒌𝔭 (Ω) =
⊗
𝜎∈Σ𝔭

𝑉𝑘𝜎 (Ω).

For each 𝜎 ∈ Σ𝔭, the group 𝐺𝔭 acts on 𝑉𝑘𝜎 via the embedding 𝜎 : 𝐹𝔭 ↩→ 𝐸𝑝 ⊆ Ω. Hence, the
representation 𝑉𝒌𝔭 (Ω) of 𝐺 (𝐹) extends to an algebraic representation of the group 𝐺𝔭.

We will assume for the reminder of this section that 𝜋Ω admits a 𝔭-stabilization (𝜒, 𝜗). We define
the locally algebraic 𝐺𝔭-representation

𝑖𝐵 (𝜒𝒌𝔭 ) = 𝑖𝐵 (𝜒) ⊗Ω 𝑉𝒌𝔭 (Ω).

Then, by Equation (1.5), we have a canonical T𝔭𝐾𝔭 (Ω)-equivariant isomorphism

H𝑑Ω(𝑋
𝔭
𝐾𝔭 , 𝑖𝐵 (𝜒), 𝑉𝒌 (Ω)

∨)
�
−−→ H𝑑Ω (𝑋

𝔭
𝐾𝔭 , 𝑖𝐵 (𝜒𝒌𝔭 ), 𝑉𝒌𝔭 (Ω)

∨).

Let A be an affinoid Q𝑝-algebra. As in §2.1, we identify locally Q𝑝-analytic characters from 𝐹×
𝔭 to

𝐴× with those from B to 𝐴×. Given a locally analytic representation 𝜏 of B, its locally analytic parabolic
induction is given by

I𝐵 (𝜏) = { 𝑓 : 𝐺𝔭 → 𝜏 locally analytic | 𝑓 (𝑏𝑔) = 𝑏. 𝑓 (𝑔) ∀𝑏 ∈ 𝐵, 𝑔 ∈ 𝐺𝔭}.

The group 𝐺𝔭 acts on it via right translation. Suppose that 𝐴 = Ω and 𝜏 is finite-dimensional. In that
case, the locally analytic parabolic induction is a strongly admissible locally analytic representation of
𝐺𝔭. The case of one-dimensional representations is [19, Proposition 1.21]. The proof works verbatim
for every finite-dimensional representation.

To any locally constant character 𝜒 : 𝐹×
𝔭 → Ω×, we associate the locally analytic character 𝜒𝒌𝔭 by

𝜒𝒌𝔭 (𝑥) = 𝜒(𝑥)
∏
𝜎∈Σ𝔭

𝜎(𝑥)−𝑘𝜎/2.

We may identify 𝑖𝐵 (𝜒𝒌𝔭 ) with a subspace of I𝐵 (𝜒𝒌𝔭 ) as follows: Given an embedding 𝜎 ∈ Σ𝔭 and
𝑓𝜎 ∈ 𝑉𝑘𝜎 (Ω), we consider the Ω-valued function 𝜓 𝑓𝜎 on PGL2 (Ω) constructed in Section 1.1.1. The
embedding 𝜎 : 𝐹𝔭 ↩→ 𝐸𝑝 induces an embedding of 𝐺𝔭 into PGL2 (Ω). We denote the restriction of 𝜓 𝑓𝜎
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to 𝐺𝔭 also by 𝜓 𝑓𝜎 . It is clearly a Q𝑝-analytic function. By Equation (1.1), the map

𝛽 : 𝑖𝐵 (𝜒) ⊗
⊗
𝜎∈Σ𝔭

𝑉𝑘𝜎 (Ω) −→ I𝐵 (𝜒𝒌𝔭 )

( 𝑓∞, ( 𝑓𝜎)𝜎∈Σ𝔭 ) ↦−→ 𝑓∞ ·
∏
𝜎∈Σ𝔭

𝜓 𝑓𝜎

is well defined.

Definition 2.4. A 𝔭-stabilization (𝜒, 𝜗) of 𝜋Ω is called noncritical if the canonical map

𝛽∗ : H𝑑Ω,ct (𝑋
𝔭
𝐾𝔭 , I𝐵 (𝜒𝒌𝔭 ), 𝑉𝒌𝔭 (Ω)

∨)𝔪𝑆𝜋 −→ H𝑑Ω(𝑋
𝔭
𝐾𝔭 , 𝑖𝐵 (𝜒𝒌𝔭 ), 𝑉𝒌𝔭 (Ω)

∨)𝔪𝑆𝜋 (2.2)

is an isomorphism for all 𝑑 ≥ 0.

Note that the notion of noncriticality depends on the level 𝐾𝔭 away from 𝔭 and the set S: If 𝛽∗ is an
isomorphism for 𝐾𝔭, it is clearly an isomorphism for every open compact subgroup containing 𝐾𝔭. But
on the other hand, while one can completely describe the right-hand side of Equation (2.2) when making
𝐾𝔭 smaller, one a priori does not have any control over the left-hand side. Similarly, strong multiplicity
one implies that the right-hand side does not change when enlarging S, while the left-hand side might
get larger.

2.2.1. Locally algebraic and locally analytic Steinberg representation
Assume for the moment that 𝜋𝔭 is the Steinberg representation. As mentioned above there is a unique
𝔭-stabilization 𝜗 : 𝑖𝐵 (1) → St∞𝔭 (Ω) which has a one-dimensional kernel. We say 𝜋 is noncritical at 𝔭 if
this unique 𝔭-stabilization is noncritical.

We define the locally algebraic Steinberg representation of weight 𝒌𝔭 via

St∞𝒌𝔭 (Ω) = St∞𝔭 (Ω) ⊗Ω 𝑉𝒌𝔭 (Ω).

Sending ( 𝑓𝜎)𝜎∈Σ𝔭 ∈ 𝑉𝒌𝔭 (Ω) to
∏
𝜎∈Σ𝔭 𝜓 𝑓𝜎 , we can view 𝑉𝒌𝔭 (Ω) as a subspace of I𝐵 (1𝒌𝔭 ). We define

the locally analytic Steinberg representation of weight 𝒌𝔭 as the quotient

Stan
𝒌𝔭
(Ω) = I𝐵 (1𝒌𝔭 )/𝑉𝒌𝔭 (Ω).

Thus, we have a natural embedding

𝜅 : St∞𝒌𝔭 (Ω) ↩→ Stan
𝒌𝔭
(Ω).

Proposition 2.5. Suppose that 𝜋𝔭 � St∞𝔭 (C) and 𝜋 is noncritical at 𝔭. Then the canonical map

𝜅∗ : H𝑑Ω,ct (𝑋
𝔭
𝐾𝔭 , Stan

𝒌𝔭
(Ω), 𝑉𝒌𝔭 (Ω)

∨)𝔪𝑆𝜋 −→ H𝑑Ω(𝑋
𝔭
𝐾𝔭 , St∞𝒌𝔭 (Ω), 𝑉𝒌𝔭 (Ω)

∨)𝔪𝑆𝜋

is an isomorphism for all 𝑑 ≥ 0.

Proof. We have the short exact sequence

0 −→ 𝑉𝒌𝔭 (Ω) −→ 𝑖𝐵 (1𝒌𝔭 ) −→ St∞𝒌𝔭 (Ω) −→ 0
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and the commutative diagram

𝑖𝐵 (1𝒌𝔭 ) I𝐵 (1𝒌𝔭 )

St∞𝒌𝔭 (Ω) Stan
𝒌𝔭
(Ω),

where the vertical arrows on both sides are given by quotient out by 𝑉𝒌𝔭 (Ω). For all 𝑑 ≥ 0, it induces
the following commutative diagram in cohomology

H𝑑Ω,ct (𝑋
𝔭
𝐾𝔭 , Stan

𝒌𝔭
(Ω), 𝑉𝒌𝔭 (Ω)

∨)𝔪𝑆𝜋 H𝑑Ω (𝑋
𝔭
𝐾𝔭 , St∞𝒌𝔭 (Ω), 𝑉𝒌𝔭 (Ω)

∨)𝔪𝑆𝜋

H𝑑Ω,ct (𝑋
𝔭
𝐾𝔭 , I𝐵 (1𝒌𝔭 ), 𝑉𝒌𝔭 (Ω)

∨)𝔪𝑆𝜋 H𝑑Ω (𝑋
𝔭
𝐾𝔭 , 𝑖𝐵 (1𝒌𝔭 ), 𝑉𝒌𝔭 (Ω)

∨)𝔪𝑆𝜋 .

Since 𝜋 is noncritical at𝔭, the lower horizontal map is an isomorphism and hence also the upper one. �

Remark 2.6. On page 653 of [14], it is claimed that a property closely related to noncriticality always
holds if the quaternion algebra D is totally definite. It is alluded to an Amice–Vélu and Vishik-type
argument. But to the knowledge of the authors of this article the most general results of that type are in
[11, Section 7], which essentially only cover the case of noncritical slope.

In the following, we are going to show that if the representation 𝜋𝔭 has an Iwahori-fixed vector the
above definition of noncriticality is equivalent to the one given in terms of overconvergent cohomology
that is used, for example, in [2] or [5]. The classicality theorem for overconvergent cohomology will
give a numerical criterion for the noncriticality of a 𝔭-stabilization. In order to state this criterion, later
we will need the following definition.

Definition 2.7. Let (𝜒, 𝜗) be a 𝔭-stabilization of 𝜋Ω. The p-adic valuation of
∏
𝜎∈Σ𝔭 𝜎(𝜛𝔭)

𝑘𝜎
2 𝜒(𝜛𝔭)

is called the slope of (𝜒, 𝜗). We say that (𝜒, 𝜗) has noncritical slope if its slope is less than
1
𝑒𝔭

min𝜎∈Σ𝔭 (𝑘𝜎 + 1), where 𝑒𝔭 denotes the ramification index of 𝔭.

2.3. Overconvergent cohomology

We give a quick overview over the basics of overconvergent cohomology.

2.3.1. Locally analytic inductions
For 𝑛 ≥ 1, let 𝐼𝑛𝔭 be the subgroup

𝐼𝑛𝔭 =

{
𝑔 ∈ PGL2(O𝔭) | 𝑔 ≡

(
1 0
0 1

)
mod 𝔭𝑛

}
,

and set 𝐼0
𝔭 = 𝐼𝔭. Then, (𝐼𝑛𝔭 )𝑛≥0 is a family of open normal subgroups of 𝐼𝔭 and it is a fundamental system

of neighbourhoods of the identity. Let A be an affinoidQ𝑝-algebra and 𝜒 : 𝐵∩ 𝐼𝔭 → 𝐴× a locally analytic
character. This means that there exists a minimal integer 𝑛𝜒 ≥ 1 such that 𝜒 restricted to 𝐵 ∩ 𝐼

𝑛𝜒
𝔭 is

analytic. For any integer 𝑛 ≥ 𝑛𝜒, define the 𝐴[𝐼𝔭]-module A𝑛𝜒 of functions 𝑓 : 𝐼𝔭 −→ 𝐴 such that

◦ 𝑓 is analytic on any coset of 𝐼𝔭/𝐼𝑛𝔭 ,
◦ 𝑓 (𝑏𝑘) = 𝜒(𝑏) 𝑓 (𝑘) ∀𝑏 ∈ 𝐵 ∩ 𝐼𝔭, 𝑘 ∈ 𝐼𝔭
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with the action of 𝐼𝔭 given by (ℎ · 𝑓 ) (𝑘) = 𝑓 (𝑘ℎ), and put

A𝜒 =
⋃
𝑛≥𝑛𝜒

A𝑛𝜒 .

The 𝐴[𝐼𝔭]-module A𝜒 is the locally analytic induction of 𝜒 to 𝐼𝔭. In the special case that 𝐴 = Ω is a
finite extension of 𝐸𝑝 and 𝜒 = 1𝒌𝔭 , we put

A𝒌𝔭 = A1𝒌𝔭
.

The Iwahori decomposition gives an isomorphism 𝐼𝔭 � (𝐼𝔭 ∩ N) × (𝐼𝔭 ∩ 𝐵), where N denotes the
group of unipotent lower triangular matrices. Thus, restricting a function 𝑓 ∈ A𝜒 to 𝐼𝔭 ∩ N induces an
isomorphism between A𝜒 and the space A(𝐼𝔭 ∩ N, 𝐴) of locally analytic A-valued functions on 𝐼𝔭 ∩ N.
An analogous bijection holds between A𝑛𝜒 and A𝑛 (𝐼𝔭 ∩ N, 𝐴), the space of n-locally analytic functions
on 𝐼𝔭 ∩ N.

2.3.2. The 𝑈𝔭 operator
Consider the compact induction c-ind𝐺𝔭

𝐼𝔭
(A𝑛𝜒). By Frobenius reciprocity, the ring

End𝐴[𝐺𝔭 ] (c-ind𝐺𝔭

𝐼𝔭
(A𝑛𝜒)) can be identified with the space of all functions Ψ : 𝐺𝔭 −→ End𝐴(A𝑛𝜒) such

that

◦ Ψ is 𝐼𝔭-biequivariant, that is, Ψ(𝑘1𝑔𝑘2) = 𝑘1Ψ(𝑔)𝑘2 in End𝐴(A𝑛𝜒), for all 𝑘1, 𝑘2 ∈ 𝐼𝔭, 𝑔 ∈ 𝐺𝔭, and
◦ for any element 𝑓 ∈ A𝑛𝜒, the function 𝐺𝔭 → A𝑛𝜒, 𝑔 ↦→ Ψ(𝑔) ( 𝑓 ) is compactly supported.

Let 𝑢𝔭 :=
(
𝜛𝔭 0
0 1

)
. Consider the element 𝜑𝑢𝔭 ∈ End𝐴(A𝑛𝜒) defined by

𝜑𝑢𝔭 ( 𝑓 ) (𝑛) = 𝑓 (𝑢𝔭𝑛𝑢
−1
𝔭 ) for all 𝑓 ∈ A𝑛𝜒, 𝑛 ∈ 𝐼𝔭 ∩ N.

By [31, Lemma 2.2], there exists a unique 𝐼𝔭-biequivariant function Ψ𝑢𝔭 : 𝐺𝔭 → End𝐴(A𝑛𝜒) such that
supp(Ψ𝑢𝔭 ) = 𝐼𝔭𝑢

−1
𝔭 𝐼𝔭 and Ψ𝑢𝔭 (𝑢

−1
𝔭 ) = 𝜑𝑢𝔭 . Abusing notation, we will simply denote by 𝑢𝔭 the 𝐺𝔭-

equivariant endomorphism of c-ind𝐺𝔭

𝐼𝔭
(A𝑛𝜒) corresponding to Ψ𝑢𝔭 .

We define the module of distributions D𝑛
𝜒,𝒌𝔭

:= Hom𝐴,ct(A𝑛𝜒, 𝐴) ⊗Ω 𝑉𝒌𝔭 (Ω)
∨ with its natural 𝐼𝔭-

action. For 𝑑 ≥ 0, we set

H𝑑 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛𝜒,𝒌𝔭 ) := H𝑑𝐴,ct(𝑋
𝔭
𝐾𝔭 , c-ind𝐺𝔭

𝐼𝔭
(A𝑛𝜒), 𝐴 ⊗Ω 𝑉𝒌𝔭 (Ω)

∨).

This notation is justified as follows: To any 𝐼𝔭-module M, one can attach a sheaf on the locally symmetric
spaceX𝐾𝔭×𝐼𝔭 (see, for example, [4, Definition 3.2 (ii)]). With similar arguments as in the proof of Lemma
1.2, one can show that the cohomology of the sheaf associated toD𝑛

𝜒,𝒌𝔭
is computed by the groups above.

For now, we are mostly interested in the following special case: 𝐴 = Ω is a finite extension of 𝐸𝑝
and 𝜒 = 1𝒌𝔭 . In this situation, we abbreviate

H𝑑 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛𝒌 ) := H𝑑 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛1𝒌𝔭 ,𝒌
𝔭 ).

Later, we will also need the case that A is the coordinate ring of an affinoid subspace of the weight space
(see Section 4.1).

Remark 2.8. In [2], overconvergent cohomology groups are introduced depending on a subset of the
set of all primes of F lying above p. The spaces defined above correspond to the subset consisting only
of the prime 𝔭.
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The endomorphism 𝑢𝔭 induces an operator, that we denote by 𝑈◦
𝔭 , on cohomology:

𝑈◦
𝔭 : 𝐻𝑑 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛𝜒,𝒌𝔭 ) −→ 𝐻𝑑 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛𝜒,𝒌𝔭 ).

Similarly as before, we may identify 𝑉𝒌𝔭 (Ω) with the space of (globally) algebraic vectors in A𝑛
𝒌𝔭

. It
induces an embedding

c-ind𝐺𝔭

𝐼𝔭
(𝑉𝒌𝔭 (Ω)) −→ c-ind𝐺𝔭

𝐼𝔭
(A𝑛𝒌𝔭 )

and the subspace c-ind𝐺𝔭

𝐼𝔭
(𝑉𝒌𝔭 (Ω)) is clearly invariant under the action of 𝑢𝔭. Thus, by invoking Equation

(1.7) we get a T𝔭𝐾𝔭 (Ω)-equivariant map

H𝑑 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛𝒌 ) −→ H𝑑 (𝑋𝐾𝔭×𝐼𝔭 , 𝑉𝒌 (Ω)
∨) (2.3)

in cohomology. We denote the natural operator on the right-hand side induced by 𝑢𝔭 by 𝑈𝔭. The
map (2.3) intertwines the action of the Hecke operator 𝑈◦

𝔭 on 𝐻𝑑 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛𝒌 ) with the action of∏
𝜎∈Σ𝔭 𝜎(𝜛𝔭)

𝑘𝜎
2 𝑈𝔭 on 𝐻𝑑𝑐 (𝑋𝐾𝔭×𝐼𝔭 , 𝑉𝒌 (Ω)

∨). This follows from a simple analysis of the change of
action of 𝑢𝔭 under the isomorphism

c-ind𝐺𝔭

𝐼𝔭
𝑉𝒌𝔭 (Ω) � 𝑉𝒌𝔭 (Ω) ⊗Ω c-ind𝐺𝔭

𝐼𝔭
Ω

given by Equation (1.6). We define the Hecke operator 𝑈◦
𝔭 on the right-hand side of Equation (2.3) by

𝑈◦
𝔭 =

∏
𝜎∈Σ𝔭

𝜎(𝜛𝔭)
𝑘𝜎

2 𝑈𝔭,

and similarly we define an action of 𝑈𝔭 on the left-hand side of Equation (2.3).

2.3.3. Slope decompositions and classicality
We give a reminder on slope decompositions. As before, A denotes a affinoid Q𝑝-algebra. Let M be
an A-module equipped with an A-linear endomorphism 𝑢 : 𝑀 → 𝑀 . Fix a rational number ℎ ≥ 0. A
polynomial 𝑄 ∈ 𝐴[𝑥] is multiplicative of slope ≤ ℎ if

◦ the leading coefficient of Q is a unit in A and
◦ every edge of the Newton polygon of Q has slope ≤ ℎ.

We put 𝑄∗(𝑥) = 𝑥deg𝑄𝑄(1/𝑥). An element 𝑚 ∈ 𝑀 is said to be of slope ≤ ℎ if there is a multiplicative
polynomial 𝑄 ∈ 𝐴[𝑥] of slope ≤ ℎ such that 𝑄∗(𝑢)𝑚 = 0. Let 𝑀 ≤ℎ ⊆ 𝑀 be the submodule of elements
of M of slope ≤ ℎ.

Definition 2.9. A slope ≤ ℎ decomposition of M is an 𝐴[𝑢]-module isomorphism

𝑀 � 𝑀 ≤ℎ ⊕ 𝑀>ℎ

such that

◦ 𝑀 ≤ℎ is a finitely generated A-module and
◦ 𝑄∗(𝑢) acts invertibly on 𝑀>ℎ for every multiplicative polynomial 𝑄 ∈ 𝐴[𝑥] of slope ≤ ℎ.

Note that if 𝐴 = Ω is a finite extension of 𝐸𝑝 and M is finite-dimensional, then a slope ≤ ℎ
decomposition always exists. If M admits a slope ≤ ℎ decomposition for all ℎ ≥ 0, we put

𝑀<∞ =
⋃
ℎ≥0

𝑀 ≤ℎ .
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The most remarkable result about slope decomposition is the following theorem which was first proved
by Ash and Stevens [1] in special cases over Q and then generalized by Urban [42] and Hansen [27] to
more general settings. See also [4] for a detailed treatment of the case of PGL2 over arbitrary number
fields. In these results, one always considers all primes above 𝔭 simultaneously. The modifications
necessary to allow subsets of all primes above 𝔭 are explained in the proof of [2, Theorem 2.7].

Theorem 2.10. For every 𝑑 ≥ 0 and every ℎ ≥ 0 the cohomology groups

𝐻𝑑 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛𝒌 ),

admit a slope ≤ ℎ decomposition with respect to the Hecke operator 𝑈◦
𝔭 .

If ℎ < 1
𝑒𝔭

min𝜎∈Σ𝔭 (𝑘𝜎 + 1), where 𝑒𝔭 is the ramification index of 𝔭, then for all 𝑑 ≥ 0 the map (2.3)
induces the following T𝔭𝐾𝔭 -equivariant isomorphism

𝐻𝑑 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛𝒌 )
𝜖 ,≤ℎ ∼

−→ 𝐻𝑑 (𝑋𝐾𝔭×𝐼𝔭 , 𝑉𝒌 (Ω)
∨) 𝜖 ,≤ℎ .

Here, the slope decomposition is taken with respect to 𝑈◦
𝔭 on both sides.

2.4. Overconvergent cohomology and noncritical 𝔭-stabilization

Let A be an affinoid algebra and 𝜒 : 𝐹×
𝔭 −→ 𝐴× be a locally analytic character. Denote by 𝜒0 its

restriction to 𝔒×
𝔭 . An element 𝑓 ∈ A𝑛𝜒0 can uniquely extended to a function on 𝐵𝐼𝔭 ⊂ 𝐺𝔭 by putting

𝑓 (𝑏𝑘) = 𝜒(𝑏) 𝑓 (𝑘). Since 𝐵𝐼𝔭 ⊂ 𝐺𝔭 is open, extension by zero yields an 𝐼𝔭-equivariant A-linear
injection

A𝑛𝜒0 ↩−→ I𝐵 (𝜒) |𝐼𝔭 .

By Frobenius reciprocity, it induces a unique 𝐺𝔭-equivariant A-linear morphism

aug𝜒 : c-ind𝐺𝔭

𝐼𝔭
(A𝑛𝜒0) −→ I𝐵 (𝜒). (2.4)

The following theorem is due to Kohlhaase and Schraen.

Theorem 2.11. For every 𝑛 ≥ 𝑛𝜒0 , the sequence

0 −→ c-ind𝐺𝔭

𝐼𝔭
(A𝑛𝜒0)

𝑢𝔭−𝜒 (𝜛𝔭)
−−−−−−−−→ c-ind𝐺𝔭

𝐼𝔭
(A𝑛𝜒0)

𝑎𝑢𝑔𝜒
−−−−→ I𝐵 (𝜒) −→ 0 (2.5)

is exact.

Proof. See [31, Proposition 2.4 and Theorem 2.5]. �

Let 𝜒 : 𝐹×
𝔭 → Ω× be an unramified character. Similarly as above, the sequence

0 −→ c-ind𝐺𝔭

𝐼𝔭
(Ω)

𝑢𝔭−𝜒 (𝜛𝔭)
−−−−−−−−→ c-ind𝐺𝔭

𝐼𝔭
(Ω)

aug𝜒
−−−−→ 𝑖𝐵 (𝜒) −→ 0

is exact. This can be deduced from Borel’s theorem that c-ind𝐺𝔭

𝐼𝔭
(Ω) is a flat module over the Iwahori–

Hecke algebra (see the end of [25, Section 3.1]). Tensoring the above exact sequence with 𝑉𝒌𝔭 (Ω) and
using Equation (1.6), we get a short exact sequence

0 −→ c-ind𝐺𝔭

𝐼𝔭
(𝑉𝒌𝔭 (Ω))

𝑢𝔭−𝜒𝒌𝔭 (𝜛𝔭)
−−−−−−−−−−→ c-ind𝐺𝔭

𝐼𝔭
(𝑉𝒌𝔭 (Ω))

aug𝜒𝒌𝔭
−−−−−→ 𝑖𝐵 (𝜒𝒌𝔭 ) −→ 0. (2.6)
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Suppose that 𝜋𝔭 has an Iwahori-fixed vector. Given a 𝔭-stabilization (𝜒, 𝜗) of 𝜋Ω (with 𝜒 not
necessarily unramified), we define

𝔪𝑆𝜋, (𝜒,𝜗) ⊆ T
𝑆
𝐾 (Ω) [𝑈𝔭]

to be the maximal ideal generated by 𝔪𝑆𝜋 and 𝑈𝔭 − 𝜒(𝜛𝔭). In accordance with [2, Definition 2.12] and
[5, Definition 1.5.1], we make the following definition:

Definition 2.12. The maximal ideal 𝔪𝑆
𝜋, (𝜒,𝜗)

⊆ T𝑆𝐾 (Ω) [𝑈𝔭] is noncritical if the map

H𝑑 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛𝒌 )𝔪𝑆𝜋, (𝜒,𝜗) −→ H𝑑 (𝑋𝐾𝔭×𝐼𝔭 , 𝑉𝒌 (Ω)
∨)𝔪𝑆

𝜋, (𝜒,𝜗)
(2.7)

induced by Equation (2.3) is an isomorphism for all 𝑑 ≥ 0.

Proposition 2.13. Suppose that 𝜋𝔭 has an Iwahori-fixed vector, and let (𝜒, 𝜗) be a 𝔭-stabilization of
𝜋Ω. Then the following are equivalent:

(i) (𝜒, 𝜗) is noncritical
(ii) 𝔪𝑆

𝜋, (𝜒,𝜗)
is noncritical.

Proof. Note that 𝜒 is an unramified character. Thus, the long exact sequences induced by Equations
(2.5) and (2.6) yield the following diagram with exact columns:

H𝑑Ω,ct (𝑋
𝔭
𝐾𝔭 , I𝐵 (𝜒𝒌𝔭 ), 𝑉𝒌𝔭 (Ω)

∨)𝔪𝑆𝜋

H𝑑 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛𝒌 )𝔪𝑆𝜋

H𝑑 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛𝒌 )𝔪𝑆𝜋

H𝑑+1
Ω,ct (𝑋

𝔭
𝐾𝔭 , I𝐵 (𝜒𝒌𝔭 ), 𝑉𝒌𝔭 (Ω)

∨)𝔪𝑆𝜋

H𝑑Ω (𝑋
𝔭
𝐾𝔭 , 𝑖𝐵 (𝜒𝒌𝔭 ), 𝑉𝒌𝔭 (Ω)

∨)𝔪𝑆𝜋

H𝑑 (𝑋𝐾𝔭×𝐼𝔭 , 𝑉𝒌 (Ω)
∨)𝔪𝑆𝜋

H𝑑 (𝑋𝐾𝔭×𝐼𝔭 , 𝑉𝒌 (Ω)
∨)𝔪𝑆𝜋

H𝑑+1
Ω (𝑋𝔭

𝐾𝔭 , 𝑖𝐵 (𝜒𝒌𝔭 ), 𝑉𝒌𝔭 (Ω)
∨)𝔪𝑆𝜋

aug∗𝜒𝒌𝔭

𝑈◦
𝔭 − 𝜒𝒌𝔭 (𝜛𝔭)

𝜕

aug∗𝜒𝒌𝔭

𝑈◦
𝔭 − 𝜒𝒌𝔭 (𝜛𝔭)

𝜕

𝛽∗

(2.3)

(2.3)

𝛽∗

.

The existence of slope decompositions (see Theorem 2.10) implies that we may replace
H𝑑 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛𝒌 )𝔪𝑆𝜋 by H𝑑 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛𝒌 )𝔪𝑆𝜋, (𝜒,𝜗) in the diagram above (and similarly for cohomology
with coefficients in 𝑉𝒌 (Ω)): Indeed, the operator 𝑈◦

𝔭 − 𝜒𝒌𝔭 (𝜛𝔭) is an isomorphism on the part of co-
homology where the slope is bigger than h as long as h is large enough. On the other hand, the slope
≤ℎ-part is finite-dimensional and localizing at the ideal generated by𝑈◦

𝔭 − 𝜒𝒌𝔭 (𝜛𝔭) is the same as taking
the corresponding generalized eigenspace.

The five lemma immediately gives the implication (ii)⇒(i). The other direction is proven by induction
on d: Let us assume that (𝜒, 𝜗) is noncritical and that

H𝑑−1 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛𝒌 )𝔪𝑆𝜋, (𝜒,𝜗)
(2.7)
−−−−→ H𝑑−1 (𝑋𝐾𝔭×𝐼𝔭 , 𝑉𝒌 (Ω)

∨)𝔪𝑆
𝜋, (𝜒,𝜗)

is an isomorphism. Choose a positive integer N that is large enough. The assumptions above imply that
the map

H𝑑 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛𝒌 )𝔪𝑆𝜋, (𝜒,𝜗)
(2.7)
−−−−→ H𝑑 (𝑋𝐾𝔭×𝐼𝔭 , 𝑉𝒌 (Ω)

∨)𝔪𝑆
𝜋, (𝜒,𝜗)
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viewed as a homomorphism of finitely generated Ω[𝑇]/𝑇𝑁 -modules by letting T act via 𝑈◦
𝔭 − 𝜒𝒌𝔭 (𝜛𝔭)

fulfils the assumption of Lemma 2.14 below. In particular, it is an isomorphism. �

Given a Ω[𝑇]/𝑇𝑁 -module M put

𝑀 [𝑇] = ker(𝑀 ·𝑇
−−→ 𝑀).

Lemma 2.14. Let 𝑓 : 𝑀1 → 𝑀2 be a homomorphism of finitely generated Ω[𝑇]/𝑇𝑁 -modules. Assume
that

◦ f induces an isomorphism from 𝑀1 [𝑇] to 𝑀2 [𝑇] and
◦ f induces an injection from 𝑀1/𝑇𝑀1 to 𝑀2/𝑇𝑀2.

Then f is an isomorphism.

Proof. One immediately checks that f also induces an isomorphism from 𝑀1/𝑇𝑀1 to 𝑀2/𝑇𝑀2 since
dimΩ 𝑀𝑖 [𝑇] = dimΩ 𝑀𝑖/𝑇𝑀𝑖 for 𝑖 = 1, 2. Surjectivity of f then follows from Nakayama’s lemma. It
remains to prove injectivity: Let a be in the kernel of f. Assume that 𝑎 ≠ 0. There exists a maximal
integer 0 ≤ 𝑛 ≤ 𝑁 such that 𝑇𝑛 · 𝑎 ≠ 0. By construction, 𝑇𝑛 · 𝑎 is an element of 𝑀1 [𝑇] ∩ ker( 𝑓 ) = {0},
which is a contradiction. �

Applying the second part of Theorem 2.10 one deduces the following:

Corollary 2.15. Suppose that 𝜋𝔭 has an Iwahori-fixed vector. If a 𝔭-stabilization (𝜒, 𝜗) of 𝜋Ω has
noncritical slope, then it is noncritical.

Suppose 𝜋𝔭 = St∞𝔭 (C). Then the corollary above shows that 𝜋 is noncritical at 𝔭 if

(i) 𝑘𝜎 = 0 for all 𝜎 ∈ Σ𝔭 or
(ii) 𝐹𝔭 = Q𝑝 or

(iii) [𝐹𝔭 : Q𝑝] = 2 and 𝑘𝜎1 = 𝑘𝜎2 , where Σ𝔭 = {𝜎1, 𝜎2}.

This always holds in case 𝐹 = Q or F is imaginary quadratic by Equation (1.2).

3. Automorphic L-invariants

The main aim of this section is to define automorphic L-invariants for the representation 𝜋 under the
assumption that the local component of 𝜋 at a prime 𝔭 is Steinberg.

3.1. Extensions of locally analytic Steinberg representations

Let Ω be a finite extension of 𝐸𝑝 . The following construction of extensions is due to Breuil (see [9,
Section 2.1]). Let 𝜆 : 𝐹×

𝔭 → Ω be a continuous homomorphism. Note that 𝜆 is automatically locally
Q𝑝-analytic. We define 𝜏𝜆 to be the two-dimensional Ω-representation of B given by(

𝑎 𝑢
0 𝑑

)
↦−→

(
1 𝜆(𝑎/𝑑)
0 1

)

and put 𝜏𝜆,𝒌𝔭 = 𝜏𝜆 ⊗ 1𝒌𝔭 . As the short exact sequence

0 −→ 1𝒌𝔭 −→ 𝜏𝜆,𝒌𝔭 −→ 1𝒌𝔭 −→ 0

is split in the category of topological vector spaces, the induced sequence of locally analytic represen-
tations

0 −→ I𝐵 (1𝒌𝔭 ) −→ I𝐵 (𝜏𝜆,𝒌𝔭 ) −→ I𝐵 (1𝒌𝔭 ) −→ 0
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is exact (see, for example, Proposition 5.1 and Remark 5.4 of [30]). Pullback via 𝑉𝒌𝔭 (Ω) ↩→ I𝐵 (1𝒌𝔭 )
and pushforward along I𝐵 (1𝒌𝔭 ) � Stan

𝒌𝔭
(Ω) yields the exact sequence

0 −→ Stan
𝒌𝔭
(Ω) −→ E𝜆,𝒌𝔭 −→ 𝑉𝒌𝔭 (Ω) −→ 0. (3.1)

Let 𝑊1 and 𝑊2 be Q𝑝-analytic Ω-representations of 𝐺𝔭. We write Ext1an(𝑊1,𝑊2) for the space of
locally Q𝑝-analytic extensions of 𝑊2 by 𝑊1. The map

Homct(𝐹
×
𝔭 ,Ω) −→ Ext1an (𝑉𝒌𝔭 (Ω), Stan

𝒌𝔭
(Ω)), 𝜆 ↦−→ E𝜆,𝒌𝔭

is an isomorphism. In the case 𝐹𝔭 = Q𝑝 , this is due to Breuil. In fact, an analogous statement is true for
more general split reductive groups (see [18, Theorem 1] and [24, Theorem 2.15]).

Tensoring with 𝑉𝒌𝔭 (Ω) yields a canonical homomorphism

Ext1an(Ω, St∞𝔭 ) −→ Ext1an(𝑉𝒌𝔭 (Ω), St∞𝒌𝔭 (Ω)),

which is an isomorphism by [37, Proposition 4.14]. Moreover, by [37, Proposition 4.15] the canonical
injection

Ext1∞(Ω, St∞𝔭 ) −→ Ext1an(Ω, St∞𝔭 )

is an isomorphism. Let E∞ be the smooth extension of Equation (1.11). It follows that

E∞
𝒌𝔭

:= E∞ ⊗Ω 𝑉𝒌𝔭 (Ω)

is a generator of Ext1an (𝑉𝒌𝔭 (Ω), St∞𝒌𝔭 (Ω)). The following lemma compares this generator with Breuil’s
extension associated to the p-adic valuation.

Lemma 3.1. The natural map Ext1an(𝑉𝒌𝔭 (Ω), St∞𝒌𝔭 (Ω)) → Ext1an(𝑉𝒌𝔭 (Ω), Stan
𝒌𝔭
(Ω)) is injective. It sends

the generator E∞
𝒌𝔭

to a multiple of Eord𝔭 ,𝒌𝔭 .

Proof. This is [37, Corollary 4.16]. �

3.2. Definition of the L-invariant

We assume for the rest of this article that 𝜋𝔭 is the Steinberg representation.
Let 𝜆 : 𝐹×

𝔭 → Ω be a continuous character. The short exact sequence (3.1) induces the short exact
sequence

0 −→ 𝑉𝒌 (Ω)
∨ −→ HomΩ,ct (E𝜆,𝒌𝔭 , 𝑉𝒌𝔭 (Ω)∨) −→ HomΩ,ct (Stan

𝒌𝔭
(Ω), 𝑉𝒌𝔭 (Ω)

∨) −→ 0,

which in turn induces the boundary map

H𝑞Ω,ct (𝑋
𝔭
𝐾𝔭 , Stan

𝒌𝔭
(Ω), 𝑉𝒌𝔭 (Ω)

∨) −→ H𝑞+1
Ω (𝑋𝔭

𝐾𝔭 , 𝑉𝒌 (Ω)
∨)

in cohomology. Given a character 𝜖 : 𝜋0 (𝐺∞) → {±1}, we write

𝑐𝜖𝜆 : H𝑞Ω,ct (𝑋
𝔭
𝐾𝔭 , Stan

𝒌𝔭
(Ω), 𝑉𝒌𝔭 (Ω)

∨) 𝜖
𝔪𝑆𝜋

−→ H𝑞+1
Ω (𝑋𝔭

𝐾𝔭 , 𝑉𝒌 (Ω)
∨) 𝜖

𝔪𝑆𝜋

for the induced map, which is clearly a T𝔭𝐾𝔭 (Ω)-module homomorphism.
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Definition 3.2. The automorphic L-invariant of 𝜋 at 𝔭 with respect to the sign character 𝜖 : 𝜋0 (𝐺∞) →
{±1} is the subspace

L𝔭 (𝜋)
𝜖 := ker(𝜆 ↦−→ 𝑐𝜖𝜆 ) ⊆ Homct (𝐹

×
𝔭 ,Ω).

Proposition 3.3. Assume that 𝜋 is noncritical at 𝔭. Then for every sign character 𝜖 : 𝜋0 (𝐺∞) → {±1}
the codimension of the L-invariant L𝔭 (𝜋)

𝜖 ⊆ Homct(𝐹
×
𝔭 ,Ω) is equal to one. Moreover, it does not

contain the space of locally constant homomorphisms.

Proof. By Equation (1.10), the Ω-vector space HomΩ[𝐺𝔭 ] (St∞𝔭 , St∞𝔭 ) is one-dimensional. Thus, combin-
ing Proposition 2.5 and Lemma 1.8 one deduces that the space of T𝔭𝐾𝔭 (Ω)-linear homomorphisms be-
tween the two modules H𝑞Ω,ct (𝑋

𝔭
𝐾𝔭 , Stan

𝒌𝔭
(Ω), 𝑉𝒌𝔭 (Ω)

∨) 𝜖
𝔪𝑆𝜋

and H𝑞+1
Ω (𝑋𝔭

𝐾𝔭 , 𝑉𝒌 (Ω)∨) 𝜖𝔪𝑆𝜋
is one-dimensional

as well. One concludes that the codimension of the L-invariant is at most one.
We now show that the codimension is exactly one by showing that there exists a nontrivial element

in Homct(𝐹
×
𝔭 ,Ω) which is not contained in L𝔭 (𝜋)

𝜖 . Consider the homomorphism 𝑐𝜖ord𝔭 . By Lemma 3.1,
𝑐𝜖ord𝔭 = 𝑐𝑞,𝜖∞ ◦𝜅∗ up to a nonzero constant, where 𝑐𝑞,𝜖∞ denotes the homomorphism constructed in Equation
(1.12). By Lemma 1.8, the homomorphism 𝑐𝑞,𝜖∞ is an isomorphism, while 𝜅∗ is an isomorphism by
Proposition 2.5. Therefore, ord𝔭 ∉ L𝔭 (𝜋)

𝜖 . The second statement follows observing that locally constant
homomorphisms in Homct(𝐹

×
𝔭 ,Ω) are multiples of ord𝔭. �

Remark 3.4. As in [22], one could also define automorphic L-invariants for higher degree cohomology
groups, for which its 𝜋-isotypic component does not vanish. As these L-invariants neither seem to show
up in exceptional zero formulas nor are they used to define (plectic) Darmon cycles, we will not consider
them here.

4. P-adic families

For this section, we assume that F is totally real, 𝜋𝔭 is the Steinberg representation and 𝜋 is noncritical
at 𝔭. We give a formula for the automorphic L-invariant in terms of derivatives of 𝑈𝔭-eigenvalues of p-
adic families passing through 𝜋. Comparing with the corresponding formula for the Fontaine–Mazur L-
invariant of the corresponding Galois representation we deduce that automorphic and Fontaine–Mazur
L-invariants agree.

4.1. The weight space

Let Ω be a finite extension of 𝐸𝑝 . Define the (partial) weight space W𝔭 to be the rigid analytic space
over Ω associated to the completed group algebra OΩ�O×

𝔭 �. There is a universal character

𝜅un : O×
𝔭 −→ (OΩ�O×

𝔭 �)
×.

Let U ⊆ W𝔭 be an affinoid and O(U ) be the ring of its rigid analytic functions. We will denote by
𝜅un
U : O×

𝔭 → O(U )× the restriction of the universal character to U . For an affinoid U ⊆ W𝔭 and a locally
analytic character 𝜒 : 𝐵 ∩ 𝐼𝔭 → O(U )×, recall from section 2.3 the O(U ) [𝐼𝔭]-module A𝑛𝜒 defined as
the locally n-analytic induction of 𝜒 to 𝐼𝔭, and the cohomology groups H𝑑 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛𝜒,𝒌𝔭 ). If 𝜒 is
the universal character 𝜅un

U , we simply write H𝑑 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛U ,𝒌𝔭 ) in place of H𝑑 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛𝜅un
U ,𝒌

𝔭 ). If U
contains 𝒌𝔭, the evaluation O(U ) → Ω at 𝒌𝔭 induces the map

H𝑑 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛U ,𝒌𝔭 ) −→ H(𝑋𝐾𝔭×𝐼𝔭 ,D𝑛𝒌 ). (4.1)
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4.2. Étaleness at 𝔪𝑆𝜋
Let U be an admissible open affinoid in W𝔭 containing 𝒌𝔭, and let O(U )𝒌𝔭 be the rigid localization of
O(U ) at 𝒌𝔭 ∈ U . It is the local ring defined as

O(U )𝒌𝔭 = lim
−−→

𝒌𝔭 ∈U ′ ⊂U
O(U ′),

where the limit is taken over all admissible open subaffinoids U ′ in U containing 𝒌𝖕. Thus, it contains
the algebraic localization of O(U ) at the maximal ideal 𝔪𝒌𝔭 attached to 𝒌𝔭. By a slight abuse of
notation, we write 𝔪𝑆𝜋 ⊆ T𝑆

𝐾𝑆
(O(U )) = T𝑆

𝐾𝑆
(Ω) ⊗Ω O(U ) for the ideal generated by 𝔪𝑆𝜋 ⊆ T𝑆

𝐾𝑆
(Ω)

and 𝔪𝒌𝔭 ⊆ O(U ).
The assumption that 𝜋 is noncritical at 𝔭 has strong implications on the existence of p-adic families

interpolating the system of Hecke-eigenvalues attached to 𝜋.

Theorem 4.1. Let 𝜖 : 𝜋0 (𝐺∞) → {±1} be a character. Up to shrinking U to a small enough open
affinoid containing 𝒌𝔭 the following holds:

H𝑑 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛U ,𝒌𝔭 )
𝜖
(𝔪𝑆𝜋 ,𝑈𝔭−1) = 0 for every 𝑑 ≠ 𝑞,

for 𝑑 = 𝑞 it is a freeO(U )𝒌𝔭 -module of finite rank and the map ofO(U )𝒌𝔭 -modules obtained by localizing
the composition of Equation (2.3) with the map (4.1) induces an isomorphism

H𝑞 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛U ,𝒌𝔭 )
𝜖
(𝔪𝑆𝜋 ,𝑈𝔭−1) ⊗O (U)𝒌𝔭

O(U )𝒌𝔭/𝔪𝒌𝔭
�
−−→ H𝑞 (𝑋𝐾𝔭×𝐼𝔭 , 𝑉𝒌 (Ω)

∨) 𝜖
(𝔪𝑆𝜋 ,𝑈𝔭−1) .

Moreover, the operator 𝑈◦
𝔭 acts on it via a scalar 𝛼𝜖𝔭 ∈ O(U )×

𝒌𝔭
.

Proof. Since F is totally real, the constant 𝛿 is equal to 0. Thus, Theorem 1.1 implies that

H𝑑 (𝑋𝐾𝔭×𝐼𝔭 , 𝑉𝒌 (Ω)
∨)(𝔪𝑆𝜋 ,𝑈𝔭−1) = 0 for all 𝑑 ≠ 𝑞.

The first claims follow using the same arguments as in the proof of [2, Theorem 2.14]. The statement
about the operator 𝑈◦

𝔭 can be deduced from the fact that

H𝑞 (𝑋𝐾𝔭×𝐼𝔭 , 𝑉𝒌 (Ω)
∨) 𝜖

(𝔪𝑆𝜋 ,𝑈𝔭−1)

is an absolutely irreducible T𝐾𝔭 (Ω)-module. �

Theorem 4.1 can be rephrased in more geometric terms: It implies that the map from a certain
eigenvariety to weight space is étale at the point corresponding to 𝜋.

4.3. Infinitesimal deformations and L-invariants

Let Ω[𝜀] := Ω[𝑋]/(𝑋2) be the Ω-algebra of dual numbers over Ω and 𝜋 : Ω[𝜀] → Ω be the natural
surjection sending 𝜀 to 0. If 𝑋 = Spec (𝐴) is an affine Ω-scheme and 𝑥 : 𝐴 → 𝐴/𝔪𝑥 = Ω is a Ω-valued
point, then the space of morphisms 𝒗𝑥 : 𝐴 → Ω[𝜀] such that 𝜋 ◦ 𝒗𝑥 = 𝑥 is identified with the tangent
space of X at x.

Let U be an admissible open affinoid containing 𝒌𝔭 and 𝜒 : 𝐵 → O(U )× a locally analytic character,
that we identify with an element of Hom(𝐹×

𝔭 ,O(U )×) as in section 2.1. Let 𝒗 : O(U ) → Ω[𝜀] be an
element of the tangent space of U at 𝒌𝔭. Then the pullback 𝜒𝒗 = 𝒗 ◦ 𝜒 ∈ Hom(𝐹×

𝔭 ,Ω[𝜀]) of 𝜒 along 𝒗
can be written in a unique way as

𝜒𝒗 = 𝜒(1 + 𝜕𝒗 (𝜒)𝜀), (4.2)
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where 𝜒 : 𝐹×
𝔭 → (O(U )/𝔪𝒌𝔭 )

× = Ω× denotes the reduction of 𝜒 modulo 𝔪𝒌𝔭 and 𝜕𝒗 (𝜒) is a homo-
morphism from 𝐹×

𝔭 to Ω.
Now, assume that 𝜒 : 𝐵 → O(U )× is a locally analytic character such that 𝜒(mod 𝔪𝒌𝔭 ) = 1𝒌𝔭 . Then,

for an element 𝒗 in the tangent space of U at 𝒌𝔭 we have 𝜒𝒗 = 1𝒌𝔭 (1 + 𝜕𝒗 (𝜒)𝜀). Consider the map
induced in cohomology by the reduction of 𝜒 modulo 𝔪𝒌𝔭 :

red𝜖𝜒 : H𝑞O (U) ,ct (𝑋
𝔭
𝐾𝔭 , I𝐵 (𝜒), 𝑉𝒌𝔭 (O(U ))∨) 𝜖

𝔪𝑆𝜋
−→ H𝑞Ω,ct (𝑋

𝔭
𝐾𝔭 , I𝐵 (1𝒌𝔭 ), 𝑉𝒌𝔭 (Ω)

∨) 𝜖
𝔪𝑆𝜋

.

Proposition 4.2. Let 𝜖 : 𝜋0 (𝐺∞) → {±1} be a sign character. If red𝜖𝜒 is surjective, then 𝜕𝒗 (𝜒) belongs
to L𝔭 (𝜋)

𝜖 for every element 𝒗 of the tangent space of U at 𝒌.

Proof. The locally analytic character 𝜒𝒗 of B over Ω[𝜀] can be seen as a two-dimensional representation
𝜏𝜒𝒗 of B over Ω. It is in fact the representation that we denoted by 𝜏𝜕𝒗 (𝜒) ,𝒌𝔭 in Section 3.1. It follows
from the discussion in Section 3.1 that there is a commutative diagram

H𝑞Ω,ct (𝑋
𝔭
𝐾𝔭 , I𝐵 (1𝒌𝔭 ), 𝑉𝒌𝔭 (Ω)

∨) 𝜖
𝔪𝑆𝜋

H𝑞+1
Ω,ct (𝑋

𝔭
𝐾𝔭 , I𝐵 (1𝒌𝔭 ), 𝑉𝒌𝔭 (Ω)

∨) 𝜖
𝔪𝑆𝜋

H𝑞Ω,ct (𝑋
𝔭
𝐾𝔭 , Stan

𝒌𝔭
(Ω), 𝑉𝒌𝔭 (Ω)

∨) 𝜖
𝔪𝑆𝜋

H𝑞+1
Ω,ct (𝑋

𝔭
𝐾𝔭 , 𝑉𝒌𝔭 (Ω), 𝑉𝒌𝔭 (Ω)

∨) 𝜖
𝔪𝑆𝜋

�̂�𝜖
𝜕𝒗 (𝜒)

𝑐𝜖
𝜕𝒗 (𝜒)

,

where 𝑐𝜖
𝜕𝒗 (𝜒)

and 𝑐𝜖
𝜕𝒗 (𝜒)

are the boundary maps induced by the dual of the short exact sequences

0 −→ I𝐵 (1𝒌𝔭 ) −→ I𝐵 (𝜏𝜒𝒗 ) −→ I𝐵 (1𝒌𝔭 ) −→ 0, (4.3)

and

0 −→ Stan
𝒌𝔭
(Ω) −→ E𝜕𝒗 (𝜒) ,𝒌𝔭 −→ 𝑉𝒌𝔭 (Ω) −→ 0,

respectively. It is sufficient to prove that 𝑐𝜖
𝜕𝒗 (𝜒)

is the zero map, which would follow from the surjectivity
of the homomorphism

H𝑞Ω,ct (𝑋
𝔭
𝐾𝔭 , I𝐵 (𝜏𝜒𝒗 ), 𝑉𝒌𝔭 (Ω)

∨) 𝜖
𝔪𝑆𝜋

−→ H𝑞Ω,ct (𝑋
𝔭
𝐾𝔭 , I𝐵 (1𝒌𝔭 ), 𝑉𝒌𝔭 (Ω)

∨) 𝜖
𝔪𝑆𝜋

(4.4)

induced by the dual of Equation (4.3). Our assumption on the surjectivity of red𝜖𝜒 immediately implies
that the map

H𝑞Ω[𝜀 ],ct (𝑋
𝔭
𝐾𝔭 , I𝐵 (𝜒𝒗), 𝑉𝒌𝔭 (Ω[𝜀])∨) 𝜖

𝔪𝑆𝜋
−→ H𝑞Ω,ct (𝑋

𝔭
𝐾𝔭 , I𝐵 (1𝒌𝔭 ), 𝑉𝒌𝔭 (Ω)

∨) 𝜖
𝔪𝑆𝜋

is surjective. The surjectivity of Equation (4.4) now follows from [25, Lemma 2.1]. �

Recall that we denoted by 𝛼𝜖𝔭 ∈ O(U )×
𝒌𝔭

the eigenvalue of the Hecke operator 𝑈◦
𝔭 acting on

H𝑞 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛U ,𝒌𝔭 )
𝜖
(𝔪𝑆𝜋 ,𝑈𝔭−1)

. Up to shrinking U , we can assume that 𝛼𝜖𝔭 ∈ O(U )×. Let 𝜒𝛼𝜖𝔭 : 𝐵 →

O(U )× be the character defined by

𝜒𝛼𝜖𝔭 |𝐵∩𝐼𝔭 = 𝜅un
U

𝜒𝛼𝜖𝔭 (𝑢𝔭) = 𝛼𝜖𝔭 .

Now, we are ready to prove the main result of this section.
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Theorem 4.3. Let 𝜖 : 𝜋0 (𝐺∞) → {±1} be a sign character. For every element 𝒗 of the tangent space of
U at 𝒌𝔭, we have

𝜕𝒗 (𝜒𝛼𝜖𝔭 ) ∈ L𝔭 (𝜋)
𝜖 .

Proof. By Proposition 4.2, it is enough to prove that red𝜖𝜒𝛼𝜖𝔭 is surjective. By Theorem 2.11, with the
same arguments as in the proof of Proposition 2.13, the map in cohomology

H𝑞O (U) ,ct (𝑋
𝔭
𝐾𝔭 , I𝐵 (𝜒𝛼𝜖𝔭 ), 𝑉𝒌𝔭 (O(U ))∨)𝔪𝑆 −→ H𝑞 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛U ,𝒌𝔭 )(𝔪𝑆𝜋 ,𝑈𝔭−𝛼

𝜖
𝔭 )

induced by Equation (2.5) is an isomorphism. By Theorem 4.1, the reduction modulo 𝔪𝒌𝔭 yields a
surjective map

H𝑞 (𝑋𝐾𝔭×𝐼𝔭 ,D𝑛U ,𝒌𝔭 )
𝜖
(𝔪𝑆𝜋 ,𝑈𝔭−1) −→ H𝑞 (𝑋𝐾𝔭×𝐼𝔭 , 𝑉𝒌 (Ω)

∨) 𝜖
(𝔪𝑆𝜋 ,𝑈𝔭−1) .

Furthermore, one has the isomorphisms

H𝑞 (𝑋𝐾𝔭×𝐼𝔭 , 𝑉𝒌 (Ω)
∨) 𝜖

(𝔪𝑆𝜋 ,𝑈𝔭−1) �H𝑞Ω (𝑋
𝔭
𝐾𝔭 , 𝑖𝐵 (1𝒌𝔭 ), 𝑉𝒌𝔭 (Ω)

∨) 𝜖
𝔪𝑆𝜋

�H𝑞Ω,ct (𝑋
𝔭
𝐾𝔭 , I𝐵 (1𝒌𝔭 ), 𝑉𝒌𝔭 (Ω)

∨) 𝜖
𝔪𝑆𝜋

,

where the first isomorphism can be deduced from the arguments in the proof of Proposition 2.13, and
the second one follows from the noncriticality of 𝜋 at 𝔭. Recollecting all the maps, one deduces the
claim. �

4.4. Relation with Galois representations

Let 𝜌 = 𝜌𝜋 : Gal(𝐹/𝐹) → GL2(Ω) be the two-dimensional Galois representation attached to 𝜋, and let
𝜌𝔭 be its restriction to a decomposition group Gal(𝐹𝔭/𝐹𝔭) at 𝔭. As local-global compatibility is known
in this case by Saito (cf. [35]), the representation 𝜌𝔭 is semistable, noncrystalline, that is:

Dst(𝜌𝔭) = (𝜌𝔭 ⊗Q𝑝 𝐵st)
Gal(𝐹𝔭/𝐹𝔭)

is a free Ω ⊗Q𝑝 𝐹𝔭,0-module (where 𝐹𝔭,0 denotes the maximal unramified subfield of 𝐹𝔭) and the
nilpotent linear map 𝑁𝔭 inherited from the corresponding map on Fontaine’s semistable period ring 𝐵st
is nonzero. Moreover, the kernel of 𝑁𝔭 is a free Ω ⊗Q𝑝 𝐹𝔭,0-module of rank one. It follows that there
exists a basis {𝑒1, 𝑒2} of Frobenius eigenvectors such that 𝑒1 = 𝑁𝔭 (𝑒2). Furthermore, it is known that
the zeroth step of the de Rham filtration

Fil0(Dst (𝜌𝔭)) ⊆ Dst (𝜌𝔭) ⊗𝐹𝔭,0 𝐹𝔭

is a free Ω ⊗Q𝑝 𝐹𝔭-module of rank one. In particular there exist 𝑎
𝜌𝔭
1 , 𝑎

𝜌𝔭
2 ∈ Ω ⊗Q𝑝 𝐹𝔭 such that

Fil0(Dst (𝜌𝔭)) is generated by 𝑎
𝜌𝔭
1 · 𝑒1 + 𝑎

𝜌𝔭
2 · 𝑒2.

Definition 4.4. We call the local Galois representation 𝜌𝔭 noncritical if 𝑎𝜌𝔭2 ∈ (Ω ⊗Q𝑝 𝐹𝔭)
×.

It is expected that every 𝜌𝔭 coming from a Hilbert modular form as above is noncritical. If 𝐹𝔭 = Q𝑝
or 𝑘𝜎 = 0 for all 𝜎 ∈ Σ𝑝 , the fact that Dst(𝜌𝔭) is weakly admissible implies that 𝜌𝔭 is noncritical. It
seems to the authors of this article that in [14, Section 3.2] noncriticality of the Galois representation
is assumed implicitly. Note that the main theorem of [43] states that a Galois representation as above is
noncritical if 𝔭 is the only prime of F above p. But similar as on page 653 of [14] an Amice–Vélu and
Vishik-type argument is used in the crucial Proposition 7.3 of loc.cit. and it is not clear to the authors
of this article, whether such an argument is applicable here (see Remark 2.6 above).
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To any tuple

𝑎 = (𝑎𝜎) ∈ Ω ⊗Q𝑝 𝐹𝔭 �
∏
𝜎∈Σ𝔭

Ω,

we attach a codimension one subspace L𝑎 ⊆ Hom(𝐹×
𝔭 ,Ω) as follows: Define

log𝜎 = log𝑝 ◦𝜎 : 𝐹×
𝔭 → Ω,

where log𝑝 is the usual branch of the p-adic logarithm fulfilling log𝑝 (𝑝) = 0 and put

L𝑎 = 〈log𝜎 −𝑎𝜎 ord𝑝 | 𝜎 ∈ Σ𝔭〉 ⊆ Hom(𝐹×
𝔭 ,Ω),

where ord𝑝 denotes the p-adic valuation of 𝐹×
𝔭 fulfilling ord𝑝 (𝑝) = 1. Since the elements log𝜎 , 𝜎 ∈ Σ𝔭,

together with ord𝑝 form a basis of Hom(𝐹×
𝔭 ,Ω) one deduces that L𝑎 ⊆ Hom(𝐹×

𝔭 ,Ω) is a subspace of
codimension one that does not contain the subspace of smooth homomorphisms.

Definition 4.5. Suppose that 𝜌𝔭 is noncritical. The Fontaine–MazurL-invariant of 𝜌𝔭 is the codimension
one subspace

L𝐹𝑀 (𝜌𝔭) = L𝑎
𝜌𝔭
1 /𝑎

𝜌𝔭
2 ⊆ Hom(𝐹×

𝔭 ,Ω).

Theorem 4.6. Suppose that 𝜋 is noncritical at 𝔭 and that 𝜌𝔭 is noncritical. Then the equality

L𝔭 (𝜋)
𝜖 = L𝐹𝑀 (𝜌𝔭)

holds for every sign character 𝜖 : 𝜋0 (𝐺∞) → {±1}. In particular, the automorphic L-invariant L𝔭 (𝜋)
𝜖

does not depend on the sign character 𝜖 .

Proof. This follows directly by comparing Theorem 4.3 with the corresponding formula on the Galois
side (cf. [44, Theorem 1.1]) for the family of Galois representations attached to the family passing
through 𝜋. See [25, Theorem 4.1] for more details in case 𝑘𝜎 = 0 for all 𝜎 ∈ Σ𝔭. �

In [16] respectively [17], Ding proves that in case D is split at exactly one Archimedean place
the Fontaine–Mazur L-invariant can be detected by completed cohomology of the associated Shimura
curve. Thus, by the theorem above the automorphic L-invariant can also be detected by completed
cohomology in that case. For the modular curve, Breuil gives a direct proof of this consequence in [10].
It would be worthwhile to explore whether Breuil’s proof extends to our more general setup.
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