ON NILPOTENT PRODUCTS OF GYGLIC GROUPS

RUTH REBEKKA STRUIK

Introduction. In this paper $G=F / F_{n}$ is studied for F a free product of a finite number of cyclic groups, and F_{n} the normal subgroup generated by commutators of weight n. The case of $n=4$ is completely treated (F / F_{2} is well known; F / F_{3} is completely treated in (2)); special cases of $n>4$ are studied; a partial conjecture is offered in regard to the unsolved cases. For $n=4$ a multiplication table and other properties are given.

The problem arose from Golovin's work on nilpotent products ((1), (2), (3)) which are of interest because they are generalizations of the free and direct product of groups: all nilpotent groups are factor groups of nilpotent products in the same sense that all groups are factor groups of free products, and all Abelian groups are factor groups of direct products. In particular (as is well known) every finite Abelian group is a direct product of cyclic groups. Hence it becomes of interest to investigate nilpotent products of finite cyclic groups.

Golovin has done this (as well as other things) in (2) and (3). In (2) there are results for the first nilpotent product (metabelian product) and in (3) there is a unique decomposition theorem for nilpotent products of finite cyclic groups.

It might be conjectured that all finite nilpotent groups are nilpotent products of cyclic groups. However, in (2) and (3) Golovin notes examples of non-Abelian groups with $((G, G), G)=1$ which are not of this form. Here it is shown that the Burnside group with exponent 3 (with three or more generators) is not of this form.

To be more precise, and using Golovin's notation: Let

$$
F=\prod_{i=1}^{t} * A_{i}
$$

be the free product of the A_{i}. Let $(a, b)=a^{-1} b^{-1} a b$ and $(A, B)=\{(a, b) \mid$ $a \in A, b \in B\}$ where A and B are subgroups of a group. Let $\left(A_{i}\right)=\left\{\left(A_{i}, A_{j}\right) \mid\right.$ $i \neq j\}$ where the A_{i} are considered as subgroups of F (the i in $\left(A_{i}\right)$ is to indicate that it is formed from the A_{i} in F). Let ${ }_{0}\left(A_{i}\right)_{F}$ be the normal subgroup generated by $\left(A_{i}\right)$ in $F,_{k}\left(A_{i}\right)_{F}=\left(k-1\left(A_{i}\right)_{F}, F\right)$. Then according to Golovin (1), the k th nilpotent product of the A_{i} is

$$
G=A_{1}(k) A_{2}(k) \ldots(k) A_{t}=F /{ }_{k}\left(A_{i}\right)_{F} .
$$

(If the A_{i} are cyclic, then $G=F / F_{k+2}$.)
From now on, Golovin's notation will be dropped.
Received October 17, 1958; in revised form January 21, 1960.

In (6) it is shown that if F is a free group with a finite number of generators, then every element of F / F_{n} can be uniquely expressed as a product of standard commutators. Here it is shown that if F is replaced by a free product of cyclic groups, then Hall's results hold "essentially" provided that all primes appearing in the orders of the factors are $\geqslant n-1$. If the primes are $<n-1$, then the situation is complicated. The case $n=4$ is completely treated here (that is, $p=2, n=4$); partial results and conjectures are offered for $n>4$ and $p<n-1$.

Section 1 gives preliminary results. In § 2, the "well-behaved" case ($p \geqslant$ $n-1$) is handled, and in $\S 3$, the other cases are discussed.

The author would like to thank W. Magnus for encouragement while preparing this paper, and R. Ree for reading the manuscript and for helpful criticisms. The author is also indebted to the referee for many improvements.

1. Preliminaries. Let G be an arbitrary group. As usual, $(a, b)=a^{-1} b^{-1} a b$ for $a, b \in G$ and if A, B are subgroups of G, then $(A, B)=\{(a, b) \mid a \in A$, $b \in B\}$. The lower central series of G is an infinite sequence of subgroups, G_{1}, G_{2}, \ldots, where $G_{1}=G, G_{2}=(G, G), \ldots, G_{n+1}=\left(G_{n}, G\right) . \quad\left(\left(\left(a_{1}, a_{2}\right), a_{3}\right)\right.$, \ldots, a_{n}) will often be abbreviated $\left(a_{1}, \ldots, a_{n}\right)$. An element of the form $\left(\left(\left(a_{1}, a_{2}\right),\left(a_{3}, a_{4}\right)\right), \ldots, a_{n}\right)$ (that is, with arbitrary arrangement of parentheses) will often be referred to as a commutator (of weight n), as opposed to a member of G_{n} which is (in general) a product of commutators (of weight n or greater). In this paper, F will stand for a free product of a finite number of cyclic groups: $F=\prod^{*} A_{i}, A_{i}$ cyclic. (A_{i} may be finite or infinite). The following identities are often useful:

$$
\begin{align*}
& (x y, z)=(x, z)((x, z), y)(y, z) \\
& (x, y z)=(x, z)(z,(y, x))(x, y) \tag{1}
\end{align*}
$$

In (6), the following theorem is proved:
Theorem H1. Let F be a free group with t generators, $u_{1}, u_{2}, \ldots, u_{t}$. Let u_{1}, \ldots, u_{s} be a sequence of standard commutators of weight $<n$ (See (7).) of non-decreasing weight. Then every element, g, of $F / F_{n}=G$ (free nilpotent group) can be uniquely expressed as

$$
g=\prod_{i=1}^{s} u_{i}^{c_{i}}
$$

where the c_{i} are rational integers. If

$$
h=\prod u_{i}^{d_{i}} \in G
$$

then

$$
g h=\prod u_{i}^{e_{i}},
$$

where $e_{i}=f_{i}\left(c_{j}, d_{k}\right)$ are polynomials with integer coefficients in the c_{j} and the d_{k} (for example, $\left.e_{i}=c_{i}+d_{i} ; 1 \leqslant i \leqslant t\right)$. If s-tuples of the form $\left(c_{1}, \ldots, c_{s}\right)$,
c_{i} rational integers are taken with multiplication given by $\left(c_{1}, \ldots, c_{s}\right) \times\left(d_{1}, \ldots\right.$, $\left.d_{s}\right)=\left(f_{1}\left(c_{j}, d_{k}\right), \ldots, f_{s}\left(c_{j}, d_{k}\right)\right)$, the set of these s-tuples forms a nilpotent group isomorphic to F / F_{n}.

Throughout this paper, Hall's collection process will be frequently used. Several of its important theorems will now be summarized:

Theorem H2: Let R, S be any two elements of a group; let u_{1}, u_{2}, \ldots, be a fixed sequence of commutators in R and S of non-decreasing weight, that is, $u_{1}=(R, S), u_{2}=((R, S), R), u_{3}=((R, S), S)$, etc. Then

$$
\begin{equation*}
(R S)^{n}=R^{n} S^{n} u_{1}^{f_{1}(n)} u_{2}^{f_{2}(n)} \ldots u_{i}^{f_{i}(n)} \ldots \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{i}(n)=a_{1}\binom{n}{1}+a_{2}\binom{n}{2}+\ldots+a_{w_{i}}\binom{n}{w_{i}} \tag{3}
\end{equation*}
$$

a_{i} are rational integers and w_{i} is the weight of u_{i} as a commutator in R and S. (2) is an identity if the group is nilpotent; otherwise (2) can be considered as giving a series of "approximations" to ($R S)^{n}$ modulo successive members of the lower central series.

The proof of Theorem H1 also gives
Theorem H3. Let $R_{1}, R_{2}, \ldots, R_{s}$ be any s elements of a group. Let u_{1}, u_{2}, \ldots, be a fixed sequence of commutators in the R_{i} of non-decreasing weight (weight $\geqslant 2$). Let $i_{1}, i_{2}, \ldots, i_{s}$ be any fixed permutation of $1,2, \ldots, s$. Then

$$
\begin{equation*}
\left(R_{1} R_{2} \ldots R_{s}\right)^{n}=R_{i_{1}}^{n} R_{i_{2}}^{n} \ldots R_{i_{s}}^{n} u_{1}^{f_{1}(n)} u_{2}^{f_{2}(n)} \ldots u_{i}^{f_{i}(n)} \ldots \tag{4}
\end{equation*}
$$

where $f_{i}(n)$ are of form (3) with w_{i} the weight of u_{i} in the R_{j}.
From Theorem H1 we can obtain
Lemma H1. Let X, Y be any elements of a group, and let u_{1}, u_{2}, \ldots, be any fixed sequence of commutators in X and (X, Y) of non-decreasing weight; then

$$
\begin{equation*}
\left(X^{n}, Y\right)=(X, Y)^{n} u_{1}^{f_{1}(n)} u_{2}^{f_{2}(n)} \ldots u_{i}^{f_{i}(n)} \ldots \tag{5}
\end{equation*}
$$

where the $f_{i}(n)$ are like (3) with w_{i} as the weight of u_{i} in X and (X, Y).
Proof of Lemma H1. (5) follows from (2) in view of

$$
\begin{aligned}
\left(X^{n}, Y\right)=X^{-n} Y^{-1} X^{n} Y=X^{-n}\left[Y^{-1} X Y\right]^{n}=X^{-n}[X(X, Y)]^{n} & \\
& =X^{-n} X^{n}(X, Y)^{n} u_{1}^{f_{1}(n)} \ldots=(X, Y)^{n} u_{1}^{f_{1}(n)} \ldots
\end{aligned}
$$

Lemma H2. Let α be a fixed integer and G a group such that $G_{n}=1$. Then if $b_{j} \in G$ and $r<n$,

$$
\begin{equation*}
\left(b_{1}, \ldots, b_{i-1}, b_{i}^{\alpha}, b_{i+1}, \ldots, b_{r}\right)=\left(b_{1}, \ldots, b_{r}\right)^{\alpha} v_{1}^{f_{1}(\alpha)} v_{2}^{f_{2}^{2}(\alpha)} \ldots \tag{6}
\end{equation*}
$$

where the v_{k} are commutators in b_{1}, \ldots, b_{r} of weight $>r$, and every $b_{j}, 1 \leqslant j \leqslant r$ appears in each commutator v_{k}. The f_{i} are of form (3) where w_{i} is the weight of v_{i} minus $(r-1)$.

Proof. (6) is (5) with $r=2, i=1$, and $\alpha=n$. For $r=2, i=2$, and $\alpha=n$, take inverses on each side of (5).

$$
\begin{equation*}
\left(Y, X^{\alpha}\right)=u_{s}^{-f_{s}(\alpha)} \ldots u_{1}^{-f_{1}(\alpha)}(Y, X)^{\alpha} \tag{7}
\end{equation*}
$$

where $u_{s} \in G_{n-1}$. Since $G_{n}=1, s$ is finite. Now apply (4):

$$
\text { (8) } \begin{aligned}
&\left(Y, X^{\alpha}\right)=u_{s}^{-f_{s}(\alpha)} \ldots u_{1}^{-f_{1}(\alpha)}(Y, X)^{\alpha} \quad\left[R_{i}=(Y, X) \text { or } u_{j}^{-f_{j}(\alpha)}\right] \\
&=\left[(Y, X)^{\alpha} u_{1}^{-f_{1}(\alpha)} \ldots u_{s}^{-f_{s}(\alpha)}\right] w_{1}^{f_{1}(1)} w_{2}^{f_{2}(1)} \ldots
\end{aligned}
$$

where w_{i} are commutators in $(Y, X)^{\alpha}$ and $u_{j}^{-f_{j}(\alpha)}$. Use induction starting with $(Y, X) \in G_{n-1}$. For $(Y, X) \in G_{n-s}$, assume the theorem (that is, (6)) is true for commutators $\in G_{n-s+1}$, and use this and (1) to express w_{j} in desired form. One will obtain as exponents in the expansions, expressions of the form

$$
\begin{equation*}
\binom{\alpha}{i} . \tag{9}
\end{equation*}
$$

From its meaning in terms of the number of subsets of a set, (9) is an integralvalued function of α (of degree $i \times j$). By (3.21) p. 64 of (5), this can be expressed in the form

$$
a_{1}\binom{\alpha}{1}+\ldots+a_{i \times j}\binom{\alpha}{i \times j}
$$

a_{i} rational integers. This is sufficient to show

$$
\begin{equation*}
\left(Y, X^{\alpha}\right)=(Y, X)^{\alpha} \prod v_{k}^{f_{k}(\alpha)} \tag{10}
\end{equation*}
$$

which completes the proof for $r=2$.
Suppose true for r, then for

$$
\begin{equation*}
\left(c_{1}, c_{2}, \ldots, c_{i-1}, c_{i}^{\alpha}, c_{i+1}, \ldots, c_{r+1}\right) \quad i>2 \tag{11}
\end{equation*}
$$

put $b_{1}=\left(c_{1}, c_{2}\right), b_{i}=c_{i+1}, i=2, \ldots, r$ in (6) and use induction hypothesis. For

$$
\begin{equation*}
\left(c_{1}^{\alpha}, c_{2}, \ldots, c_{r+1}\right) \tag{12}
\end{equation*}
$$

put

$$
X=\left(c_{1}^{\alpha}, c_{2}, \ldots, c_{r}\right), Y=c_{r+1} .
$$

By induction

$$
X=\left(c_{1}, \ldots, c_{r}\right)^{\alpha} \prod w_{k}^{f_{k}(\alpha)}
$$

Now use (1) an appropriate number of times with

$$
x, y, z=\left(c_{1}, \ldots, c_{r}\right)^{\alpha}, w_{k}^{(\alpha, \alpha)} \quad \text { or } \quad c_{r+1}
$$

and the induction hypothesis to put

$$
\begin{equation*}
(X, Y)=\left(\left(c_{1}, \ldots, c_{r}\right)^{\alpha} \prod w_{k}^{f_{k}(\alpha)}, c_{r+1}\right) \tag{13}
\end{equation*}
$$

in the form of (6).

A similar proof holds for

$$
\left(c_{1}, c_{2}^{\alpha}, c_{3}, \ldots, c_{r+1}\right)
$$

Throughout this proof, we have implicitly used the fact that an arbitrary commutator can be expressed as a product of commutators of the form $\left(b_{1}, \ldots, b_{r}\right)$. Or to express the same idea in a different way, (6) can be proved in the same way, if $\left(b_{1}, \ldots, b_{i-1}, b_{i}{ }^{\alpha}, b_{i+1}, \ldots, b_{r}\right)$ and $\left(b_{1}, \ldots, b_{r}\right)$ are replaced by arbitrary commutators (that is, monomial commutators with parentheses arranged arbitrarily).

Let gcd stand for greatest common divisor and $\operatorname{gcd}\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ stand for the gcd of the rational integers $\alpha_{1}, \ldots, \alpha_{k}$. The $\operatorname{gcd}\left(\alpha_{1}, \ldots, \alpha_{k}, 0\right)=\operatorname{gcd}$ $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$. This should not be confused with $\left(a_{1}, \ldots, a_{k}\right)$, a member of G_{k}, G a group, since $a_{i} \in$ a group, and will not be rational integers (in this paper). A cyclic group of order 0 will be understood to be infinite cyclic.

Lemma 1. Let

$$
F=\prod_{i=1}^{t} * A_{i}
$$

A_{i} cyclic of order α_{i}. Let a_{i} generate A_{i}. Let $n \geqslant 3$ be a fixed positive integer, and let all primes appearing in the factorizations of the $\alpha_{i} \geqslant n-1$. Let $G=F / F_{n}$. If $v \in G$, and

$$
v=\left(a_{i_{1}}, \ldots, a_{i_{k}}\right)
$$

then $v^{N}=1$, where

$$
N=\operatorname{gcd}\left(\alpha_{i_{1}}, \ldots, \alpha_{i_{k}}\right), \quad k \geqslant 2
$$

(some of the $\alpha_{i j}\left(\right.$ or $\left.a_{i_{j}}\right)$ may equal each other). If wis a product of commutators like v in which every commutator contains all the distinct a_{i} appearing in v, then $w^{N}=1$. Hence $w^{N}=1$ where w is an arbitrary commutator.

Proof. Let

$$
\begin{equation*}
v=\left(a_{i_{1}}, \ldots, a_{i_{n-1}}\right) \in G_{n-1} . \tag{6}
\end{equation*}
$$

$$
\begin{align*}
& 1=\left(a_{i_{1}}, \ldots, a_{i_{j}}^{\alpha_{j}}, \ldots, a_{i_{n-1}}\right)=\left(a_{i_{1}}, \ldots, a_{i_{n-1}}\right)^{\alpha_{i_{j}}} \prod v_{m}^{\alpha_{i j}} \tag{14}\\
& 1 \leqslant j \leqslant n-1
\end{align*}
$$

where all $v_{m}=1$ since $G_{n}=1$. Hence the Lemma holds for $k=n-1$. Since G_{n-1} is Abelian, $w^{N}=1$ if w is a product of commutators of weight $n-1$ in which the same a_{i} appear in each commutator.

Suppose true for $k+1$, that is, if

$$
v=\left(a_{i_{1}}, \ldots, a_{i_{k+1}}\right)
$$

then $v^{N}=1$ where

$$
N=\operatorname{gcd}\left(\alpha_{i_{1}}, \ldots, \alpha_{i_{k+1}}\right)
$$

and if w is a product of commutators of weight $k+1$ or greater in

$$
a_{i_{1}}, \ldots, a_{i_{k+1}}
$$

then $w^{N}=1$. Consider $\left(a_{i_{1}}, \ldots, a_{i_{k}}\right)$. By (6)
(15) $1=\left(a_{i_{1}}, \ldots, a_{i}^{\alpha_{i j}}, \ldots, a_{i_{k}}\right)=\left(a_{i_{1}}, \ldots, a_{i_{k}}\right)^{\alpha_{i j}} \prod v_{m}^{f_{m}\left(\alpha_{i_{j}}\right)} \quad 1 \leqslant j \leqslant k$.

$$
\prod v_{m}^{f_{k}\left(\alpha_{i_{j}}\right)}=1
$$

by the induction hypothesis, and the assumption on the primes; hence

$$
\left(a_{i_{1}}, \ldots, a_{i_{k}}\right)^{\alpha_{i j}}=1
$$

Hence

$$
\left(a_{i_{1}}, \ldots, a_{i_{k}}\right)^{N}=1 \text { where } N=\operatorname{gcd}\left(\alpha_{i_{1}}, \ldots, \alpha_{i_{k}}\right)
$$

Making use of (4), one obtains that if w is the product of commutators of weight k or greater in $a_{i_{1}}, \ldots, a_{i_{k}}$, then $w^{N}=1$. Note that every factor of w must contain all the distinct $a_{i_{j}}$, and that in a nilpotent group, every commutator can be expressed a product of commutators of the form ($a_{i_{1}}, \ldots, a_{i_{k}}$).

For the case $n=4$, (5) becomes:
Lemma 2. If G is any group and $a, b \in G$, then

$$
\begin{array}{ll}
\left(a^{r}, b^{s}\right)= & (a, b)^{r s}((a, b), a)^{s\binom{r}{2}}((a, b), b)^{r\binom{s}{2}} \tag{16}\\
\left(b^{r}, a^{s}\right)=(a, b)^{-r s}((a, b), a)^{-r\binom{s}{2}}((a, b), b)^{-s\binom{r}{2}} & \bmod G_{4}, \\
\text { where } & \binom{r}{2}=\frac{r(r-1)}{2} .
\end{array}
$$

Lemma 2 is proved in (14) and is a particular case of (5) in which the $f_{i}(n)$ have been computed. The proof of (16) is based on the work of Magnus (11).

2. The "well-behaved" case.

Theorem 1. Let A_{1}, A_{2}, A_{3} be cyclic groups of orders $\alpha_{1}, \alpha_{2}, \alpha_{3}$ respectively, α_{i} odd integers. Let a_{i} generate A_{i}. Let

$$
F=\prod_{i=1}^{t} * A_{i} .
$$

Let u_{1}, \ldots, u_{14} be a sequence of standard monomial commutators of nondecreasing weight in a_{1}, a_{2}, a_{3} of weight $\leqslant 3$. (See (7).) Let $N_{i}=\alpha_{i}$ if u_{i} is of weight 1; let $N_{i}=\operatorname{gcd}\left(\alpha_{i}, \alpha_{j}\right)$ if $u_{i}=\left(a_{i}, a_{j}\right)$, and let $N_{i}=\operatorname{gcd}\left(\alpha_{i}, \alpha_{j}, \alpha_{k}\right)$ if a_{i}, a_{j}, a_{k} appear in u_{i} of weight 3. Then every element of g of F / F_{4} can be uniquely expressed as

$$
\begin{equation*}
g=\prod u_{i}^{c_{i}} \tag{17}
\end{equation*}
$$

where the c_{i} are integers modulo N_{i}. If

$$
h=\prod u_{i}^{d_{i}}
$$

is another element of F / F_{4}, then

$$
g h=\prod u_{i}^{e_{i}}
$$

where $e_{i}=f_{i}\left(c_{j}, d_{k}\right)$ are the polynomials with integral coefficients of Theorem H 1.
(Theorem 1 is a generalization of a lemma appearing in (15).)
Proof. By Lemma 1, $u_{i}{ }^{N_{i}}=1$. Hence every element of G can be expressed in the form of (17) where the c_{i} are integers modulo N_{i}. The problem is to show that this expression is unique.

Let u_{1}, \ldots, u_{14} be $a_{1}, a_{2}, a_{3},\left(a_{1}, a_{2}\right),\left(a_{1}, a_{3}\right),\left(a_{2}, a_{3}\right),\left(a_{1}, a_{2}, a_{1}\right),\left(a_{1}, a_{3}, a_{1}\right)$, $\left(a_{2}, a_{3}, a_{2}\right),\left(a_{1}, a_{2}, a_{2}\right),\left(a_{1}, a_{3}, a_{3}\right),\left(a_{2}, a_{3}, a_{3}\right),\left(a_{1}, a_{2}, a_{3}\right),\left(a_{2}, a_{3}, a_{1}\right)$, respectively. If another sequence of standard commutators is chosen, a similar proof will hold. Since $\left(a_{i}, a_{j}\right), i \neq j$ generate (G, G) modulo G_{3} and since

$$
((a, b), c)((b, c), a)((c, a), b)=1 \text { modulo } G_{4} \quad(\text { see (11)) }
$$

and $\left(a_{i}, a_{j}, a_{k}\right)$ generate G_{3} modulo G_{4}, the u_{i} specified above do form a basis for G. The following change of notation will be made:
let $u_{i j}=\left(a_{i}, a_{j}\right)$ and designate the corresponding c_{i}, d_{i}, e_{i} by $c_{i j}, d_{i j}, e_{i j}$ respectively;

Let $u_{i j i}=\left(a_{i}, a_{j}, a_{i}\right)$ and designate the corresponding c_{i}, d_{i}, e_{i} by $c_{i j i}$, $d_{i j i}, e_{i j i}$ where $i<j ;$
let $u_{i j j}=\left(a_{i}, a_{j}, a_{j}\right)$ and designate the corresponding c_{i}, d_{i}, e_{i} by $c_{i j j}$, $d_{i j j}, e_{i j j}$ where $i<j$;
let $u_{i j k}=\left(a_{i}, a_{j}, a_{k}\right)$ and designate the corresponding c_{i}, d_{i}, e_{i} by $c_{i j k}$, $d_{i j k}, e_{i j k}$ where $i<j<k$;
let $u_{j k i}=\left(a_{j}, a_{k}, a_{i}\right)$ and designate the corresponding c_{i}, d_{i}, e_{i} by $c_{j k i}$, $d_{j k i}, e_{j k i}$ where $i<j<k$.
For Theorem 1, $u_{j k i}$ and $u_{i j k}$ are u_{231} and u_{123} respectively, but the more general notation is used here for the sake of Theorem 2.

Then a somewhat laborious computation gives

$$
\begin{aligned}
& e_{i}=c_{i}+d_{i} \\
& e_{i j}=c_{i j}+d_{i j}-c_{j} d_{i} \\
& e_{i j i}=c_{i j i}+d_{i j i}-c_{j}\binom{d_{i}}{2}+c_{i j} d_{i} \\
& e_{i j j}=c_{i j j}+d_{i j j}-d_{i}\binom{c_{j}}{2}+c_{i j} d_{j}-d_{i} d_{j} c_{j} \\
& e_{i j k}=c_{i j k}+d_{i j k}+c_{i k} d_{j}+c_{i j} d_{k}-d_{i} c_{j} c_{k}-c_{k} d_{i} d_{j}-c_{j} d_{i} d_{k} \\
& e_{j k i}=c_{j k i}+d_{j k i}+c_{j k} d_{i}+c_{i k} d_{j}-c_{k} d_{i} d_{j} .
\end{aligned}
$$

Note that these are the $f_{i}\left(c_{j}, d_{k}\right)$ of Theorem H1 for $n=4$, and the particular sequence of u_{i} chosen here. Also note that they apply unambiguously if they are interpreted as integers modulo the appropriate gcd. For example, e_{121} is an integer modulo $\operatorname{gcd}\left(\alpha_{1}, \alpha_{2}\right) ; c_{2}, d_{1}$, and c_{12} appear in its formula, but since c_{2}, d_{1}, and c_{12} are integers modulo α_{2}, α_{1}, and $\operatorname{gcd}\left(\alpha_{1}, \alpha_{2}\right)$ respectively, no ambiguity arises in the computation of a particular e_{121}. By Theorem H1, if one takes 14 -tuples, $\left(c_{1}, \ldots, c_{14}\right),\left(d_{1}, \ldots, d_{14}\right), c_{i}, d_{j}$ rational integers and lets (18) define a multiplication, a group isomorphic to F / F_{4} (free nilpotent group) (F a free group) is obtained. The same proof will go through if the c_{i}, d_{j} are integers modulo the appropriate gcd. (One can also check the group axioms directly, a tedious verification.) Note that α_{i} odd is essential here, since (18) involves

$$
\binom{c_{i}}{2}, \quad\binom{d_{i}}{2}
$$

and this will give difficulty if one is dealing with integers modulo an even integer.

Theorem 2. Let A_{1}, \ldots, A_{t} be cyclic groups of order $\alpha_{1}, \ldots, \alpha_{t}$ respectively, α_{i} odd integers or 0 . Let a_{i} generate A_{i}. Let

$$
F=\prod_{i=1}^{t} * A_{i}
$$

Let u_{1}, u_{2}, \ldots, be a sequence of standard (monomial) commutators of nondecreasing weight in the a_{i} of weight $\leqslant 3$ (see (7)). Let $N_{i}=\alpha_{i}$ if u_{i} is of weight $1 ; N_{i}=\operatorname{gcd}\left(\alpha_{i}, \alpha_{j}\right)$ if $u_{i}=\left(a_{i}, a_{j}\right)$ and $N_{i}=\operatorname{gcd}\left(\alpha_{i}, \alpha_{j}, \alpha_{k}\right)$ if a_{i}, a_{j}, a_{k} appear in u_{i} (of weight 3). Then every element of F / F_{4} can be uniquely expressed as

$$
g=\prod u_{i}^{c_{i}}
$$

where c_{i} are integers modulo N_{i}. (If $N_{i}=0$, then c_{i} is a rational integer.) If

$$
h=\prod u_{i}^{d_{i}}
$$

is another element of F / F_{4}, then

$$
g h=\prod u_{i}^{e_{i}}
$$

where $e_{i}=f_{i}\left(c_{j}, d_{k}\right)$ are the polynomials with integral coefficients of Theorem H 1.
Proof. The proof is the same as that of Theorem 1. (18) is a multiplication table for G provided the standard commutators are arranged in the order: $a_{i},\left(a_{i}, a_{j}\right),\left(a_{i}, a_{j}, a_{i}\right),\left(a_{i}, a_{j}, a_{j}\right),\left(a_{i}, a_{j}, a_{k}\right),\left(a_{j}, a_{k}, a_{i}\right)$ with $i<j<k$.

Comment. Since every finite nilpotent group is a direct product of prime power groups, the α_{i} may be assumed to be prime powers or 0 .

Corollary 1. Let

$$
g=\prod u_{i}^{c_{i}}
$$

be a particular element of G. Then $g^{N}=1$ where N is the least common multiple of the orders of the $u_{i}{ }^{{ }^{c_{i}}}$ appearing in g unless $g \notin(G, G)$ and $3 \mid N$. In the latter case, $g^{3 N}=1$, and g may be of order $3 N$. If any of the u_{i} appearing in g are infinite cyclic, then g is of infinite order.

The author is indebted to the referee for a simplification of the statement and proof of this corollary.

Proof. If $g \in(G, G)$, then since (G, G) is Abelian, the Corollary follows. If g contains a u_{i} which is infinite cyclic, then by (4) and the unique representation of g, g must be infinite cyclic. If $g \notin(G, G)$, and all the factors are of finite order, then at least one of the u_{i} is equal to an a_{j}. Looking at (4) with the n of (4) put equal to N, it is obvious that $g^{N}=1$ (Lemma 1 is used here) provided $3 \nmid N$, since the $f_{i}(N)$ will involve N,

$$
\binom{N}{2}, \text { and }\binom{N}{3} .
$$

(All commutators are of weight $\leqslant 3$).
If $3 \mid N$, i.e., $3 \mid \alpha_{j}$ for an a_{j} appearing in g, then the above reasoning indicates that $g^{3 N}=1 . g$ can actually be of order $3 N$; for example, if

$$
\begin{equation*}
G=\left\{a, b \mid a^{3}=b^{3}=1, \quad G_{4}=1\right\} \tag{19}
\end{equation*}
$$

an actual computation shows that $a b, a b^{2}, a^{2} b$, and $a^{2} b^{2}$ are of order 9 ; in this case

$$
\begin{equation*}
\left(a^{i} b^{j}\right)^{3} \in G_{3} \tag{20}
\end{equation*}
$$

Another way of seeing this is to consider equation (7) of (14) (due to Sanov) that is,

$$
\begin{equation*}
((a, b), b)^{\frac{1}{3} N} \in F(N) F_{4} \tag{21}
\end{equation*}
$$

where F can be any group generated by a and b and $F(N)$ is the normal subgroup generated by all $N=3 N^{\prime}$ powers of elements of F. If a and b are of order N and if all elements of F / F_{4} were of order N (or less), then $((a, b), b)$ would be of order $\leqslant \frac{1}{3} N$ and not N as Theorem 2 indicates (that is, $t=2$, $\alpha_{1}=\alpha_{2}=N$).

Comment. The group G given by (19) is a kind of curiosity, for p-groups, since it is not regular in the sense of Hall (5, p. 73). However all groups of the form

$$
\begin{equation*}
G=\left\{a, b \mid a^{p^{\alpha}}=b^{p^{\alpha}}=1, G_{4}=1\right\} \tag{22}
\end{equation*}
$$

with $p \geqslant 5, p$ a prime, are regular groups in the sense of Hall.
A similar comment can be made in connection with

$$
\begin{equation*}
G=\left\{a, b \mid a^{2}=b^{2}=1, G_{3}=1\right\} \tag{23}
\end{equation*}
$$

a group of order 8 .

Corollary 2. The group $S_{t}=\left\{a_{i} \mid 1 \leqslant i \leqslant t, s^{3}=1, s \in S_{t}\right\}$ is not a nilpotent product of cyclic groups of order three, except for $t=2$ when $S_{2}=F / F_{3}$, $F=\left\{a_{1}\right\}^{*}\left\{a_{2}\right\}$. However, S_{t} is a fully regular product (see [1]) of the $\left\{a_{i}\right\}$, and, in particular, it is the third Burnside product of the $\left\{a_{i}\right\}$ (12).

Proof. The only candidates for S_{t} to be a nilpotent product are the first $\left(F / F_{3}\right)$ and second $\left(F / F_{4}\right)$ nilpotent products. (F a free product of cyclic groups of order three.) Since $\left(\left(a_{1}, a_{2}\right), a_{1}\right) \neq 1$ in F / F_{4} while $\left(\left(a_{1}, a_{2}\right), a_{1}\right)=1$ in S_{t} (cf. (9)), S_{t} cannot be a second nilpotent product. As for the first nilpotent product (that is, F / F_{3}), $\left(a_{1}, a_{2}, a_{3}\right)=1$ in this case, while $\left(a_{1}, a_{2}, a_{3}\right) \neq 1$ in S_{t}. However, if $t=2, S_{2}=F / F_{3}$ where F is the free product of two cyclic groups of order three, and $S_{2}=$ first nilpotent product of $\left\{a_{1}\right\}$ and $\left\{a_{2}\right\}(\mathbf{2}, \mathbf{9})$.

Theorem 3. Let A_{1}, \ldots, A_{t} be cyclic groups of order $\alpha_{1}, \ldots, \alpha_{t}$ respectively. If A_{i} is infinite cyclic, let $\alpha_{i}=0$. Let a_{i} generate $A_{i} ;$ let $F=\prod^{t_{i=1}{ }^{*} A_{i} \text {. Let }}$ $n \geqslant 3$ be a fixed positive integer and let all the primes appearing in the factorizations of the $\alpha_{i} \geqslant n-1$. Let u_{1}, \ldots, be a sequence of standard monomial commutators of non-decreasing weight in the a_{i} of weight $\leqslant n-1$. Let $N_{i}=\alpha_{i}$ if u_{i} of weight 1 , and

$$
N_{i}=\operatorname{gcd}\left(\alpha_{i_{1}}, \ldots, \alpha_{i_{k}}\right) \text { if } a_{i j}, 1 \leqslant j \leqslant k
$$

appears in u_{i}. Then every element g, of $G=F / F_{n}$ can be uniquely expressed as

$$
g=\prod u_{i}^{c_{i}}
$$

where the c_{i} are integers modulo N_{i}. (If $N_{i} ;=0, c_{i}$ is a rational integer.) If

$$
h=\prod u_{i}^{d_{i}}
$$

is another element of F / F_{n}, then

$$
g h=\prod u_{i}^{e_{i}}
$$

where $e_{i}=f_{i}\left(c_{j}, d_{k}\right)$ are the polynomials with integer coefficients of Theorem H 1.
We note that if F were free, the u_{i} of weight k would form a basis for F_{k} / F_{k+1}, see (7).

Proof. The proof is exactly the same as that of Theorems 1 and 2. Lemma 1 shows that the orders of the u_{i} are as stated in the theorem, so that every element of g is of the form stated, and the only problem is uniqueness. As in Theorem 1, one can theoretically compute a multiplication table similar to (18). This is computed by multiplying

$$
u_{1}^{c_{1}} \ldots u_{s}^{c_{s}} \cdot u_{1}^{d_{1}} \ldots u_{s}^{d_{s}}=u_{1}^{c_{1}} \ldots u_{s-1}^{c_{s}-1} u_{1}^{d_{1}} u_{s}^{c_{s}}\left(u_{s}^{c_{s}}, u_{1}^{d_{1}}\right) u_{1}^{d_{2}} \ldots
$$

etc., and using (5), (6), or (10), or a suitable modification of them. The coefficients of the multiplication table will involve

$$
c_{i}, d_{j},\binom{c_{i}}{2},\binom{d_{j}}{2}, \ldots,\binom{c_{i}}{n-2},\binom{d_{j}}{n-2} .
$$

Note that the $f_{k}(n)$ of largest order will come from applying (5) and (10) to

$$
\left(u_{s}^{c_{s}}, u_{1}^{d_{1}}\right) \text { or }\left(u_{j}^{c_{j}}, u_{i}^{d_{i}},\right) i<j
$$

and since in (5) one is dealing with commutators in X and (X, Y), the corresponding coefficients of the $f_{i}\left(c_{j}, d_{k}\right)$ will involve at most

$$
\binom{c_{i}}{n-2},\binom{d_{j}}{n-2} \text { not }\binom{c_{i}}{n-1},\binom{d_{j}}{n-1}
$$

Hence, since all the primes of the $\alpha_{j} \geqslant n-1$, no ambiguity will occur because the c_{i} and d_{j} are taken modulo the appropriate gcds. Hence Theorem H1 can be used with the $f_{i}\left(c_{j}, d_{k}\right)$ considered as integers modulo the appropriate gcds, and this is sufficient to prove the theorem.

Corollary. Let

$$
g=\prod u_{i}^{c_{i}}
$$

be the unique representation of an element of G. Let N be the least common multiple of the orders of the $u_{i}^{c_{i}}$ appearing in g.

Case I. If one of the u_{i} is infinite cyclic, then g is infinite cyclic.
Case II. All the primes appearing in the orders of the u_{i} are greater than $n-1$ or $g \in(G, G)$. (g is assumed to have factors which are all of finite order.) Then $g^{N}=1$.

Case III. $g \notin(G, G)$ and $p(a$ prime $)=n-1$ and p appears in the factorization of one of the α_{j} where a_{j} is a factor of g. Then $g^{p N}=1$, and there are cases where $g^{N} \neq 1$.

Proof. Case I follows from (4) and the uniqueness of the representation of g. (Consider what happens in (4) to the infinite cyclic u_{i} of least weight.) For Case II, consider (4) where $R_{i}=u_{i}{ }^{c_{i}}$ (of g). If every u_{i} (of g) $\in G_{n-1}$, then (4) gives $g^{N}=1$. If $g \in G_{n-s}$, use induction on s, (4), (6) Lemma 1 , and the fact that the u_{i} of (4) can be expressed as products of commutators of the form

$$
\left(a_{i_{1}}, \ldots, a_{i_{k}}\right)
$$

If all the primes appearing in the α_{j} of u_{i} (of g) are greater than $n-1$, the $f_{i}(N)$ of (4) will involve

$$
\binom{N}{2}, \ldots,\binom{N}{n-1},
$$

and $N \mid f_{i}(N)$, hence

$$
u_{i}^{f_{i}(N)}=1
$$

and $g^{N}=1$. If $g \in(G, G)$, then the same proof holds except that the $f_{i}(N)$ involve

$$
\binom{N}{2}, \ldots,\binom{N}{n-2}
$$

For Case III, if $p=n-1, p$ a prime, and for some a_{j} (appearing in $g, p \mid \alpha_{j}$ (hence $p \mid N$), then

$$
\binom{N}{n-1}=\binom{N}{p}
$$

may cause difficulty, but in any case,

$$
p N \left\lvert\,\binom{ p N}{p}\right.
$$

and hence $g^{p N}=1$. If $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{t}=p^{\lambda}=N$ where $p=n-1$, then according to Sanov (13),

$$
(a_{1}, \underbrace{a_{2}, \ldots, a_{2}}_{p-1 \text { times }})^{p^{\lambda-1}} \in F\left(p^{\lambda}\right) F_{p+1}=F\left(p^{\lambda}\right) F_{n} \quad(p=n-1)
$$

where

$$
F\left(p^{\lambda}\right)=\left\{x^{p^{\lambda}} \mid x \in F\right\}
$$

If $g^{p^{\lambda}}=1$ for every element of F / F_{n},

$$
(a_{1}, \underbrace{a_{2}, \ldots, a_{2}}_{p-1 \text { times }})
$$

would have order $p^{\lambda-1}$ or less which contradicts Theorem 3 (according to which ($a_{1}, a_{2}, \ldots, a_{2}$) has order p^{λ}). Hence there exist elements which have order $p^{\lambda+1}=p N$. In view of the Corollary to Theorem 2, probably

$$
\left(a_{1} a_{2}\right)^{p^{\lambda}} \neq 1 .
$$

Comment. If $a_{i}{ }^{p}=1,1 \leqslant i \leqslant t, n \leqslant p, p$ a prime, all elements of G are of order p, and hence G is a factor group of the Burnside group B with exponent p in t generators. In (10) and (13) it is shown that B_{s} / B_{s+1} has the same rank as F_{s} / F_{s+1} (F the free group with t generators) for $s=1,2, \ldots$, $p-1$. This provides a partial verification of Theorem 3.

Comment. In (4) Gruenberg states and proves "Hall's Second Basis Theorem." It is essentially Theorem 3 for the case $\alpha_{1}=\alpha_{2}=\alpha_{3}=\ldots$ $=\alpha_{t}=p^{\lambda}$ and $n \leqslant p$. Theorem 3 shows that Hall's Second Basis Theorem holds "one step further" for $n=p+1$.
3. The "ill-behaved" case. If $p<n-1$, the proofs above break down The case of $A=\{a\}, B=\{b\}, a^{2}=b^{2}=1$ is of interest. In $F=A^{*} B$ (the free product of A and $B),(A, B)$ is infinite cyclic and generated by (a, b). Since

$$
\begin{equation*}
1=\left(a, b^{2}\right)=(a, b)^{2}((a, b), b) \tag{24}
\end{equation*}
$$

$(a, b)^{2} \in F_{3}$. Similarly

$$
1=\left((a, b), b^{2}\right)=((a, b), b)^{2}(((a, b), b), b)=(a, b)^{-4}(((a, b), b), b)
$$

By induction,

$$
(a, b)^{2^{n-2}} \in F_{n}
$$

hence in F / F_{n},

$$
(a, b)^{2 n-2}=1
$$

By (8), the $F_{n}, n=1,2, \ldots$, are all distinct and hence (A, B) in F / F_{n} is exactly of order 2^{n-1} and F / F_{n} is of order 2^{n}.

That this is not a freak case can be seen from Theorem 4 below. Since finite nilpotent groups are direct products of prime power groups, it is sufficient for $n=4$ to discuss the case of $p=2$.

Theorem 4. Let $A_{i}=\left\{a_{i}\right\}, 1 \leqslant i \leqslant t$ be cyclic groups of order $2^{r_{i}}$. Let $r_{1} \leqslant r_{2} \leqslant \ldots \leqslant r_{t}$. Let $F=\prod_{t=1}^{t^{*}} A_{i}$. Let $G=F / F_{4}$. Then every element of G can be expressed uniquely in the form

$$
\begin{gather*}
a_{1}^{c_{1}} a_{2}^{c_{2}} \ldots a_{t}^{c_{l}} \prod_{i<j}\left(a_{i}, a_{j}\right)^{c_{i j}}\left(a_{i}^{2}, a_{j}\right)^{c_{i j}^{(2)}}\left(a_{i}, a_{j}^{2}\right)^{c_{i j}^{(3)}} \tag{25}\\
\prod_{i<j<k}\left(\left(a_{i}, a_{j}\right), a_{k}\right)^{c_{i j k}}\left(\left(a_{j}, a_{k}\right), a_{i}\right)^{c_{j k i}}
\end{gather*}
$$

where the $c_{i}, c_{i j}, c_{i j}{ }^{(2)}, c_{i j k}, c_{j k i}$ are integers modulo

$$
2^{r_{i}}, 2^{r_{i}+1}, 2^{r_{i}-1}, 2^{r_{i}}, 2^{r_{i}}
$$

respectively while ${c_{i j}}^{(3)}$ are integers modulo $2^{r_{i}-1}$, if $r_{i}=r_{j}$, and $2^{r_{i}}$ if $r_{i} \neq r_{j}$. In particular, $\left(a_{i}, a_{j}\right)$ is of order $2^{r_{i}+1}$ for $i \neq j$.

Formulas for multiplying two elements of G are given below.
Proof. Let a, b, c be three of the a_{i} of orders n_{a}, n_{b}, n_{c}, respectively, $n_{a} \leqslant n_{b} \leqslant n_{c}$. By (16)

$$
1=\left(a^{n_{a}}, b\right)=(a, b)^{n_{a}}(a, b, a)^{\binom{n_{a}}{2}}, a, b \in G .
$$

From the work of Magnus (11), it follows that

$$
1=(a, b, a)^{n_{a}}=(a, b, b)^{n_{a}}=(a, b, c)^{n_{a}}=(b, c, a)^{n_{a}} \quad \text { in } G
$$

Since (G, G) is Abelian, and $\binom{n_{a}}{2} \equiv n_{a} / 2\left(\bmod n_{a}\right)$

$$
\begin{equation*}
(a, b)^{2 n_{a}}=1 \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
(a, b)^{-n_{a}}=(a, b)^{n_{a}}=((a, b), a)^{\frac{1}{2} n_{a}} \tag{27}
\end{equation*}
$$

If $n_{a}=n_{b}$, the same reasoning gives

$$
(a, b)^{n_{a}}=((a, b), b)^{\frac{1}{2} n_{a}}
$$

However, if $n_{a}<n_{b}$, all that can be said is $((a, b), b)^{n_{a}}=1$. In view of (26) and (27), computing a multiplication table using a representation such as (18) would be somewhat complicated; to avoid this difficulty, note that in G

$$
\begin{align*}
& \left(a^{2}, b\right)=(a, b)^{2}((a, b), a) \\
& \left(a, b^{2}\right)=(a, b)^{2}((a, b), b) \tag{28}
\end{align*}
$$

and hence $\{(a, b),((a, b), a),((a, b), b)\}=\left\{(a, b),\left(a, b^{2}\right),\left(a^{2}, b\right)\right\}$. Now, using (27) and the fact that (G, G) is Abelian,

$$
\left(a^{2}, b\right)^{\frac{1}{2} n_{a}}=(a, b)^{n_{a}}((a, b), a)^{\frac{1}{2} n_{a}}=1
$$

If $n_{a}=n_{b}$, then $\left(a, b^{2}\right)^{\frac{1}{2} n_{a}}=1$, while if $n_{a}<n_{b}$,

$$
\left(a, b^{2}\right)^{n_{a}}=(a, b)^{2 n_{a}}((a, b), b)^{n_{a}}=1
$$

Hence every element of G can be expressed in the form of (25). If one multiplies two elements like (25), that is, let

$$
\begin{array}{lll}
c=a_{1}^{c_{1}} a_{2}^{c_{2}} \ldots & \left(a_{i}, a_{j}\right)^{c_{i j}} \ldots & \left(\left(a_{i}, a_{j}\right), a_{k}\right)^{c_{i j k}} \ldots \\
d=a_{1}^{d_{1}} a_{2}^{d_{2}} \ldots & \left(a_{i}, a_{j}\right)^{d_{i j}} \ldots & \left(\left(a_{i}, a_{j}\right), a_{k}\right)^{d_{i j k}} \ldots \\
e=a_{1}^{e_{1}} a_{2}^{e_{2}} \ldots & \left(a_{i}, a_{j}\right)^{e_{i j}} \ldots & \left(\left(a_{i}, a_{j}\right), a_{k}\right)^{e_{i j k}} \ldots
\end{array}
$$

with $e=c \cdot d$, then

$$
\begin{aligned}
& e_{i}=c_{i}+d_{i} \\
& \begin{aligned}
e_{i j}=c_{i j}+d_{i j}-2 \alpha\left(c_{i j}\right) d_{i}-2 \alpha\left(c_{i j}\right) d_{j}-c_{j} d_{i}+ & 2 c_{j}\binom{d_{i}}{2} \\
& +2 d_{i}\binom{c_{j}}{2}+2 c_{j} d_{i} d_{j}
\end{aligned}
\end{aligned}
$$

$$
\begin{align*}
& e_{i j}^{(2)}=c_{i j}^{(2)}+d_{i j}^{(2)}+\alpha\left(c_{i j}\right) d_{i}-c_{j}\binom{d_{i}}{2} \tag{29}\\
& e_{i j}^{(3)}=c_{i j}^{(3)}+d_{i j}^{(3)}-d_{i}\binom{c_{j}}{2}+\alpha\left(c_{i j}\right) d_{j}-c_{j} d_{i} d_{j} \\
& e_{i j k}=c_{i j k}+d_{i j k}+\alpha\left(c_{i k}\right) d_{j}-c_{k} d_{i} d_{j}-d_{i} c_{j} c_{k}+\alpha\left(c_{i j}\right) d_{k}-c_{j} d_{i} d_{k} \\
& e_{j k i}=c_{j k i}+d_{j k i}+\alpha\left(c_{j k}\right) d_{i}+\alpha\left(c_{i k}\right) d_{j}-c_{k} d_{i} d_{j}
\end{align*}
$$

where

$$
\alpha\left(c_{i j}\right)=c_{i j}+2 c_{i j}^{(2)}+2 c_{i j}^{(3)}
$$

Here there appear to be a few problems as to ambiguities, since, for example, d_{i} is an integer modulo $2^{r_{i}}$ and appears in the computation of $e_{i j}$ which is an integer modulo $2^{r_{i}+1}$. However, if d_{i} is replaced by $d_{i}+2^{r_{i}}$, then

$$
-c_{j} d_{i}+2 c_{j}\binom{d_{i}}{2}+2 d_{i}\binom{c_{j}}{2}
$$

remains unchanged modulo $2^{r_{i+1}}$. Similar reasoning applies to other cases of apparent ambiguity.

We can now proceed as in the proof of Theorem 1 and construct a group H made of

$$
t+3\binom{t}{2}+2\binom{t}{3}-\text { tples }
$$

with multiplication as indicated by (29). The verification of the group axioms is straightforward, but tedious.

It might be asked whether or not a modification of (18) could not be used instead of (29). There are several difficulties: in the case of $p=2$, the $e_{i j}$ are integers modulo $2^{r_{i}+1}$, but c_{j}, d_{i} which appear in the formula for $e_{i j}$ are integers modulo $2^{r_{i}}$ (assuming $r_{i}=r_{j}$). Similarly if $r_{i}=r_{j}, e_{i j i}$ is an integer modulo $2^{r_{i}}$ and (${ }_{2}^{d_{i}}$) will cause difficulties, since it is not unambiguously defined modulo $2^{r_{i}}$. If one decides to let $c_{i j}$ be integers modulo $2^{r_{i}}$, then the fact that

$$
\left(a_{i}, a_{j}\right)^{2^{r_{i}}}=\left(a_{i}, a_{j}, a_{i}\right)^{2^{r_{i}-1}} \quad(\text { see }(27))
$$

means that the multiplication formulas would have to take into account in some way the fact that the order of $\left(a_{i}, a_{j}\right)$ is $2^{r_{i}+1}$. The author tried to think of a device to get around these difficulties, but was unable to do so.

If one attempts to carry out computations for the general case, with $p<n-1$, then by using (5) and (6) one readily obtains Lemma 3 below. Since nilpotent groups of finite order are direct products of p-groups, we consider only the case of p-groups here.

Lemma 3. Let A_{1}, \ldots, A_{t} be cyclic groups of order

$$
p^{\alpha_{1}}, \ldots, p^{\alpha_{t}}
$$

respectively. Let a_{i} generate A_{i}. Let $F=\prod^{t_{i=1}}{ }^{*} A_{i}$. Let $G=F / F_{n}$; let

$$
v=\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{r}}\right) \in G_{r} .
$$

Let

$$
\alpha=\min \left(\alpha_{i_{1}}, \ldots, \alpha_{i_{r}}\right)
$$

Then

$$
\begin{align*}
& v^{p^{\alpha}} \in G_{r+(p-1)} \tag{30}\\
& v^{p^{\alpha+j}} \in G_{r+(j+1)(p-1)} \quad j=0,1,2 \ldots
\end{align*}
$$

If $w \in G_{r}$, then w can be substituted for v in (30).
Proof. The proof follows by induction ($r=n-1, n-2, \ldots$) and uses (6) and (4).

Note that (20) is a special case of (30) with $w=a^{i} b^{j}, r=1, p=3, \alpha=1$, $j=0, n=4$. Similarly, using group (23), one obtains another special case
of Lemma 3, with $w=a b, r=1, p=2, n=3, \alpha=1, j=0$. This gives rise to the conjecture that these may be the best possible results in the following sense:

Conjecture. In the notation of Lemma 3, the order of v is $p^{\alpha+j}$, where j is the least integer such that

$$
r+(j+1)(p-1) \geqslant n .
$$

However, the author was unable to think of a way to prove that the order of v is exactly $p^{\alpha+j}$ and not something less, nor of a manageable method to solve the general case of $p<n-1$.

References

1. O. N. Golovin, Nilpotent products of groups, Mat. Sbornik N.D., 27 (69) (1950), 427-454. Amer. Math. Soc. Translations, 2, 2 (1956), 89-115.
2. -_Metabelian products of groups, Mat. Sbornik N.S., 28 (70) (1951), 431-444. Amer. Math. Soc. Translations, 2, 2 (1956), 117-132.
3. -_On the isomorphism of nilpotent decompositions of groups, Mat. Sbornik N.S., 28 (70) (1951), 445-452. Amer. Math. Soc. Translations, 2, 2 (1956), 133-140.
4. K. W. Gruenberg, Residual properties of infinite soluble groups, Proc. London Math. Soc., Series 3, 7 (1957), 29-62.
5. Philip Hall, A contribution to the theory of groups of prime-power order, Proc. London Math. Soc., 36 (1934), 29-95.
6. -— Nilpotent groups, Lecture Notes of Summer Seminar, Canadian Mathematical Congress (University of Alberta, August, 1957).
7. Marshall Hall, A basis for free Lie rings and higher commutators in free groups, Proc. Amer. Math. Soc., 1 (1950), 575-581.
8. A. Karass and D. Solitar, On free products of groups, Bull. Amer. Math. Soc., 63 (1957), 407
9. Friedrich Levi and B. L. van der Waerden, Ueber eine Besondere Klasse von Gruppen, Abhandlungen aus dem Hamburg Universität., 9 (1932), 154-158.
10. R C Lyndon, On Burnside's problem, I. Trans. Amer. Math. Soc., 77 (1954), 202-215.
11. W. Magnus, Ueber Beziehungen zwischen höheren Kommutatoren, J. Reine Angew. Math., 177 (1937), 105-115.
12. S. Moran, Associative operations on groups I. Proc. London Math. Soc., 6 (1956), 581-596.
13. I. N. Sanov, Establishment of a connection between periodic groups with prime power periods and Lie rings. Izvestiya Akad Nauk SSSR Ser Mat., 16 (1952), 23-58.
14. R. R. Struik, Notes on a paper by sanov, Proc. Amer. Math. Soc., 8 (1957), 638-641.
15. - A note on prime power groups, Can. Math. Bull., 3 (1960), 27-30.

University of British Columbia

