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Abstract

The Evolutionary Map of the Universe (EMU) is a proposed radio continuum survey of the Southern Hemisphere up to
declination +30◦, with the Australian Square Kilometre Array Pathfinder (ASKAP). EMU will use an automated source
identification and measurement approach that is demonstrably optimal, to maximise the reliability and robustness of
the resulting radio source catalogues. As a step toward this goal we conducted a “Data Challenge” to test a variety of
source finders on simulated images. The aim is to quantify the accuracy and limitations of existing automated source
finding and measurement approaches. The Challenge initiators also tested the current ASKAPsoft source-finding tool to
establish how it could benefit from incorporating successful features of the other tools. As expected, most finders show
completeness around 100% at ≈10 σ dropping to about 10% by ≈5 σ . Reliability is typically close to 100% at ≈10 σ ,
with performance to lower sensitivities varying between finders. All finders show the expected trade-off, where a high
completeness at low signal-to-noise gives a corresponding reduction in reliability, and vice versa. We conclude with a
series of recommendations for improving the performance of the ASKAPsoft source-finding tool.
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2 Hopkins et al.

1 INTRODUCTION

Measuring the properties of astronomical sources in im-
ages produced by radio interferometers has been successfully
achieved for many decades through a variety of techniques.
Probably the most common in recent years has been through
identifying local peaks of emission above some threshold,
and fitting two-dimensional Gaussians (e.g., Condon 1997).
This approach is in principle substantially unchanged from
the very earliest generation of automated source detection
and measurement approaches in radio interferometric imag-
ing. These also used a thresholding step followed by inte-
gration of the flux density in peaks of emission above that
threshold (e.g., Kenderdine, Ryle, & Pooley 1966). This in
turn followed naturally from the earlier practice of defining
a smooth curve through the minima of paper trace profiles to
represent the background level (e.g., Large, Mathewson, &
Haslam 1961).

A variety of automated tools for implementing this ap-
proach have been developed. In almost all cases the auto-
matically determined source list requires some level of sub-
sequent manual adjustment to eliminate spurious detections
or to include objects deemed to be real but that were over-
looked by the automated finder. This manual adjustment step,
again, has remained unchanged since the earliest days of ra-
dio source measurement (e.g., Hill & Mills 1962).

As radio surveys have become deeper and wider, and the
numbers of sources in the automated catalogues becomes
large, such manual intervention is progressively less feasible.
The FIRST survey (White et al. 1997) contains about 900 000
sources, and the NVSS (Condon et al. 1998) about 1.8 million
sources. In the case of future wide-area and deep surveys with
new telescope facilities, such as ASKAP (Johnston et al.
2007), this number will be increased by substantially more
than an order of magnitude. The EMU survey (Norris et al.
2011), for example, is expected to yield about 70 million
radio sources. The full Square Kilometre Array will produce
orders of magnitude more again (e.g., Hopkins et al. 2000).

There has been a strong movement in recent years to en-
sure that the automated source detection pipelines imple-
mented for these next generation facilities produce cata-
logues with a high degree of completeness and reliability, to-
gether with well-defined and characterised measurement ac-
curacy. Several recent analyses explore the properties of vari-
ous source-finders, and propose refinements or developments
to such tools (e.g., Popping et al. 2012; Huynh et al. 2012;
Hales et al. 2012; Hancock et al. 2012; Mooley et al. 2013;
Peracaula et al. 2015). At the second annual SKA Pathfinder
Radio Continuum Surveys (SPARCS) workshop, held in
Sydney over 2012 May 30 to 2012 June 1, many of these re-
sults were presented and discussed. A consensus was reached
that a blind source finding challenge would be a valuable
addition to our current approaches for understanding the
strengths and limitations of the many source-finding tools
and techniques presently available. The Data Challenge pre-
sented here was initiated as a result. The intended audience

for this work includes not only the ASKAP team working
on source finding solutions, but also the developers of as-
tronomical source finding and related tools, and potential
coordinators of future Data Challenges. The outcomes of
this work have applicability to all these areas.

The goal of the Data Challenge is to assess the complete-
ness, reliability, accuracy, and common failure modes, for
a variety of source-finding tools. These statistics and out-
comes are presented below for all the tools tested in the
Challenge. The outcomes are being used to directly inform
developments within the ASKAP source finding pipeline.
The primary focus is on ensuring that the ASKAP source
finder is as robust as possible for producing the EMU source
catalogue, although these results are clearly of broad utility,
in particular for many of the current SKA Pathfinders and
surveys.

The scope of the current Challenge is limited intention-
ally to point-sources or point-like sources (sources only
marginally extended), due to the inherent difficulty faced
by automated source finders in dealing with complex source
structure. We do test the performance of such finders on
somewhat extended sources in our analysis, although given
this limitation we do not explore such performance in great
detail. This is clearly an area that deserves more explicit
attention, with a focus on how to develop automated source
finders that accurately characterise extended source structure
(e.g., Hollitt & Johnston-Hollitt 2012; Frean et al., 2014).
Even with this limitation, there is clearly still much that can
be learned about the approach to automating a highly com-
plete and reliable point-source detection tool. It is hoped that
future Data Challenges will follow from this initial effort,
exploring more complex source structures, as well as inno-
vative approaches to the source detection and characterisation
problem.

Below we describe the Data Challenge itself (Section 2)
and the construction of the artificial images used (Section
3). This is followed by our analysis of the performance of
the submitted finders (Section 4) and a discussion comparing
these results (Section 5). We conclude in Section 6 with a
summary of the outcomes.

2 THE DATA CHALLENGE

The Data Challenge originators (Hopkins, Whiting and Sey-
mour) had responsibility for preparing the artificial source
lists and images for the Challenge, initiating and promoting
it to potential participants and coordinating the Challenge
itself, as well as the primary analysis of the outcomes. The
Data Challenge required teams to register their participation
by 2012 November 30. Three artificial images were provided,
along with a selection of ancillary data detailed below. The
deadline for submitting the three source lists for each regis-
tered source finder was 2013 January 15.

Participating teams were instructed to provide details of the
source-finding tool being tested, including the name, version
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The ASKAP/EMU Data Challenge 3

Table 1. List of source-finding tools tested.

Submitter
Source finder or Team Reference

Aegean P. Hancock Hancock et al. (2012)
APEX M. Huynh
blobcat C. Hales Hales et al. (2012)
CuTEx IAPS-INAF Molinari et al. (2011)
IFCA BAF IFCA López-Caniego & Vielva

(2012)
IFCA MF IFCA López-Caniego et al. (2006)
PyBDSM LOFAR Mohan & Rafferty (2015)
PySE LOFAR Swinbank et al. (2015);

Spreeuw (2010)
SAD L. Rudnick &

R. Taylor
SExtractor M. Huynh Bertin & Arnouts (1996)
SOURCE_FIND T. Franzen AMI Consortium: Franzen

et al., (2011)
Duchamp M. Whiting Whiting (2012)
Selavy M. Whiting Whiting & Humphreys

(2012)

number if appropriate, instructions for obtaining the tool
itself, and any other information to uniquely identify the
tool and mode or parameters of operation as relevant. The
teams were also required to identify any potential conflicts
of interest that may have biased or influenced their analysis,
or prevented the analysis from being truly blind. No such
conflicts were identified by any participating teams.

The source lists submitted by the teams were required
to have file names allowing them to be uniquely associated
with the corresponding Challenge image. The format of each
source list was required to be a simple ascii text file contain-
ing one line per source, with a header line (or lines) marked
by a hash (#) as the initial character, to uniquely define the
columns of the ascii table. The columns were required to
include RA and Dec, peak and integrated flux density, de-
convolved semi-major axis, deconvolved semi-minor axis,
and position angle. Errors on all of these quantities were also
requested. Multiple submissions were acceptable if teams de-
sired to have different operating modes or parameter sets for
a given tool included in the analysis. Several of the submit-
ted finders included multiple different modes or parameter
settings, and these are referred to in the text and figures be-
low by the name of the finder followed by the mode of use
in brackets. Not all submissions included size and position
angle measurements, as not all tools tested necessarily pro-
vide those measurements. The list of tools submitted, with
published references to the tool where available, is given in
Table 1. A brief description of each finder and how it was
used in the Challenge is presented in Appendix A. We note
that some finders may need considerable fine tuning of pa-
rameters and consequently the conclusions presented from
this Challenge reflect the particular finder implementation
used for these tests.

In addition to the tools submitted by participants, two
additional tools were tested by the Challenge originators.
These are Duchamp and Selavy, tools that were both authored
by Whiting, and multiple modes for these finders were tested.
While all care has been taken to treat these tools and their
outputs objectively, we acknowledge the conflict of interest
present, and these cannot be assessed in a truly ‘blind’ fashion
as with the other tools tested. Bearing this in mind, we felt that
it would be valuable to identify the strengths and weaknesses
of these tools in the same way as the others that are being
tested in a truly ‘blind’ fashion. The intent is to identify
elements of the best-performing tools that can subsequently
be incorporated into the ASKAP source finder, or common
failure modes that can be eliminated if present. Note that
Selavy is the current prototype for the ASKAP pipeline-
based source-finder.

3 ARTIFICIAL IMAGE CREATION

3.1 Artificial source catalogues

For the Data Challenge images, we created three input
catalogues:

1. A bright source catalogue (Figure 1). The purpose of
this test was to obtain an initial comparison of the dif-
ferent methods and to search for subtle systematic ef-
fects. We were interested in assessing the performance
of source finders in a non-physical scenario to aid in
determining whether there were any aspects of the real
sky that influenced the outcomes in subtle ways. We
created a catalogue with a surface density of about
3800 sources per square degree (the image synthesised
beam size is ≈11 arcsec, details in Section 3.2) with a
uniform distribution in logarithmic flux density span-
ning 0.2 < S1.4GHz(mJy)< 1 000. The positions were
randomly assigned, with RA and Dec values for each
source having a uniform chance of falling anywhere
within the field.

2. A fainter catalogue with pseudo-realistic clustering and
source counts (Figure 2). Here, we used a surface den-
sity of about 800 sources per square degree (the image
synthesised beam size is ≈11 arcsec, details in Section
3.2) and had an increasing number of faint sources as
measured in bins of logarithmic flux density, to mimic
the real source counts (e.g., Hopkins et al. 2003; Norris
et al. 2011). Sources were assigned flux densities in the
range 0.04 < S1.4GHz(mJy)< 1 000. The distribution of
source positions was designed to roughly correspond
to the clustering distributions measured by Blake &
Wall (2002) for sources having S1.4GHz > 1 mJy, and
to Oliver et al. (2004) for S1.4GHz < 1 mJy. In the lat-
ter case we assume that faint radio sources have simi-
lar clustering to faint IRAC sources, in the absence of
explicit clustering measurements for the faint popula-
tion, and on the basis that both predominantly reflect a
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4 Hopkins et al.

Figure 1. A subsection of the first Data Challenge image (left), and the input source distribution to this image (right). This image includes sources distributed
randomly with a flux density distribution that is uniform in the logarithm of flux density. This distribution gives rise to a much higher surface density of
bright sources, and proportionally more bright sources compared to faint sources, than in the real sky.

Figure 2. A subsection of the second Data Challenge image (left), and the input source distribution to this image (right). This image includes sources
distributed with intrinsic clustering, and with a flux density distribution drawn from the observed source counts (e.g., Hopkins et al. 2003), in an effort to
mimic the characteristics of the real sky.

changing proportion of low luminosity AGN and star
forming galaxy populations. In each case we began with
an initial random list of source locations, then used an
iterative process to test the clustering signal in the vicin-
ity of each source, relocating neighbour sources until
the desired clustering was reproduced.

3. The same as (2), but with some sources extended
(Figure 3). We randomly designated 20% of those
sources to be elliptical Gaussians with the total flux
conserved (and therefore having a lower peak flux

density). These elliptical Gaussians were assigned ma-
jor axis lengths of 5 arcsec to 140 arcsec, with brighter
sources likely to be more extended than fainter ones.
The minor axis length was then randomly varied be-
tween 30% and 100% of the major axis length.

In Figures 1–3, we show subsections of the Challenge
images used and the input source models, in order to il-
lustrate cleanly the characteristics of the noise in the im-
ages. The input sources were assigned to have flat spectra
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The ASKAP/EMU Data Challenge 5

Figure 3. A subsection of the third Data Challenge image (left), and the input source distribution to this image (right). This image includes sources as
for the second Data Challenge image, but with 20% of the sources now assigned a non-negligible physical extent. The extended sources are modelled as
two-dimensional elliptical Gaussians.

Figure 4. The distribution of input source flux densities for the three
Challenges.

(α = 0, where Sν ∝ να) as investigations of spectral index
effects are beyond the scope of these tests. For all three Chal-
lenges, the distribution of source flux densities end up span-
ning a broad range of signal-to-noise (S/N), from S/N< 1
to S/N> 100 (Figure 4). Each catalogue covered a square
region of 30 deg2 (to match the ASKAP field-of-view) and
were centred arbitrarily at RA= 12h30m, Dec= −45◦.

3.2 Artificial image generation

The images were created with two arcsecond pixels. To sim-
plify the computational elements of the imaging each source
was shifted slightly to be at the centre of a pixel. If multiple

sources were shifted to a common location they were simply
combined into a single input source by summing their flux
densities. This step had a negligible effect on both the implied
clustering of the sources and the input flux density distribu-
tion, but a significant reduction in the computational require-
ments for producing the artificial images. The input source
catalogue used subsequently to assess the performance of the
submitted finders was that produced after these location shift-
ing and (if needed) flux combining steps. Simulating a more
realistic distribution of source positions should be explored
in future work to assess the effect on finder performance for
sources lying at pixel corners rather than pixel centres.

The image creation step involves mimicking the process
of observation, populating the uv plane by sampling the ar-
tificial noise-free sky for a simulated 12 h synthesis with
the nominal 36 ASKAP antennas, adding realistic noise (as-
suming Tsys = 50 K and aperture efficiency η = 0.8) to the
visibilities. Noise was added in the uv plane in the XX and
YY polarisations with no cross-polarisation terms. This sim-
ulates the thermal noise in the visibilities in order to correctly
mimic the behaviour of the real telescope. The image-plane
noise consequently incorporates the expected correlation
over the scale of the restoring beam. Because of a limitation in
computing resources, a reduced image size compared to that
produced by ASKAP was simulated giving a field of view
of 15.8 deg2 (or 11.6 deg2 once cropped, described further
below), as it was judged this was sufficient to provide a
large number of sources yet still keep the images of a man-
ageable size for processing purposes. The visibilities were
then imaged via Fourier transformation and deconvolution.
The deconvolution step was run for a fixed number of iter-
ations for each of the three Challenge images. As a conse-
quence of this step, limited by available CPU time for this
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6 Hopkins et al.

compute-intensive process, the image noise level in the sim-
ulations is significantly higher than the nominal theoreti-
cal noise. This is exacerbated by the presence of many
faint sources below the measured noise level in the sim-
ulated images. We emphasise that the processing of real
ASKAP images will not be limited in this way. For Chal-
lenge 1 the noise level was higher, by almost a factor of
10, than in the images for Challenges 2 and 3. We at-
tribute this, and the subsequent low dynamic range in the
flux-density distribution of sources able to be measured
in Challenge 1, to the non-physical distribution of flux
densities resulting from the high surface density of bright
sources.

Due to the density of sources on the sky, especially for
Challenge 1, and with clustering (random or not) many
sources were close enough together that they were either as-
signed to the same pixel, or would fall within the final restored
beam of the image (11.2 arcsec × 10.7 arcsec, PA= 3.1◦) of
an adjacent source. While sources with their peaks lying
within the same resolution element may be able to be dis-
tinguished, given sufficient S/N depending on the separation,
the bulk of measured radio sources in large surveys are at low
S/N. Even sources in this regime with their peaks separated
by more than one resolution element but still close enough
to overlap are clearly a challenge (Hancock et al. 2012),
even without adding the extra complexity of sources lying
within a common resolution element. To avoid making the
Data Challenge too sophisticated initially and to focus on the
most common issues, for Challenges 1 and 2 all sources from
the preliminary input catalogue that lay within 11 arcsec of
each other were replaced by a single source defined as the
combination of the preliminary sources by adding their fluxes
and using the flux weighted mean positions. While most of
these matches were pairs we also accounted for the small
number of multiple such matches.

For Challenge 3 with 20% of the sources potentially quite
extended we had to employ a different method. For rela-
tively compact sources, defined as those having a major axis
<16.8 arcsec (1.5×FWHM), we combined them as before if
they were isolated from extended sources. For the rest of the
sources with larger extent we simply flagged them as either
being isolated if no other sources overlapped the elliptical
Gaussian, or as being blended.

For comparison with the submitted catalogues, we re-
stricted both the simulated and measured catalogues to areas
that had good sensitivity, removing the edges of the image
where the image noise increased. In practice, we applied a
cutoff where the theoretical noise increased by a factor of
2.35 over the best (lowest) noise level in the field.

4 ANALYSIS

4.1 Completeness and reliability

Completeness and reliability are commonly used statistics for
a measured set of sources to assess the performance of the

source finder. The completeness is the fraction of real (input)
sources correctly identified by the measurements, and the
reliability is the fraction of the measured sources that are
real.

To compare the submitted results for each finder with the
input source lists, we first perform a simple positional cross-
match. For Challenges 1 and 2 we define a measured source to
be a match with an input source if it is the closest counterpart
with a positional offset less than 5 arcsec. This offset corre-
sponds to 2.5 pixels or about 0.5×FWHM of the resolution
element, so is a suitably small offset to minimise false asso-
ciations. By construction there are no input sources within
this positional offset of each other, ensuring that any match
with a measured source should be a correct association. For
Challenge 3, given the presence of extended sources, we in-
creased the offset limit to 30 arcsec, roughly 3×FWHM of
the resolution element, to account for greater positional un-
certainties in the detected sources by the different finders.
This does lead to the possibility of spurious cross-matches
between measured and input sources. We do not attempt to
account for this effect in the current analysis, though, merely
noting that this is a limitation on the accuracy of these met-
rics for Challenge 3, and that any systematics are likely to
affect the different finders equally. We avoid using additional
criteria such as flux density (e.g., Wang et al. 2014) to refine
the cross-matching, as this has the potential to conflate our
analyses of positional and flux density accuracy. Using this
definition, we calculate the completeness and reliability of
the input catalogues for each of the three Challenges. These
are shown in Figures 5–7.

We show these measurements as a function of the input
source flux density for the completeness measure and of the
measured source flux density for the reliability. Ideally, the
S/N rather than the flux density should be used here, but be-
cause of the way the artificial images have been generated,
following a simulated observation and deconvolution pro-
cess, the intrinsic S/N is not known a priori. We measure the
root-mean-square (rms) noise level in the images directly,
at several representative locations selected to avoid bright
sources. We note that the unit of flux density in each pixel
is mJy/beam, so that changing the pixel scale in the image
changes only the number of pixels/beam, not the flux scal-
ing. We measure σ ≈ 9 mJy for Challenge 1 and σ ≈ 1 mJy
for each of Challenge 2 and 3, although the value fluctuates
as a function of location in the image by up to ±2 mJy for
Challenge 1 and ±0.5 mJy for Challenges 2 and 3. Bearing
these details in mind, much of the discussion below refers in
general terms to S/N rather than to flux density, in order to
facilitate comparisons between the Challenges.

The completeness and reliability curves give insights into
the performance of the various finders. In broad terms, most
finders perform well at high S/N, with declining complete-
ness and reliability below about 10 σ . In general we see the
expected trade-off between completeness and reliability, with
one being maintained at the expense of the other, but there
are clearly variations of performance between finders and
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Figure 5. The completeness and reliability fractions (left and right respectively) as a function of input source flux density (completeness) or measured
source flux density (reliability) for each of the tested source finders for Challenge 1. The grey lines show the distribution for all finders in each panel, to aid
comparison for any given finder.

Challenges. It may be desirable in some circumstances to use
certain metrics (such as the S/N at which completeness drops
to 50%, or the integrated reliability above some threshold)
to summarise the information contained in the completeness
and reliability distributions. Due to the nature of the current
investigation, though, and in order not to obscure any subtle
effects, we have chosen to focus on the properties of the full
distributions.

For all finders, the qualitative performance in Challenge 1
is similar to the performance in Challenge 2, although quan-
titatively the completeness and reliability are poorer in Chal-
lenge 1 than in Challenge 2. Finders that demonstrate a good
performance at low S/N in terms of completeness while also
maintaining high reliability include Aegean, blobcat, SEx-
tractor and SOURCE_FIND. IFCA (in both modes) has a
very high completeness, but at the expense of reliability. Cu-
TEx shows the lowest completeness as well as reliability at
faint levels.

Some finders (blobcat, Duchamp, and Selavy in smooth
mode) at high S/N show dips or declining performance in ei-
ther or both of completeness and reliability, where the results
should be uniformly good. At very high S/N we expect 100%
completeness and reliability from all finders. Some finders
that perform well in terms of completeness still show poorer

than expected levels of reliability. Selavy in most modes falls
into this category, as does PyBDSM (Gaussians) for Chal-
lenge 2 (but not Challenge 1, surprisingly).

For those finders that otherwise perform well by these
metrics, we can make a few more observations. First it is
clear that the APEX finder used a higher threshold than most
finders, approximately a 10 σ threshold compared to some-
thing closer to 5 σ for all others. Is it also apparent that
SAD demonstrates a drop in reliability below about 10 σ that
declines faster than most of the other similarly-performing
finders, before recovering at the lowest S/N at the expense of
completeness. This is emphasised more in Challenge 1 than
in Challenge 2.

The performance of most finders in Challenge 3 is similar
to that in other Challenges, except for a reduced completeness
and reliability. This is not surprising as the 20% of sources
that are extended will have a reduced surface brightness and
hence peak flux density compared to their total flux density,
so many of the extended sources are below the threshold for
detection for all the finders tested. In addition, the reliability
is likely to be reduced at low to modest S/N as a conse-
quence of the extended emission from these sources push-
ing some noise peaks above the detection threshold. This
may also arise from the number of artifacts related to the
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8 Hopkins et al.

Figure 6. The completeness and reliability fractions (left and right respectively) as a function of input source flux density (completeness) or measured source
flux density (reliability) for each of the tested finders for Challenge 2. The grey lines show the distribution for all finders in each panel, to aid comparison for
any given finder.

extended sources that are visible in Figure 3. Most finders
still demonstrate a completeness for Challenge 3 of better
than around 80% above reasonable flux density (or S/N)
thresholds (e.g., S/N≥ 8–10), which is encouraging since
this is the fraction of input sources in Challenge 3 that are
point sources. Despite this, blobcat, PyBDSM (sources),
PySE (D5A3), SAD, and SExtractor maintain very high re-
liability in their measured sources for Challenge 3. Other
finders, though, including Aegean and SOURCE_FIND, as
well as Selavy, show very low reliability in this Challenge,
even at very high S/N, suggesting that there may be addi-
tional issues contributing to detection of false sources in the
presence of extended sources. We note that these finders are
designed for the detection of point sources, but further inves-
tigation is needed to establish why the presence of extended
emission affects their performance in this way. One possibil-
ity is that an extended source may be broken into a number
of individual point-source components, due to noise fluctu-
ations appearing as local maxima. These would then appear
as false detections since they do not match up to an input
source.

Since maximising both completeness and reliability is one
clear goal of source finding, we illustrate in Figure 8 how the
product of completeness and reliability for all finders varies

as a function of the input source flux density for each of
the three Challenges. The advantage of this metric is that it
retains the dependence on flux density (or S/N), so that the
joint performance can be assessed as a function of source
brightness. This may serve to provide a more direct or intu-
itive comparison between finders at a glance than the separate
relationships from Figures 5–7. It readily highlights finders
than perform poorly at high S/N (e.g., blobcat and Duchamp
in Challenge 1), and the range of performance at low S/N.
It also highlights that most finders follow a quite tight locus
in this product as the flux density drops from about 10 σ to
5 σ and below, and can be used to identify those that perform
better or worse than this typical level. Clearly, though, the
origin of any shortfall in the product of the two statistics
needs to be identified in the earlier Figures.

There is an issue related to source blending that affects
the degree of completeness reported for some finders. This is
evident in particular for significantly bright sources which all
finders should detect, and is for the most part a limitation in
the way the completeness and reliability is estimated based
on near-neighbour cross-matches. The practical assessment
of completeness and reliability is problematic in particular
for finders that use a flood-fill method and do not do fur-
ther component fitting. Both blobcat and Duchamp merge
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Figure 7. The completeness and reliability fractions (left and right respectively) as a function of input source flux density (completeness) or measured source
flux density (reliability) for each of the tested finders for Challenge 3. The grey lines show the distribution for all finders in each panel, to aid comparison for
any given finder. Note that PySE (FDR) was only submitted for Challenges 1 and 2, and does not appear here.

sources if the threshold is sufficiently low, and then report
the merged object. This is likely the origin of their appar-
ently poor performance at high S/N in Challenge 1, where
many bright sources may be overlapping. If the centroid or
flux-weighted position reported for the merged object lies
further from either input source location than the matching
radius used in assessing counterparts between the input and
submitted source lists, the detected blend will be excluded.
Note that the higher spatial density of sources at bright flux
density in Challenge 1 makes this more apparent than in Chal-
lenge 2 (compare Figures 5 and 6). While this seems to be
the cause of most of the issues, there are clearly some cases
where bright sources are genuinely missed by some find-
ers. Figure 9 shows that Selavy (smooth) has a tendency not
to find bright sources adjacent to brighter, detected sources.
Selavy (à trous), on the other hand, does detect these but at
the expense of finding many more spurious sources. This is
discussed further below.

Figure 9 provides an illustration of some of the sources of
incompleteness and reliability. The issue of blended sources
being detected but reported as a single object by blobcat can
be easily seen in this example. Here five adjacent pairs and
one adjacent triplet are successfully detected by blobcat but
reported with positions, from the centroid of the flux distribu-
tion, sufficiently different from the input catalogue that they
are not recognised as matches. This is likely to be the cause
of the apparent reduction in completeness for blobcat at the

higher flux density levels. We note that blobcat provides a
flag to indicate when blobs are likely to consist of blended
sources. These flags were not followed up for deblending in
the submitted results due to the stated focus in this Chal-
lenge on point-like sources. It is clear, though, that even for
point sources the blending issue needs careful attention. In a
production setting, automated follow-up of blended sources
will be required to improve completeness. The effectively
higher flux density (or signal-to-noise) threshold of Apex is
also visible in this Figure as the large number of sources not
detected.

The two Selavy results shown in Figure 9 also provide
insight into the possible failure modes of finders. The two al-
gorithms shown are the ‘smooth’ and ‘à trous’ methods. The
smooth approach smooths the image with a spatial kernel be-
fore the source-detection process of building up the islands,
which are then fitted with 2D Gaussians. In some cases mul-
tiple components will have been blended into a single island,
which is clearly only successfully fitted with one Gaussian.
This leads to one form of incompleteness, probably explain-
ing the lower overall completeness for this mode in Figure 5.
The à trous approach reconstructs the image with wavelets,
rejecting random noise, and uses the reconstructed image
to locate the islands that are subsequently fitted. This gives
an island catalogue with nearby components kept distinct
(which are each subsequently fit by a single Gaussian), but
has the effect of identifying more spurious fainter islands
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10 Hopkins et al.

Figure 8. The product of the completeness and reliability as a function of input source flux density for each of the tested source finders for Challenges 1–3
(left to right). The grey lines show the distribution for all finders in each panel, to aid comparison for any given finder. Note that PySE (FDR) was only
submitted for Challenges 1 and 2.

(note the larger number of purple circles compared to the
Selavy smooth case), leading to the poorer reliability seen in
Figure 5. This analysis demonstrates the importance of both
the detection and fitting steps for a successful finder.

4.2 Image-based accuracy measures

The method of calculating the completeness and reliability
based on source identifications depends critically on the ac-
curacy of the cross-matching. This can be problematic in the
event of source confusion, where distinct sources lie close
enough to appear as a single, complex blob in the image.
As an alternative approach for evaluating the completeness
we create images from the submitted catalogues, and com-
pare on a pixel-by-pixel basis with the challenge images and
original model images (smoothed with the same beam as the
challenge images). This provides a way of assessing how
well the different finders replicate the distribution of sky
brightness for the image being searched. This approach may
favour over-fitting of sources, but still provides an important
complement to the analysis above.

The images are made using the same technique described
in Section 3.2. Where available the measured size of the
source components was used, but if only the deconvolved size
was available the size was convolved with the beam according
to the relations in Wild (1970). This produced Gaussian blobs
that were distributed onto the same pixel grid as the input
images to create the ‘implied image’. As before, the images
are cropped to remove the regions where the image noise
was high. We consider residual images made in two ways, by
subtracting either the Challenge image or the original input
model from this implied image. The following statistics were
calculated from the residual: the rms; the median absolute

deviation from the median (MADFM, which we convert to
an equivalent rms by dividing by 0.6744888; Whiting 2012);
and the sum of the squares. The latter and the rms provide an
indication of the accuracy including outliers (which will be
from sources either missed or badly fit), while the MADFM
gives an indication of where the bulk of the residuals lie. A
finder that fits a lot of sources well, but still has a few poor
fits, will tend to have a lower MADFM value but somewhat
higher rms and sum of squares. The results are shown in
Tables 2–4 for Challenges 1, 2, and 3 respectively.

These statistics are related to the properties of the noise
in both the Challenge and implied images. To address this in
order to have some benchmark for the measured values, we
perform the analysis on each of the Challenge images them-
selves by subtracting the Challenge image from the smoothed
model. This gives the measurements that would correspond
to optimal performance if a finder recovered the full input
catalogue, given the (false) assumption that the noise is iden-
tical between the Challenge image and each implied image
(i.e., some of the difference between finder metrics and the
benchmark value will be attributable to noise). We note that
this benchmark is only relevant for the metrics calculated by
subtracting the Challenge image from each implied image.
Because the benchmark is limited by the absence of noise in
the smoothed model, we treat this analysis as a relative com-
parison between finders rather than as an absolute metric.

blobcat does not provide shape information in the form
of a major and minor axis with a position angle. Although
the ratio between integrated to peak surface brightness can be
used to estimate a characteristic angular size (geometric mean
of major and minor axis), and these values were provided in
the submission to the Data Challenge, they do not allow for
unambiguous reconstruction of the flux density distribution
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Figure 9. Examples illustrating potential sources of both incompleteness and poor reliability for four of the tested
source finders for Challenge 1. Top left: Apex; Top right: blobcat; Bottom left: Selavy (smooth); Bottom right:
Selavy (atrous). Orange crosses identify the location of input artificial sources. Circles are the sources identified
by the various finders, with green indicating a match between a measured source and an input source, and purple
indicating no match. Isolated orange crosses indicate incompleteness, and purple circles show poor reliability.

and we have not included these in the present analysis so as
to avoid potentially misleading results.

Different finders assume different conventions in the def-
inition of position angle. We strongly recommend that all
source finders adopt the IAU convention on position angle
to avoid ambiguity. This states that position angles are to be
measured counter-clockwise on the sky, starting from North
and increasing to the East (Trans. IAU 1974). We found that
we needed to rotate Aegean’s position angles by 90◦ (an early
error of convention in Aegean, corrected in more recent ver-
sions), and to reverse the sign of the IFCA position angles, to
best match the input images. In the absence of these modifi-
cations cloverleaf patterns, with pairs of positive and negative
residuals at ∼90◦ from each other, appear at the location of
each source in the residual images. CuTEx position angles
were not rotated for this analysis, although we found that
similar cloverleaf patterns existed on significantly extended
components, most notable in Challenge 3. If we adjusted the
position angle, though, cloverleaf residuals appeared on the

more compact sources. The non-rotated catalogue performs
better than the rotated version, although for completeness we
report both versions in Tables 2–4. The CuTEx flux densities
as submitted were systematically high by a factor of two,
and subsequently corrected after identifying a trivial post-
processing numerical error (see Section 4.3.2 below). The
analysis here has accounted for this systematic by dividing
the reported CuTEx flux densities by two.

The finders that generally appear to perform the best in this
analysis are Aegean, CuTEx and PyBDSM. For PyBDSM
the Gaussians mode seems to perform better than the Sources
mode, across the three Challenges, although the performance
for both is similar apart from Challenge 3 where the Gaus-
sians mode is more appropriate for estimating the properties
of the extended sources. The finders that seem to most poorly
reproduce the flux distribution are SExtractor and IFCA. We
discuss this further below in Section 4.3.2.

Selavy performs reasonably well in these tests, with results
generally comparable to the better performing finders. It is
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Table 2. Results from image-based analysis, for Challenge 1. We
consider residual images made in two ways, subtracting either the
image or the smoothed model from the implied image, and mea-
sure the rms derived from the MADFM (in mJy/beam), and the
sum of the squares of the residuals (in (Jy/beam)2). We show for
comparison, in the line labelled ‘input’, the same statistics derived
from subtracting the smoothed model from the challenge image.
In each column the three submitted entries with the lowest values
are highlighted in bold, as is the best performance of Selavy for
reference.

Image Model

ID MADFM sumsq MADFM sumsq

Input 9.4570 2910.7 — —
APEX 9.5478 4351.9 0.0261 1481.4
Aegean 9.4242 2969.5 0.0258 186.3
CuTEx 9.5119 3147.5 0.0270 312.7
CuTEx (rotated) 9.5272 3153.9 0.0272 323.0
IFCA BAF 9.5641 11433.0 0.0280 8925.0
IFCA MF 9.7680 35221.0 0.0306 33483.0
PyBDSM gaussians 9.3271 2920.6 0.0260 162.4
PyBDSM sources 9.3395 2976.3 0.0260 216.1
PySE D5A3 9.4389 3098.3 0.0252 263.4
PySE FDR 9.4546 3119.2 0.0254 279.0
SAD 9.4777 3020.2 0.0257 224.9
SExtractor 10 beam 9.6956 7566.8 0.0302 4890.1
SExtractor 30 beam 9.6915 7570.5 0.0302 4897.1
SOURCE_FIND 9.5116 3099.0 0.0254 286.4
Duchamp à trous 9.6905 4609.4 0.0300 1922.3
Duchamp basic 9.7371 4234.1 0.0297 1430.7
Duchamp smooth 9.7143 6594.3 0.0287 3812.0
Selavy à trous 9.2033 2791.1 0.0318 324.2
Selavy basic 9.3207 2897.5 0.0265 196.0
Selavy box 9.3330 2923.3 0.0259 165.2
Selavy smooth 9.4829 4251.1 0.0253 1405.1
Selavy weight 9.3802 2994.0 0.0259 211.9

worth noting, though, that the different Selavy modes per-
form differently in each Challenge. For Challenge 1, Selavy
(à trous) performs best; for Challenge 2 it is Selavy (smooth);
and for Challenge 3, Selavy (basic) and Selavy (box) both
perform well. This can be understood in terms of the differ-
ent source distributions and properties in each of the three
Challenges. The high density of bright sources in Chal-
lenge 1 seems to be best addressed with the à trous mode,
the Smooth mode for the more realistic source distribution of
Challenge 2, and the extended sources of Challenge 3 better
characterised by the Basic and Box approaches. This leaves
an open question over which mode is better suited to the
properties of sources in the real sky, and this will be explored
as one of the outcomes from the current analysis.

4.3 Positional and flux density accuracy

In addition to the detection properties, we also want to assess
the characterisation accuracy of the different finders. This
section explores their performance in terms of the measured

Table 3. Results from image-based analysis, for Challenge 2.
Columns as for Table 2.

Image Model

ID MADFM sumsq MADFM sumsq

Input 1.0391 35.4 — —
APEX 1.0425 123.4 0.0044 88.2
Aegean 1.0404 38.5 0.0045 3.6
CuTEx 1.0419 39.7 0.0045 4.6
CuTEx (rotated) 1.0438 47.2 0.0045 11.7
IFCA BAF 1.0381 278.2 0.0050 245.9
IFCA MF 1.0452 1151.8 0.0053 1129.1
PyBDSM gaussians 1.0380 35.8 0.0045 0.9
PyBDSM sources 1.0384 43.0 0.0045 8.1
PySE D5A3 1.0403 59.6 0.0044 24.5
PySE FDR 1.0407 45.9 0.0044 10.8
SAD 1.0420 43.3 0.0045 8.3
SExtractor 10 beam 1.0446 160.1 0.0045 125.5
SExtractor 30 beam 1.0445 160.0 0.0045 125.5
SOURCE_FIND 1.0423 46.0 0.0044 11.1
Duchamp à trous 1.0478 193.9 0.0046 159.0
Duchamp basic 1.0489 186.2 0.0045 150.6
Duchamp smooth 1.0474 239.3 0.0045 203.7
Selavy à trous 1.0312 41.1 0.0049 8.8
Selavy basic 1.0369 38.5 0.0046 4.5
Selavy box 1.0381 42.4 0.0045 7.6
Selavy smooth 1.0388 38.5 0.0045 3.9
Selavy weight 1.0393 42.5 0.0045 7.6

Table 4. Results from image-based analysis, for Challenge 3.
Columns as for Table 2.

Image Model

ID MADFM sumsq MADFM sumsq

Input 1.1649 44.4 — —
APEX 1.1918 130.1 0.0063 87.1
Aegean 1.1870 107.1 0.0063 63.7
CuTEx 1.1910 67.8 0.0064 25.0
CuTEx (rotated) 1.1924 69.0 0.0064 25.8
IFCA BAF 1.1918 248.6 0.0063 205.7
IFCA MF 1.1951 2428.8 0.0064 2398.4
PyBDSM gaussians 1.1693 45.3 0.0080 2.0
PyBDSM sources 1.1792 97.4 0.0062 53.5
PySE D5A3 1.1901 86.1 0.0063 43.1
SAD 1.1920 123.7 0.0063 79.9
SExtractor 10 beam 1.1914 1293.1 0.0065 1249.3
SExtractor 30 beam 1.1890 1359.3 0.0064 1315.2
SOURCE_FIND 1.1904 210.5 0.0063 168.1
Duchamp à trous 1.1882 221.6 0.0066 179.2
Duchamp basic 1.1934 191.7 0.0065 148.2
Duchamp smooth 1.1870 259.6 0.0065 215.9
Selavy à trous 1.2019 2738.9 0.0066 2691.4
Selavy basic 1.1800 50.3 0.0066 8.3
Selavy box 1.1819 51.4 0.0062 7.9
Selavy smooth 1.1869 60.2 0.0063 17.7
Selavy weight 1.1868 52.6 0.0065 9.5
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Table 5. Positional accuracy statistics in arcsec. For a 5σ detection limit, the minimum rms error expected is μ ≈ 0.3 arcsec. For 10σ ,
similar to the threshold for APEX, it is μ ≈ 0.15 arcsec.

Challenge 1 Challenge 2

Source finder δRA δDec μRA μDec δRA δDec μRA μDec

Aegean 0.006 0.0005 0.53 0.52 −0.007 0.0005 0.68 0.65
APEX −0.01 0.005 0.33 0.35 −0.014 0.009 0.31 0.31
blobcat −0.008 −0.0003 0.70 0.71 −0.0003 −0.010 0.50 0.54
CuTEx 0.000 −0.0008 0.42 0.44 0.002 −0.005 0.35 0.39
IFCA BAF −0.0005 0.006 0.73 0.73 −0.006 0.012 0.63 0.63
IFCA MF −0.001 0.004 0.90 0.88 −0.027 0.035 0.88 0.83
PyBDSM Gaussian 0.005 0.0008 0.53 0.53 −0.002 0.004 0.51 0.52
PyBDSM Source 0.005 −0.002 0.52 0.51 −0.003 −0.0009 0.45 0.44
PySE D5A3 0.005 −0.0001 0.51 0.50 0.007 −0.004 0.44 0.43
PySE FDR 0.004 −0.002 0.39 0.39 0.005 −0.004 0.39 0.39
SAD 0.002 0.005 0.63 0.62 0.005 −0.002 0.43 0.49
SExtractor 10 beam 1.07 0.10 2.26 2.55 0.0007 −0.009 0.47 0.50
SExtractor 30 beam 0.0008 −0.0009 0.60 0.60 0.003 −0.009 0.48 0.50
SOURCE_FIND 0.006 0.005 0.56 0.54 −0.0009 0.008 0.74 0.69
Duchamp à trous −0.007 −0.466 0.87 0.96 0.012 −0.487 0.72 0.87
Duchamp basic −0.007 −0.47 0.77 0.90 0.011 −0.509 0.68 0.82
Duchamp smooth −0.015 −0.469 0.85 0.97 −0.005 −0.466 0.71 0.88
Selavy à trous −0.0005 0.006 0.70 0.66 0.008 0.004 0.64 0.61
Selavy basic −0.001 0.007 0.61 0.61 0.010 −0.013 0.56 0.56
Selavy box 0.003 0.008 0.59 0.59 0.017 −0.008 0.58 0.56
Selavy smooth 0.002 0.010 0.63 0.62 0.021 0.001 0.62 0.62
Selavy weight 0.0002 0.001 0.47 0.47 0.006 −0.004 0.43 0.44

positions and flux densities. Because not all finders report
size information, we chose not to include measured sizes
in the current analysis. Because the restoring beam in the
Challenge images was close to circular, we also chose not to
investigate position angle estimates.

4.3.1 Positions

In order to assess positional accuracy, we use the relation-
ships defined by Condon (1997) that establish the expected
uncertainties from Gaussian fits (see also Hopkins et al.
2003). These relations give expected positional errors with
variance of

μ2(x0) ≈ (2σx)/(πσy) × (h2σ 2/A2), (1)

μ2(y0) ≈ (2σy)/(πσx) × (h2σ 2/A2), (2)

where σ is the image rms noise at the location of the source,
h is the pixel scale and A is the amplitude of the source.
The parameters σx and σy are the Gaussian σ values of the
source in the x and y directions. Here, θM and θm, the full
width at half maximum along the major and minor axes,
can be interchanged for σx and σy, as the

√
8 ln 2 factor

cancels. If the source size is n times larger in one dimen-
sion than the other, the positional error in that dimension
will be n times larger as well. In our simulations, the point
sources in the images arise from a point spread function
that is approximately circular, and θM ≈ θm. Correspond-
ingly, the positional rms errors in both dimensions should be
μ ≈ √

2/π(hσ/A). For our simulated images h = 2 arcsec,

and accordingly we would expect the positional errors from
a point-source finder due to Gaussian noise alone to be
μ ≈ 0.3 arcsec for S/N = 5, μ ≈ 0.15 arcsec for S/N = 10,
and μ ≈ 0.05 arcsec for S/N = 30.

The positional accuracies of the finders are presented in
Table 5. We only show the results for Challenges 1 and 2,
since the inclusion of extended sources used in Challenge 3
may result in some fraction of the measured positional off-
sets arising from real source structure rather than the intrinsic
finder accuracy, making these simple statistics harder to in-
terpret. Table 5 gives the mean and the rms in the RA and
Dec offsets between the input and measured source positions
for each finder. All measured sources that are in common
with input sources are used in calculating these statistics,
for each finder. This means that finders with a higher ef-
fective S/N threshold (APEX) should expect to show better
rms offsets than the others, since most sources will have
flux densities close to the threshold, and this is indeed the
case. For most finders, with a threshold around S/N≈ 5,
the best rms positional accuracy expected would be around
0.3 arcsec. For APEX, with a threshold around S/N≈ 10, the
best rms expected should be around 0.15 arcsec. The rms
positional accuracies range from a factor of 1.3–2 larger than
expected from Gaussian noise alone, with CuTEx, PySE, and
PyBDSM performing the best. SAD performs as well as these
finders in Challenge 2, but not quite as well in Challenge 1.

Almost all of the finders perform well in terms of abso-
lute positional accuracy, even with the high source density
of Challenge 1, with mean positional offsets typically better
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Figure 10. The ratio of the measured to the input flux density, as a function of the input flux density, for Challenge 2. The solid and dashed lines are the
expected 1σ and 3σ errors from the rms noise in the image. The dot-dashed line indicates the expected flux ratio from a nominal 5 σ threshold, obtained by
setting Smeas = 5 σ for all values of Sinput.

than 10 milliarcseconds, or 0.5% of a pixel. A notable ex-
ception is SExtractor (10 beam) in Challenge 1, which has
a measurable systematic error in the source positions, and
a significantly elevated rms in the positional accuracy. This
is not present for SExtractor (30 beam) or for SExtractor in
either mode for Challenge 2, suggesting that it is a conse-
quence of the high source density present in Challenge 1 and
insufficient background smoothing performed in the 10 beam
mode.

For the two finders that we cannot assess blindly, Duchamp
shows a systematic positional offset in Dec, and typically has
poorer rms positional errors than most other finders. Selavy
generally performs well, and overall has good mean posi-
tions, but has poorer positional accuracy than the best of the
tested finders. The Selavy mode that performs best in terms
of rms positional error is Selavy (weight), which is the mode
that performs worst in terms of completeness. This suggests
that it may be a lack of low S/N sources that is causing the
estimate of the positional error to appear better. A clear out-
come of this test is that Selavy can be improved by looking
at the approach taken by CuTEx, PySE, and PyBDSM in
estimating source positions.

4.3.2 Flux densities

The flux density of each component was compared with the
input flux density, and Figure 10 shows the ratio of measured
to input flux density as a function of input flux density, for
Challenge 2. Since the sources are point sources, the inte-
grated flux density should be identical to the peak flux den-
sity, but for clarity we use reported peak flux densities from
the submissions. We focus on Challenge 2 as it includes a
distribution of input source flux densities most similar to the
real sky. The results from Challenge 1 are similar. We do
not consider Challenge 3 here, again because of the bias in-
troduced by the inclusion of extended sources with low peak
flux densities and high integrated flux densities. Figure 10 in-
dicates with solid and dashed lines the expected 1 σ and 3 σ

flux density errors respectively, where σ here corresponds
to the rms noise level. The dot-dashed line in each panel
shows the flux ratio value corresponding to a 5 σ detection
threshold. In other words, given the input flux density on the
abscissa, the dot-dashed line shows the ratio that would be
obtained if the measured flux density were to correspond to
5 σ . Values below (to the left) of this line are only possible
if the finder reports measured flux densities for any source
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below 5 σ . This aids in comparison between the depths
probed by the different finders.

The need for accurate source fitting is highlighted by the
Duchamp results. Duchamp only reports the flux density con-
tained in pixels above the detection threshold, and so misses a
progressively larger fraction of the flux density as the sources
get fainter. For this reason, we do not consider Duchamp fur-
ther in this discussion of flux density estimation. With the
exception of Duchamp, all the finders implement some form
of fitting to account for the total flux density of sources.
They generally show similar behaviours, with reported flux
densities largely consistent within the expected range of un-
certainty. The CuTEx flux densities submitted were a fac-
tor of two too high, arising from a trivial numerical error
in converting between units of Jy/beam and Jy in the post-
processing of the CuTEx output. This has been subsequently
corrected, and for the remainder of this analysis we consider
the CuTEx flux densities after taking this correction into
account.

APEX, blobcat, IFCA, PySE, and SAD all show flux
density errors constrained to within 1σ for most of the range
of fluxes, and IFCA in particular probes below the nominal
5 σ threshold while maintaining an accurate flux density es-
timate. Selavy (smooth) performs similarly well. All finders
show some fraction of outliers even at high S/N (S/N> 10)
with flux densities differing as much as 20–50% from the in-
put value. The fraction of measurements that lie outside the
±3 σ range is typically a few percent, ranging from 1.8% for
blobcat and SOURCE_FIND, to 4.9% for PyBDSM (Gaus-
sians), and 6.5% for CuTEx after accounting for the factor
of two systematic. SExtractor is notably worse, though, with
more than 10% outliers in both modes. This is likely to result
from assumptions about source fitting in optical images, for
which SExtractor was designed, that are less appropriate for
radio images. Selavy spans the range of the better performing
finders, with 2.1% outliers for Selavy (smooth) to 4.4% for
Selavy (à trous).

Catastrophic outliers, with flux densities wrong by 20% or
more at high S/N, are more of a concern, especially when an-
ticipating surveys of many millions of sources. It is possible
that some (or even most) of these are related to overlapping
or blended sources, where the reported flux densities are
either combined from overlapping sources, or erroneously
assigning flux to the wrong component. Whatever the ori-
gin, for most finders the fraction of sources brighter than
30 mJy (input flux density) with measured flux densities dis-
crepant by 20% or more is 0.2–1%. SExtractor is again a
poor performer here, with more than 2% such catastrophic
outliers. IFCA (1.1% in both modes) and PyBDSM (Gaus-
sians) (1.9%) are notable for also having a larger fraction
of such outliers. Aegean, APEX, PyBDSM (sources), PySE,
and SOURCE_FIND perform the best here, all with around
0.2%. Selavy falls in the middle range on this criterion, with
just below 1% catastrophic outliers in all modes.

Aegean, SExtractor, PyBDSM, and to a lesser degree
PySE, show a slight tendency to more systematically over-

estimate rather than under-estimate the flux density as the
sources became fainter. This is visible in Figure 10 as a preva-
lence of Smeas/Sinput values in the +1 σ to +3 σ range and
a lack between −1 σ to −3 σ . Another way of saying it is
that these finders are, on average, overestimating the flux
densities for these sources, compared to others that do not
show this effect. Comparing Aegean and blobcat, for ex-
ample, both have almost identical completeness at these flux
densities, implying that the same sources (largely) are being
measured, but while blobcat measures flux densities with
the expected symmetrical distribution of Smeas/Sinput, Aegean
shows an excess to higher ratios and a deficit at lower. This
behaviour is also present for Selavy in all modes, with the
possible exception of Selavy (smooth).

This systematic effect is unlikely to be related to noise
bias, where positive noise fluctuations allow a faint source
to be more easily detected, while negative noise fluctuations
can lead to sources falling below the detection threshold.
That effect would manifest as a systematic shift above (or
below) the dot-dashed threshold locus, not as a deficit of
sources in the −1 σ to −3 σ regime. It is also not related
to any imaging biases, such as clean bias (which typically
reduces measured flux densities in any case), because it is
not seen in all finders. It is most likely a consequence of the
approach used to perform the Gaussian fitting. At low S/N
for point sources there can be more fit parameters than the
data can constrain. The result is that a degeneracy between fit
parameters arises, and it becomes systematically more likely
that a nearby noise peak will be mistaken for part of the same
source. So the fit axes are larger and, as a result, the integrated
surface brightness also goes up (see Figure 6 of Hales et al.
2012).

Flux density estimation appears to be more complex, even
for simple point sources, than might naively be expected.
While the problem may be mitigated by only fitting point-
source parameters if the sources are known to be point-like,
in practice this is rarely, if ever, known in advance. Selavy
does not perform especially poorly compared to the other
finders tested here, but its performance in all of the aspects
explored above can be improved. None of the tested finders
does well in all areas, so specific elements from different
finders will need to be explored in order to identify how best
to implement improvements to Selavy and the ASKAPsoft
source finder.

5 DISCUSSION

5.1 Review and comparison of finders

The purpose of this section is not to identify the ‘best’ finder
in some absolute sense, but rather to summarise the key out-
comes from the above analyses, contrasting the performance
of different finders where appropriate, and highlighting the
areas of strength. Each of the tested finders have strengths
and limitations, but none obviously perform best in all of the
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elements explored above. Many perform well, while still hav-
ing individual drawbacks or limitations. Overall, strong per-
formers include Aegean, APEX, blobcat, IFCA, PyBDSM
(sources), PySE, and SOURCE_FIND. A general character-
istic in the completeness and reliability statistics seems to
be that finders can maintain high reliability to low S/N only
at the expense of completeness. The most accurate finders
follow a similar locus in completeness and reliability below
around 10 σ as illustrated in Figure 8.

Aegean, blobcat, IFCA, PyBDSM (sources), and
SOURCE_FIND all perform similarly well in terms of com-
pleteness, reliability, positional accuracy, and flux density es-
timation. SAD performs well with completeness, positional
accuracy and flux density estimation, but begins to drop away
in reliability below about 10 σ faster than most other find-
ers. Aegean has a marginally higher fraction of flux density
outliers than the others, and suffers from the subtle system-
atic at low S/N to overestimate flux densities. Aegean and
SOURCE_FIND perform slightly better in terms of reliabil-
ity at low S/N, but PyBDSM (sources) performs marginally
better in terms of positional accuracy. IFCA in both modes
performs similarly in all the elements explored. It shows the
highest levels of completeness among the tested finders at
low S/N but this comes at the expense of reduced reliability
at these flux densities. It is also accurate in its position and
flux density estimation.

APEX as presented here uses a higher threshold (≈10 σ )
for detection than the other finders. Because of this, its posi-
tional accuracy (Table 5) is about a factor of two better than
nominally expected, similar in performance to Aegean and
SOURCE_FIND. It also performs similarly well in terms of
flux density estimation, completeness and reliability, to the
limits it probes.

PyBDSM performs very differently between the two tested
modes. PyBDSM (sources) performs best overall, with good
completeness, reliability, position and flux density estima-
tion. PyBDSM (Gaussians) is poor in terms of reliability
for both Challenges 2 and 3, although it performed well
in Challenge 1. Both modes give good positional accuracy,
but PyBDSM (Gaussians) has a relatively large fraction of
outliers and catastrophic outliers, in the flux density esti-
mation. This is likely to be an artifact of our positional
cross-matching approach selecting only the nearest submit-
ted source. PyBDSM may fit a single source by many Gaus-
sians, so if only the closest one is identified as the counterpart
to the input source a lot of the flux density may be artifi-
cially missed. The values shown in Tables 2 and 3 from the
image-based analysis support this conclusion, especially for
Challenge 3, suggesting that PyBDSM is one of the better
performers in terms of reproducing the flux distribution in
the image. The MADFM and sum of squares statistics, which
are sensitive to outliers, indicate a good performance here.

PySE (D5A3) and PySE (FDR) both provide good po-
sitional and flux density estimation, but PySE (FDR) gives
marginally better positions, and is more accurate in flux den-
sity estimation with fewer outliers and catastrophic outliers,

although PySE (D5A3) probes to slightly fainter flux den-
sities. PySE (D5A3) performs somewhat better than PySE
(FDR) in terms of completeness, but both are similar in terms
of reliability.

CuTEx performs well in terms of positional accuracy and
flux density estimation but less well in completeness and
reliability at the low S/N end compared to most of the other
finders. We note that CuTEx was not originally designed to
work on radio images but on far-infrared and sub-millimetre
images from space-based facilities, where there is little if any
filtering for large scale emission.

Those that perform particularly poorly are SExtractor and
Duchamp. SExtractor gives a completeness and reliability
that compare well to most other finders at low S/N, but with
flux density estimation that is poorly suited to the characteris-
tics of radio images. SExtractor was not designed with radio
images in mind, and indeed is optimised well for the Poisson
noise characteristics of optical images. It is designed to mea-
sure aperture and isophotal magnitudes in a range of ways
that are appropriate for images at optical wavelengths, but
understandably these approaches perform more poorly in the
case of radio images when compared to other tools that are
designed specifically for that case. Duchamp was designed
for identifying, but not fitting, sources in neutral hydrogen
data cubes rather than continuum images, and was not ex-
pected to perform well in these tests. As expected, it performs
poorly in completeness and reliability, as well as positional
and flux density estimation, for well-understood reasons. It
has been included in the current analysis for completeness.

Regarding the performance of Selavy, in the numerous
modes tested, we have identified a number of areas for im-
provement. Selavy (smooth) performs best in terms of flux
density estimation, but is very poor in terms of completeness
and reliability. Selavy (à trous) performs better in terms of
completeness, but at the expense of very poor reliability and
poorer flux density estimation. The other modes of Selavy
are intermediate between these extremes.

5.2 Common limitations

Inevitably, all source finders decline in completeness and
reliability toward low S/N. It is therefore crucial to quantify
the performance of the finder used for large surveys, in order
to associate a well-defined probability of false-detection with
any detected source, and to establish the fraction of sources
overlooked at any given S/N level. Future tests like these will
ensure that the ASKAPsoft pipeline is well-calibrated in its
behaviour in order to accurately quantify completeness and
reliability.

Positional accuracy of most finders is precise and con-
sistent with the expected uncertainties from Gaussian fits.
However, no finders tested in this Data Challenge perform
well in flux density estimation. As many as 1% of sources
at high S/N may have catastrophically poor flux density esti-
mates. These may in part be associated with blended sources
since finders such as Aegean, that do well at deblending, and
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blobcat, that merge blended sources, show better perfor-
mance here. Even Aegean and blobcat still have 0.2%
and 0.4% catastrophic outliers at high S/N, respectively (al-
though note that blobcat flags potentially blended sources,
see Section 4.1). For the anticipated catalogues of tens of
millions of sources, this will still be a substantial number of
sources. Exploring the origins of and rectifying these catas-
trophic errors will be an important area of refinement nec-
essary for the ASKAPsoft source finder, to ensure the high
fidelity of the ASKAPsoft pipeline.

5.3 Updates since the Challenge

The Data Challenge was completed by the participating
teams in early 2013. Since that time many of the source find-
ers tested in this analysis have had continued development
and improved performance. In order to retain the integrity
of the Challenge and to ensure the analysis did not become
open-ended, we have chosen to present the results as they are
from the source finders as originally submitted. In order not
to provide a misleading representation of the current state of
finders that have improved since that time, we give a brief
summary here of some of those developments, and how they
may address any of the limitations identified above.

Since the Data Challenge Aegean has continued develop-
ment and the latest version can be found on GitHub1. The
following enhancements and improvements have been made
which would improve the performance of Aegean in this data
challenge, were it to be run again:

• The Background And Noise Estimation tool (BANE,
also available on GitHub) can provide more accurate
background and noise images than those created by
Aegean. The use of these images has been shown to
increase the reliability and flux accuracy of Aegean on
other real world data sets.

• Aegean now produces more accurate source shape and
position angle measurements for all WCS projections.

• A bug that cased a small systematic offset in RA/DEC
has been fixed. The offset was of the order of one pixel.

• In the Data Challenge Aegean was instructed not to fit
islands with more than five components. Islands with
more than five components were reported with their
initial parameters instead of their fit parameters. The
current version of Aegean is now able to fit the bright-
est five components and estimate the remainder. This
may improve the accuracy of the flux density for bright
sources that are in an island with many components.

PySE was developed as a component of the LOFAR Tran-
sients Pipeline2(or ‘TraP’; Swinbank et al. 2015), which pro-
vides an end-to-end system for detecting and characterising
transients in an image stream. Since the work described in

1https://github.com/PaulHancock/Aegean
2http://docs.transientskp.org/

this paper, the TraP, including PySE, has been released as an
open source project under a BSD-style license. It is avail-
able for download from GitHub3 and contributions from the
community are welcomed. Since 2013, the main addition to
PySE has been the option to monitor specific positions in an
image stream. The user, or the pipeline, can specify a posi-
tion from which PySE will extract flux even if no sources are
identified. This is important when building light curves for
transient sources.

Duchamp’s shortcomings identified by this analysis are
expected. The aim of Duchamp is to provide locations of
islands of significant pixels only, and to parameterise the de-
tected islands based solely on the detected pixels, not through
fitting of analytic models. This feature has not (yet) been in-
corporated into Duchamp, as its focus is primarily on three-
dimensional, spectral-line source-finding. Selavy represents
the adaption of the Duchamp software for continuum source-
finding and parameterisation.

Selavy is the prototype ASKAPsoft source-finder that is
under development and has been continually refined since
the Data Challenge was run. Development has focused prin-
cipally on improving the background and noise estimation,
using a sliding box approach to measure the local noise,
corresponding to the Selavy (box) mode used here albeit im-
proved in reliability, and on improving the determination of
the initial conditions for the Gaussian fit. This has benefited
from input from the EMU source-finding group, in particular
the approaches used for Aegean described in Hancock et al.
(2012). These improvements will help the completeness aris-
ing from the Gaussian fitting, in particular for cases where
multiple Gaussians are required (see discussion in Section
4.1). As the ASKAPsoft pipelines evolve through the com-
missioning of the Boolardy Engineering Test Array and the
full ASKAP telescope, we expect to incorporate further im-
provements encapsulating lessons learnt from this and any
subsequent Data Challenges.

5.4 ATLAS source finding experience

The Australia Telescope Large Area Survey (ATLAS, Norris
et al. 2006; Middelberg et al. 2008; Hales et al. 2014a, 2014b;
Franzen et al., 2015, Banfield et al., in prep) is a survey of
6.3 square degrees with a resolution and sensitivity similar
to those of EMU, and is being used as a testbed for EMU.
Source extraction for Data Release 2 (DR2) of ATLAS was
performed using a combination of blobcat and IMFIT, the
latter as part of a semi-automated pipeline for following up
blended sources that were flagged by blobcat, as described
by Hales et al. (2014a, 2014b). The Data Challenge described
in this paper was completed before source extraction of the
final ATLAS Data Release 3 (DR3; Franzen et al., 2015,
Banfield et al., in prep), and preliminary versions of the re-
sults presented here were used to inform the ATLAS source
extraction. For the ATLAS DR3 source extraction the four

3https://github.com/transientskp/tkp
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finders blobcat, Aegean, PyBDSM, and SOURCE_FIND
were tested. The differences were found to be small between
these finders, and ultimately blobcat was used because it
takes bandwidth smearing and peak bias into account. Com-
plex sources identified by blobcat were fit with multiple
Gaussians using the task IMFIT. Ambiguity over the number
of Gaussian components to fit sometimes led to the neces-
sity of a post-processing step to merge nearby Gaussians,
which in turn led to the question of when two components
should be merged. The criterion was adopted that two Gaus-
sian components were merged if the flux density distribution
did not show a significant minimum between the two compo-
nents. This may be related to the effect seen in the context of
the catastrophic flux density estimates discussed in Section
4.3.2 above. It is also worth noting that 0.7% of the ATLAS
sources were manually identified as spurious and removed
from the catalogue. All such spurious sources corresponded
to image artifacts close to the brightest sources. This real-
world experience demonstrates that we do not yet have an
automated source finder suitable for large surveys, but that
further development of the best existing finders is necessary.

6 CONCLUSIONS

We have presented the ASKAP/EMU Data Challenge, and
described the result of assessing the performance of source-
finding tools on simulated images, to establish the strengths
and limitations of existing automated source finding and mea-
surement approaches. Three Challenge images were used,
presenting a range of different source distributions and prop-
erties. Nine teams participated, with eleven source finders
being tested. Our analysis explores the completeness and re-
liability of the submitted finders, their ability to reproduce
the image flux distribution, and their performance in char-
acterising the position and flux densities of the measured
sources.

One limitation of the current Data Challenge was the broad
scope of the analysis attempted, even when limited primarily
to point sources. During the analysis, it became clear that
there are a large number of areas that would benefit from
focused investigation, in particular those related to the detec-
tion and characterisation of overlapping or blended sources,
and complex source structures, as well as to catastrophic out-
liers, and subtle but systematic effects in the estimation of
source flux densities. Future Data Challenges may choose
to focus explicitly on a more narrow range of performance
areas in order to allow themselves the scope to investigate
the details more deeply than has been possible in the exist-
ing investigation. There were also practical limitations to the
current Challenge images, such as the sources being assigned
to pixel centres, that should be relaxed and explored in detail
in future work.

The various finders that were blindly applied to the Chal-
lenge images produce completeness and reliability levels at
or close to 100% at sensitivities above ≈10 σ , and declining
much as expected at fainter sensitivities. Each tested finder

exhibits limitations to a greater or lesser degree. While no
finder performed best across all the tested elements, those
that performed well include Aegean, APEX, blobcat, IFCA,
PyBDSM (sources), PySE, and SOURCE_FIND. SExtractor
performed more poorly than most other finders in terms of
flux density estimation, although demonstrating reasonable
completeness and reliability. The other tested finders showed
limitations to some degree in either completeness, reliability
or flux density estimation.

We also tested Duchamp and Selavy, finders both authored
by Whiting, one of the Challenge initiators. Duchamp, orig-
inally designed for identifying neutral hydrogen emission
in radio data cubes, was not expected to perform well in
this analysis for a variety of well-known reasons, and was
included for completeness. Selavy was tested as it is the cur-
rent implementation of the ASKAPsoft source finder, and
provides an important assessment of the likely current per-
formance of the ASKAPsoft pipeline measurements.

Clear outcomes have been established in terms of identi-
fying areas to improve, both for Selavy and the ASKAPsoft
source finder, as well as the other tested finders individually. It
is obvious that accurate characterisation of completeness and
reliability is a requirement in order to have accurate statistical
constraints on the performance of any finder. The positional
accuracy of measured point sources is generally good in al-
most all finders, but here CuTEx performed better than the
others, suggesting that its fitting approach has an advantage
in minimising the rms of fitted positional uncertainties. In
terms of flux density estimation, APEX, blobcat, PyBDSM
(sources), PySE, and SOURCE_FIND in particular perform
well, with well-constrained uncertainties and minimal out-
liers. The fraction of catastrophic outliers in flux density
estimation, at best around 0.2% from all tested finders, will
need to be reduced to ensure high fidelity performance for
future sky surveys.

Here we summarise the key outcomes that would benefit
ASKAPsoft and future source finder development, with an
indication of which of the tested finders may provide suitable
algorithms or approaches:

• Quantifying completeness and reliability accurately as
a function of S/N through repeated simulations and
testing.

• Robust handling of blended sources (this affects com-
pleteness, reliability, and flux density estimation, see
Sections 4.1 and 4.3.2). Aegean and blobcat are ex-
amples using different approaches that each work well
in this regime.

• Source position estimation (this is already good in all
finders, we are looking to capitalise on the best perfor-
mance, see Section 4.3.1). CuTEx, PySE, and PyBDSM
demonstrated the best performance in this aspect for the
current investigation.

• Identifying the origin of and rectifying the flux den-
sity overestimates at faint levels, as seen in Selavy
(Section 4.3.2). Finders that did not show this effect
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include APEX, blobcat, CuTEx, IFCA, PySE, SAD
and SOURCE_FIND.

• Identifying the origin of and minimising (or eliminat-
ing) the fraction of catastrophic outliers (Section 4.3.2).
Finders with the lowest such fractions currently in-
clude Aegean, APEX, PyBDSM (sources), PySE, and
SOURCE_FIND.

• Capitalising on the strong performance of IFCA in accu-
rately measuring flux densities to very low S/N (Section
4.3.2).

• Robustly detecting and characterising extended or com-
plex sources (Sections 4.1 and 4.2). This is a challeng-
ing area to quantify even for simple extended Gaussian
sources in the presence of neighbouring and blended
sources. Effort is needed to accurately quantify the per-
formance of finders here more extensively than has been
attempted in the current analysis. The performance of
the different modes of Selavy in the image-based analy-
sis (Section 4.2, for example, suggest that some complex
combination of its detection and characterisation stages
in the different modes, informed by the performance of
other finders, may be worth implementing. Within the
limitations imposed by the current analysis, finders that
perform well in this area include blobcat, PyBDSM,
PySE (D5A3), and SExtractor.

• Automating the still manual process of identifying and
excluding or flagging imaging artifacts (Section 5.4).

The most successful approaches for each of these elements
will need to be combined in order to implement the most
robust approach to source finding for future generations of
high-sensitivity all-sky radio surveys.
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APPENDIX

A DESCRIPTION OF SOURCE FINDERS

For ease of reference, we provide here descriptions of the find-
ers submitted for the Data Challenge describing their methods of
operation and different modes of use if applicable.

A.1 Aegean

Aegean has been designed to find and characterise compact sources
in radio images. The underlying algorithms are built with the as-
sumption that the user is interested in objects that can be well
characterised by a number of Gaussian components. This focus on
compact sources means that Aegean will produce a rather complex
characterisation of extended sources or resolved structures, which
will be of limited use. The current version of Aegean has an alter-
nate mode of operation which provides a characterisation scheme
that is more appropriate for amorphous or resolved structures. This
alternate mode of operation characterises a single island as a single
‘blob’ in much the same way that blobcat does.

In this data challenge Aegean r8084 was used. Aegean identifies
significant pixels (finds sources) by calculating a noise image from
the interquartile range of pixels in regions of size 30 × 30 synthe-
sised beams, forming an image that represents signal-to-noise, and
finally selecting all pixels above a given threshold. In this challenge,
a threshold of 5 σ was used. Once significant pixels are identified,
a flood-fill algorithm is run to group these pixels together into is-
lands, and the islands are expanded to include adjoining pixels that
are have S/N≥ 4. This means that islands of pixels are seeded with
a threshold of 5 and grown with a threshold of 4. The Aegean source
characterisation stage operates on one island at a time, and involves

4http://www.physics.usyd.edu.au/∼hancock/files/Aegean.808.tar

the creation of a curvature map. The curvature map represents the
second derivative of the input image, and is negative at and around
local maxima. To determine how many components are within an
island Aegean counts the number of local maxima within the is-
land, each local maximum is assigned a single component. Islands
are thus fit with multiple Gaussian components. The fit is achieved
using a constrained least squares Levenberg–Marquardt algorithm.
The position, flux, and shape of each component is constrained to
prevent them from merging with each other, and to avoid unphysical
results.

Aegean can be downloaded from the Astrophysics Source Code
Library5.

A.2 APEX

Astronomical Point source EXtractor (APEX6, Makovoz & Marleau
2008) is the source extraction program included in the Mosaicking
and Point-source Extraction (MOPEX) package that was developed
for Spitzer Space Telescope data. APEX is similar to other thresh-
olding source extraction algorithms in that it performs background
and noise estimation, but detected clusters of pixels are fitted with a
point response function (PRF) to return fitted point sources. APEX
allows both passive and active deblending to handle crowded fields.
In passive deblending the detected point sources are determined to
be in close proximity such that their PRFs overlap, and APEX then
fits them simultaneously. Active deblending is where a single point
source fit fails and APEX then fits the cluster of pixels with multi-
ple point sources. APEX also allows the user to specify an arbitrary
number of apertures for aperture photometry. APEX from MOPEX
v18.5 was used for this Challenge.

A.3 Blobcat

blobcat7 is described by Hales et al. (2012). blobcat is designed
to operate not only on images of total intensity but also linear po-
larization. Version 1.0 was used for this Data Challenge. Due to
the Challenge’s focus on point-like sources, no effort was made
to decompose blobs that were flagged by blobcat as likely con-
sisting of blended sources. This should be considered when in-
terpreting results in this paper. For an example application where
blended sources are accounted for in a semi-automated pipeline
with MIRIAD’s IMFIT algorithm, see analysis of ATLAS DR2 by
Hales et al. (2014a, 2014b). Suggestions for improving blobcat
are always welcome; please see the web link for contact details.

A.4 CuTEx

CuTEx (Curvature Threshold Extractor, Molinari et al. 2011) is an
IDL-package that was developed (and is extensively used) within
the framework of the Open Time Key Project on the Herschel satel-
lite called Hi-GAL (Molinari et al. 2010). This program gathered
data in 5 bands (70, 160, 250, 350, 500 μm) of the entire Galactic
plane, with the aim of studying the early stages of the formation
of (high-mass) stars across the Galaxy. CuTEx was designed to
enhance compact sources (sizes not larger than three times the in-
strumental point spread function) in the presence of an intense and

5http://ascl.net/phpBB3/viewtopic.php?t=30381
6http://irsa.ipac.caltech.edu/data/SPITZER/docs/dataanalysistools/tools/
mopex/

7http://blobcat.sourceforge.net/
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highly variable background such as that seen in Herschel observa-
tions of the Galactic Plane. The CuTEx package is divided into two
parts, a detection element that identifies sources and a photometry
extraction element that measures their sizes and fluxes. Compact
sources are detected by analysing the second derivative of the im-
ages in four directions, which is proportional to the ‘curvature’ of
the intensity. In those derivative images, all large scale emission
is damped (in the case of infrared images it is the background),
while all peaked objects (compact sources) are enhanced. Candi-
date sources are identified by associating contiguous pixels with a
value of the second derivative in excess of a certain threshold and
grouped into small clusters. Clusters can contain more than one
source, in which case they will be extracted as a group. At this stage
an estimate of the sizes of the sources is also performed by measur-
ing the distance between two opposite ‘first most negative’ values
of the second derivative around the identified centre of the source
(there will be eight points) and fitting these with an ellipse, with
the aim to obtain an initial guess for the photometry extraction. The
photometry extraction part uses this list of candidates to determine
the integrated flux and the background values on the original image
(in our case the restored image) by fitting elliptical Gaussians, and
measures the peak flux as well as the FWHM in two orthogonal
directions and position angle (PA) of the fitted Gaussian. The fitting
engine used is the Markwardt MPFIT package and strong constrains
on the large number of parameters for each sources are applied to
ensure convergence of the fit.

A.5 IFCA

The IFCA source finding approach used in this challenge is a com-
bination of SExtractor and optimal filtering kernels. Two methods
were used, referred to as IFCA (MF) and IFCA (BAF).

IFCA (MF) is so named as it uses matched filters. The matched
filter kernels have been obtained iteratively for each one of the
three Challenge images as follows. In each iteration, we estimate
the power spectrum of the background fluctuations. This power
spectrum is used to calculate the optimal matched filter. The image
is then filtered and all sources above the 4 σ level are detected and
subtracted from the image. The new image with the sources above
the 4 σ level is used as input for the next iteration until convergence
is achieved (no new 4 σ detections arise). The rms of the final filtered
images (with all the 5 σ detections subtracted) are the estimates of
the backgrounds we use to decide the detection threshold for our
catalogues. Some details of the matched filter used here can be
found in López-Caniego et al. (2006) and references therein.

IFCA (BAF) is so named as it uses a biparametric adaptive filter.
The biparametric adaptive filter (López-Caniego & Vielva 2012)
kernel has been obtained as follows for each of the three Challenge
images. We iteratively explored the two-parameter space that de-
fines our filter (the index of the filter n, that is related to the index
of the power-law that best describes the statistical properties of the
background of the images; and the scale of the filter R) to look for a
minimum in the rms of the filtered field. For Challenges 1 and 2 we
used a kernel with n = 0 and R = 0.65, whereas for Challenge 3
we used n = 2 and R = 0.5. The reason for using a filter with a
higher index n in Challenge 3 is because of the presence of ex-
tended objects (local galaxies or galaxy-like structures). Since this
Challenge is devoted to point-source detection and extraction, this
particular kernel is able to easily remove structures in the images
that are very different from the point spread function, as in the case

of local extended galaxies, before attempting to do any detection.
The rms of the final filtered image is obtained after masking all the
detections above S/N > 4 in the image. As in the previous case,
three different estimates of the rms have been calculated and used
to set a S/N cut in the catalogues. The process of iteratively finding
the parameters that are used to build the kernel is quick and can be
easily automated. For all-sky Healpix fits images this code exists
and is automatic. For this Challenge things have been done in a
partially automated fashion as this was the first time we applied
such a filter to images other than cosmic microwave background or
sub-millimetre images.

The details of the biparametric adaptive filter can be found in
López-Caniego & Vielva (2012). An additional reference of interest,
since the IFCA-BAF filter under some circumstances defaults to the
Mexican Hat Wavelet family, can be found in González-Nuevo et al.
(2006).

A.6 PyBDSM

PyBDSM8 (‘Python Blob Detection and Source Measurement’, a
Python source-finding software package written by Niruj Mohan
Ramanujam, Alexander Usov and David Rafferty; Mohan & Raf-
ferty 2015) calculates rms and mean images and then identifies is-
lands of contiguous significant emission, computed either by a hard
threshold or by using the False Detection Rate algorithm (Hopkins
et al. 2002). PyBDSM allows fitting of one or multiple Gaussians
to each island and grouping of nearby Gaussians within an island
into ‘physical’ sources. A modified fitting routine can also han-
dle extremely extended sources. It can also decompose islands into
shapelet coefficients. In addition, a PyBDSM module is available to
decompose the residual image resulting from the normal fitting of
Gaussians into wavelet images of various scales, and building these
back into sources using the pyramidal morphological transform.
This step is useful for automatic detection of diffuse sources. Errors
on each of the fitted source parameters are computed using the for-
mulae in Condon (1997). PyBDSM can also calculate the variation
of the point spread function across the image using shapelets, and
calculate the spectral index of sources.

In this work, we define an island threshold at 3σ to determine
the region to which source fitting is done and an additional limit
parameter at 5σ in such a way that only islands with peaks above
this absolute threshold will be used. In addition, we have taken
into account both the catalogue containing all the fitted Gaussians,
referred to as ‘PyBDSM (Gaussians)’, and the catalogue in which
Gaussians have been grouped into sources, referred to as ‘PyBDSM
(Sources)’.

A.7 PySE

PySE9 was developed within the LOFAR Transients Key Science
Project (van Haarlem et al., 2013; Fender et al. 2007) as part of
its real-time transient search pipeline. On the assumption that (rela-
tively) fast radio transients are unresolved, the software is optimised
for the detection of point-like sources. PySE processing fundamen-
tally involves the following steps:

1. The image is divided into rectangular cells, and the pixel val-
ues in each cell are iteratively σ -clipped around the median;

8https://dl.dropboxusercontent.com/u/1948170/html/index.html
9http://docs.transientskp.org/tkp/r2.0.0/tools/pyse.html
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2. Bilinear interpolation of the mean across cells is used to derive
a background map, which is subtracted from the data;

3. Bilinear interpolation of the standard deviation across cells is
used to calculate an rms noise map;

4. Groups of contiguous pixels at some detection threshold over
the rms noise are selected as potential source peaks;

5. Pixel groups are extended to include surrounding pixels above
some (lower) analysis threshold;

6. Optionally, pixel groups are decomposed (or ‘deblended’) into
their constituent parts where applicable;

7. Source properties are estimated by means of a least-squares
fit of an elliptical Gaussian.

User configuration is required to select an appropriate cell size:
smaller cells are better suited to tracking variation across the image,
but are more sensitive to bias from bright sources. The detection
and analysis thresholds may be specified directly by the user, or
alternatively can be derived using a False Detection Rate algorithm
(Hopkins et al. 2002). Some source properties may be held con-
strained during fitting, in particular, when measuring unresolved
sources, it may be appropriate to constrain the source shape to be
equal to that of the restoring beam.

For this analysis, we used an unreleased prototype of PySE from
late 2012. Two catalogues were provided both for Challenge 1 and
for Challenge 2 (‘PySE (D5A3)’ and ‘PySE (FDR)’) and one cata-
logue for Challenge 3 (‘PySE (D5A3)’). ‘D5A3’ refers to detection
and analysis thresholds of 5 σ and 3 σ respectively, while ‘FDR’
is configured to use the False Detection Rate algorithm with a 1%
error rate. Square cells of side 50 pixels were used for calculat-
ing the background and noise maps in Challenges 1 and 2; 30
pixel squares were used for Challenge 3. In each case, we used
the option to constrain the shape of the extracted sources to be
equal to the restoring beam and to decompose sources lying within
the same island; all the other options were left to their default
values.

A detailed description of the algorithm may be found in Spreeuw
(2010), Swinbank et al. (2015), and Carbone, et al. (2014).

A.8 SAD

SAD (Search and Destroy) is an automated source finding algorithm
implemented within the Astronomical Image Processing System
(AIPS). It was developed to create the source catalogue for the
NRAO VLA Sky Survey project (Condon et al. 1998). Sources
in the image are fit with 2D Gaussian functions. The strongest
source is fit and then removed (i.e., searched and destroyed), and
the process repeated until a stopping threshold is reached (CPARM).
SAD can fit a maximum of 40 000 sources per run, so we split the
Challenge 1 and 2 images into two east and west sections and fit
these independently. Challenge 3 was processed as a single field,
but at two resolutions. The Challenge 3 image was blanked to mask
extended sources. The image was then searched for sources at the
full resolution (highres). We then restored the blanked regions in the
residual image, convolved it to 30 arcsec resolution and searched
the resulting image (lowres).

The SAD stopping threshold was set to 0.04, 0.004, 0.01, and
0.025 Jy beam−1 respectively for Challenges 1, 2, 3 highres and 3
lowres. In addition several criteria were applied to reject sources
based on the parameters of the fitted solutions. These are set using
inputs DPARMS, which reject based on peak and total flux, source

width and location of the peak relative to the fitted region (island).
Peak and total flux rejection criteria were set to below the stopping
threshold. Fits with very large widths were rejected as were fits
with peak positions outside of the island. If the rms of the residual
to a single component Gaussian fit is above a threshold (ICUT),
then multiple Gaussians of increasing number are fitted simultane-
ously. ICUT was set equal to the stopping threshold values for each
run.

Python scripts were written to merge the sources from the split
images of Challenges 1 and 2, and the two resolutions of Chal-
lenge 3. As a final check the Gaussian peak for each fit was checked
against the image value at fitted peak position. If the image data
value was less than 30% of the fitted peak the sources was consid-
ered spurious and removed.

A.9 SExtractor

SExtractor10 is a tool commonly used with optical astronomy im-
ages to perform automated detection and photometry of sources
(Bertin & Arnouts 1996). It is oriented towards the reduction of
large surveys of galaxies, but can also perform well in moderately
crowded star fields. Analysis of the astronomical image is done in
two passes. The first pass builds a model of the sky background
and calculates global statistics. During the second pass the image
is optionally background-subtracted and filtered. SExtractor uses a
threshold technique to isolate groups of pixels as detected ‘islands’.
These are then deblended and measured for source size, position
and flux. SExtractor v2.8.6 was used for this Challenge, with two
smoothing scales for estimating the background sky model, corre-
sponding to 10 or 30 times the resolution element or point spread
function, referred to as SExtractor (10 beam) and SExtractor (30
beam) respectively. This choice was informed by previous anal-
ysis of SExtractor’s performance on radio images (Huynh et al.
2012).

A.10 SOURCE_FIND

The SOURCE_FIND software is described in detail in AMI Con-
sortium: Franzen et al., (2011), where it is applied to the 10C survey
of radio sources at 16 GHz. The software is capable of identifying
and characterising sources in radio synthesis maps with varying
noise levels and synthesised beams, and includes a straightforward
and accurate method for distinguishing between point-like and ex-
tended sources over a wide range of SNRs. It is part of the standard
data reduction pipeline for the Arcminute Microkelvin Imager (AMI
Consortium: Zwart et al., 2008).

The first step in the source extraction process involves determi-
nation of the noise level. At each pixel position in the image the
noise is taken as the rms inside a square centred on the pixel whose
width is set to some multiple of the synthesised beam and, in or-
der to avoid the noise estimate from being significantly affected by
source emission, points are clipped iteratively until convergence at
±3 σ is reached. The width of the sliding box for noise estimation
was set to 20 times the synthesised beam size for Challenges 1 and
2, and to 40 times the synthesised beam for Challenge 3.

The noise map is used to identify sources on the basis of their
S/N. In all three data challenges, local maxima above 5 σ were
identified as sources. A peak position and flux density are measured

10http://www.astromatic.net/software/sextractor
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by interpolating between the grid points. This is done by calculat-
ing the map values on a successively finer grid (up to 128 times
finer), by repeated convolution with a Gaussian-graded sinc func-
tion (Rees 1990). Here we did not use the Gaussian fitting mode
of SOURCE_FIND to measure integrated flux densities, centroid
positions and source sizes. Rather, these parameters were measured
by integrating contiguous pixels down to a lowest contour level of
2.5 σ .

A.11 Finders tested by the Challenge organisers:
Duchamp and Selavy

Duchamp11 is a source-finder designed to find and describe sources
in three-dimensional spectral-line data cubes (Whiting 2012), but
is readily applied to two-dimensional images. The source-detection
performed by Duchamp is based on simple flux or S/N thresholding,
with an optional secondary threshold to which detected sources are
grown (to increase their size and reliability). The detectability of
sources is enhanced by using one of several pre-processing methods
that aim to reduce the noise yet preserve astronomically-interesting
structures in the data. One pre-processing method is to smooth
the data with a defined kernel, either spatially or spectrally, and
then perform the search on the smoothed data. The alternative pre-
processing method is to use the à trous wavelet algorithm to generate
a multi-resolution wavelet set, showing the amount of signal as a
function of scale size and position in the data set. Each wavelet
array (i.e., corresponding to a single scale size) has a threshold
applied, and pixels with values below this threshold set to zero. The
thresholded wavelet arrays are then added back together to provide
an array that has a large fraction of the noise removed. A worked
example in one dimension is given in Whiting (2012). Duchamp
provides a parameterisation of the detected sources, calculating
values such as integrated flux, principle axes and weighted centroid
position based only on the detected pixels. Duchamp is intended
to act as a tool for providing the location of interesting features,
yet remain agnostic as to their intrinsic shape, and so provides
no source fitting (such as the Gaussian fitting typically used in
continuum image analysis). This approach, however, does lead to
the characteristic error pattern seen in Figure 10.

For this Data Challenge, we used version 1.2.2 of Duchamp to
generate results with three distinct modes: Duchamp (basic) used

11http://www.atnf.csiro.au/people/Matthew.Whiting/Duchamp

simple signal-to-noise threshold without pre-processing; Duchamp
(smooth) used a 6-pixel FWHM 2D Gaussian kernel to smooth
the data prior to searching; and Duchamp (à trous) used a two-
dimensional à trous algorithm with a 4 σ wavelet threshold to re-
construct the noiseless data prior to searching.

Selavy is the prototype ASKAP pipeline source-finder (Whiting
& Humphreys 2012) that is being developed as part of the ASKAP
Science Data Processing software (also known as ASKAPsoft).
Selavy builds on the Duchamp software library, providing addi-
tional functionality that is necessary to run in a high-performance
pipeline environment on a range of image types, most notably 2D
Gaussian fitting to detected sources, a spatially-variable thresh-
old that responds to local noise, and the ability to run in parallel
on a high-performance supercomputer. Duchamp assumes a single
threshold for the entire dataset, which gives a uniform selection
criterion, but can have drawbacks in the presence of non-uniform
noise. Selavy overcomes this in one of two ways. First, it can remove
the large scale variation brought about by primary beam effects by
dividing through by a weight image. Searching is then performed
on the de-weighted image, but parameterisation is still done on the
original (where the fluxes should be correct). The second way is to
find the local noise at each pixel, by measuring it within a local box
region. This allows a signal-to-noise threshold to rise where there
is strong local noise (for instance, there may be deconvolution side-
lobes around a bright source) and decrease where the noise is low.
The Gaussian fitting takes a given Duchamp detection (an island)
and fits a number of 2D Gaussian components to the pixels in that
island. The number of components to fit, and the initial estimates
of their parameters, are determined by applying a large number of
sub-thresholds to the island, ranging from the detection threshold
to the peak. This approach works well when enough sub-thresholds
are applied, but too few may result in secondary components be-
ing missed (which may be the case in some situations in this Data
Challenge, e.g., Section 4.1). More recent versions of Selavy have
incorporated the curvature-map method of determining local max-
ima use by Aegean, which is proving to be successful. For this Data
Challenge Selavy was run using v1.2.2 of the Duchamp library, in
the same modes as Duchamp, plus two additions: Selavy (weight)
used the weights image to scale the noise across the field prior to
searching; while Selavy (box) used a 101 × 101 box to find the
local noise prior to searching with a S/N threshold.
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