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A STABILITY PROPERTY OF
STOCHASTIC VIBRATION

M. ELSHAMY,∗ Alabama A&M University

Abstract

Let u(t, x) be the displacement at time t of a point x on a string; the time variable t varies
in the interval I := [0, T ] and the space variable x varies in the interval J := [0, L],
where T and L are fixed positive constants. The displacement u(t, x) is the solution to
a stochastic wave equation. Two forms of random excitations are considered, a white
noise in the initial condition and a nonlinear random forcing which involves the formal
derivative of a Brownian sheet. In this article, we consider the continuity properties of
solutions to this equation. Smoothness characteristics of these random fields, in terms of
Hölder continuity, are also investigated.
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1. Introduction

Stochastic partial differential equations arise in the description of physical systems which
are subject to random effects. Flexible structures, for example, are influenced by random
disturbances due to wind loading conditions as well as other random forces. The study of motion
due to such random effects gives rise to the analysis of vibrations which involve some form of
random perturbations. The vibrations of a string excited by different types of randomness have
been studied by several authors, for example Orsingher (1984), (1989), Cabaña (1972), (1991),
Elshamy (1995), (1996), and Belinskiy and Caithamer (2001). In the study of deterministic
systems, there are a number of possible stability concepts. For the stochastic case, there are
many more. This is because the problem of stability is essentially a problem of convergence. For
each stability definition in the deterministic case there are several corresponding definitions in
the stochastic case, which are generated by the different modes of stochastic convergence.
Here, brief examples of stochastic stability consistent with the mean square convergence,
Lp-convergence, and convergence in probability for a stochastic wave equation are given.
In this article we consider a nonlinear stochastic wave equation in which the space dimension
is one. In this case, the stochastic wave equation admits solutions which are functions in the
usual sense. We show that the solutions to the stochastic wave equation depend continuously
on its coefficients. We consider two models of stochastic vibrations, one in the form of initial
white noise and the other a nonlinear random forcing which involves the formal derivative
of a Brownian sheet. The displacement u(t, x) is governed by a nonlinear stochastic wave
equation. The time variable t varies in the interval I := [0, T ] and the space variable x varies
in the interval J := [0, L], where T and L are fixed positive constants. A Dirichlet boundary
condition is imposed for the solutions to the wave equation.
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Since Gronwall’s inequality will be used more than once, we state a version of it in the
following result.

Lemma 1.1. Suppose that g ≥ 0 and h are integrable on [t0, T ] and

g(t) ≤ b

∫ t

t0

g(s) ds + h(t), t0 ≤ t ≤ T , b > 0.

Then

g(t) ≤ h(t) + b

∫ t

t0

eb(t−s)h(s) ds, for t0 ≤ t ≤ T .

2. Initial white noise excitation

Consider the vibration of a string of length L tied at both ends. The vibration is triggered
by an external force f and a white noise disturbance in the initial condition. The displacement
u(t, x) of a point x at time t on the string is described by the following version of the stochastic
wave equation:

∂2u(t, x)

∂t2 = ∂2u(t, x)

∂x2 + f (x, u),

u(0, x) = a(x),

∂u(t, x)

∂t

∣∣∣∣
t=0

= ẇ(x),

u(t, 0) = ∂u(t, x)

∂t

∣∣∣∣
x=L

= 0, (t, x) ∈ I × J,

(2.1)

where ẇ(x) is a white noise. The initial condition a(x) is a deterministic continuous function.
The requirements of f are continuity as a function of (x, u) in J × R and Lipschitz in u. The
standard Brownian motion w is defined on a fixed complete probability space (�, F, P) which
supports all our random processes. The solution to (2.1) can be written as

u(t, x) = u0(t, x) + 1
2

∫
I×J

∫
χ(t,x)(s, y)f (y, u(s, y)) dy ds, (t, x) ∈ I × J, (2.2)

where

χ(t,x)(s, y) =
∞∑

k=−∞
[�(t,x+2kL)(s, y) − �(t,−x+2kL)(s, y)]

and

�(t,x)(s, y) =
{

1, for 0 ≤ s ≤ T , 0 ≤ y ≤ L, and |x − y| ≤ t − s,

0, otherwise.

The function χ(t,x) vanishes except in the shaded region of Figure 1, where it takes successively
the values +1 and −1.

The random field u0(t, x) is given by

u0(t, x) = 1
2 [A(x + t) + A(x − t)] + 1

2

∫ x+t

x−t

W̄ (dy), (2.3)
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Figure 1: Graph of the function χ(t,x).

where

A(x) =
{

a(x), if 0 ≤ x ≤ L,

−a(−x), if − L ≤ x ≤ 0,

and

A(x + 2kL) = A(x), if − L ≤ x ≤ L and k = ±1, ±2, . . . ,

W̄ (x) := w(x), for 0 ≤ x ≤ L,

W̄(−x) := −w(x), for 0 ≤ x ≤ L,

W̄(x + 2kL) = W̄ (x), if − L ≤ x ≤ L and k = ±1, ±2, . . . .

Equation (2.2) is identical to its deterministic counterpart, the initial conditions appear in
u0(t, x), while the forcing term f is the kernel of the third member. The velocity of the wave
is assumed to be equal to 1. Particular cases of (2.2) have been examined in the literature. For
example, Cabaña (1972), (1991) considered the case a = w = 0 with f = f (x, t). However,
the problem considered in Cabaña (1991) is not in the framework of this article. Orsingher
(1989) considered the case a = 0, f = 0, with the aim of studying the distribution of the
maximum of the random field u(t, x).

Let fn(x, u) be a sequence of continuous functions defined on J × R which are Lipschitz
in u. That is, a positive constant k exists such that

|fn(x, u) − fn(x, v)| ≤ k|u − v|. (2.4)

Let un(t, x) denote the solutions to the stochastic equation

∂2un(t, x)

∂t2 = ∂2un(t, x)

∂x2 + fn(x, un),

un(0, x) = a(x),

∂un(t, x)

∂t

∣∣∣∣
t=0

= ẇ(x),

un(t, 0) = ∂un(t, x)

∂t

∣∣∣∣
x=L

= 0, (t, x) ∈ I × J.

(2.5)
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That is,

un(t, x) = u0(t, x) + 1
2

∫
I×J

∫
χ(t,x)(s, y)fn(y, un(s, y)) dy ds, (t, x) ∈ I × J, (2.6)

where u0(t, x) is as given in (2.3).
The solutions to (2.5) depend continuously on the external force f as well as the white noise

ẇ in the initial condition. We present this in the following result.

Lemma 2.1. Assume that fn(x, u) → f (x, u) uniformly on J × R. Then we obtain

sup
(t,x)∈I×J

E |un(t, x) − u(t, x)| → 0 as n → ∞. (2.7)

Proof. Note that

un(t, x) − u(t, x) = 1
2

∫
I×J

∫
χ(t,x)(s, y)fn(y, un(s, y)) dy ds

− 1
2

∫
I×J

∫
χ(t,x)(s, y)f (y, u(s, y)) dy ds

= 1
2

∫
I×J

∫
χ(t,x)(s, y)(fn(y, un(s, y)) − f (y, u(s, y))) dy ds

= 1
2

∫
I×J

∫
χ(t,x)(s, y)(fn(y, un(s, y)) − f (y, un(s, y))) dy ds

+ 1
2

∫
I×J

∫
χ(t,x)(s, y)(f (y, un(s, y)) − f (y, u(s, y))) dy ds.

This implies that

|un(t, x) − u(t, x)| ≤ 1
2

∫
I×J

∫
|fn(y, un(s, y)) − f (y, un(s, y))| dy ds

+ 1
2

∫
I×J

∫
|f (y, un(s, y)) − f (y, u(s, y))| dy ds. (2.8)

We define
g(x) = sup

(s,y)∈I×[0,x]
E |un(s, y) − u(s, y)|.

Then, for each x ∈ J ,

g(x) ≤ 1
2

∫ T

0

∫ L

0
sup
x,u

|fn(x, u) − f (x, u)| dy ds

+ 1
2

∫ T

0

∫ L

0
E |f (y, un(s, y)) − f (y, u(s, y))| dy ds

≤ LT

2
sup
x,u

|fn(x, u) − f (x, u)| + k

2

∫ T

0

∫ x

0
g(y) dy ds

≤ LT

2
sup
x,u

|fn(x, u) − f (x, u)| + kT

2

∫ x

0
g(y) dy,

using the Lipschitz condition and the definition of g.
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It follows from Gronwall’s inequality (with b = kT /2, t0 = 0, and t = x) that

g(x) ≤ LT

2
ekT L/2 sup

x,u
|fn(x, u) − f (x, u)|.

This gives (2.7), which completes the proof.

In the following result, the conclusion of Lemma 2.1 is improved and shown to hold in the
Lp-sense.

Theorem 2.1. Assume that fn(x, u) → f (x, u) uniformly on J × R. Then, for any p ≥ 2, we
obtain

sup
(t,x)∈I×J

E[|un(t, x) − u(t, x)|p] → 0 as n → ∞.

Proof. From (2.8), since (a + b)p ≤ 2p(ap + bp), for 0 < p < ∞ and a, b ≥ 0, we see
that

E |un(t, x) − u(t, x)|p ≤ E

(∫
I×J

∫
|fn(y, un(s, y)) − f (y, un(s, y))| dy ds

)p

+ E

(∫
I×J

∫
|f (y, un(s, y)) − f (y, u(s, y))| dy ds

)p

≤ cp E

(∫
I×J

∫
|fn(y, un(s, y)) − f (y, un(s, y))|2 dy ds

)p/2

+ cp E

(∫
I×J

∫
|f (y, un(s, y)) − f (y, u(s, y))|2 dy ds

)p/2

using Burkholder’s inequality with a constant cp

≤ cp(LT )p sup
x,u

|fn(x, u) − f (x, u)|p

+ cp E

(∫
I×J

∫
k2|un(s, y) − u(s, y)|2 dy ds

)p/2

using the Lipschitz condition

≤ cp(LT )p sup
x,u

|fn(x, u) − f (x, u)|p

+ cpkp E

(∫
I×J

∫
|un(s, y) − u(s, y)|2 dy ds

)p/2

.

Applying Hölder’s inequality with indices p/2 and p/(p − 2), we obtain

E |un(t, x) − u(t, x)|p
≤ cp(LT )p sup

x,u
|fn(x, u) − f (x, u)|p

+ cpkp E

(∫
I×J

∫
|un(s, y) − u(s, y)|p dy ds

)(∫
I×J

∫
1 dy ds

)((p−2)/p)p/2

≤ cp(LT )p sup
x,u

|fn(x, u) − f (x, u)|p

+ cpkp(LT )(p−2)/2
(∫

I×J

∫
E |un(s, y) − u(s, y)|p dy ds

)
.
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We define
G(x) := sup

(s,y)∈I×[0,x]
E[|un(t, x) − u(t, x)|p].

Then, for each x ∈ J ,

G(x) ≤ cp(LT )p sup
x,u

|fn(x, u) − f (x, u)|p + cpkp(LT )(p−2)/2
∫ T

0

∫ x

0
G(y) dy ds

≤ c1 sup
x,u

|fn(x, u) − f (x, u)|p + c2

∫ x

0
G(y) dy,

where c1 = cpLpT p and c2 = cpkpLp/2−1T p/2. It follows from Gronwall’s inequality that

G(x) ≤ c1 exp(c2L) sup
x,u

|fn(x, u) − f (x, u)|p,

and the result for p > 2 follows. The case p = 2 follows without using Hölder’s inequality;
this completes the proof.

Next, the dependence of the solutions to (2.5) on the initial condition is investigated. We
first note that the process

W(t) := 1
2

∫ x+t

x−t

W̄ (dy) = 1
2

∫ x+t

x−t

w(dy), for each x ∈ J,

is equivalent in distribution to a Brownian motion with variance t/2. Thus, as long as the initial
condition a(x) is a continuous function on J and f is continuous in (x, u), the solution u to
(2.1) will be in the space of continuous functions on I × J . Let C(I × J ) denote the vector
space of continuous functions F : I × J → R. Let ‖ · ‖ denote the uniform norm in C(I × J )

or C(J ). The random perturbations influence the initial velocity of the amplitude of the wave

∂u(t, x)

∂t

∣∣∣∣
t=0

,

while the initial displacement of the wave u(0, x) is kept to a fixed continuous function a(x).
Hence, in the next result, u(0, x) is assumed to be fixed, while

∂u(t, x)

∂t

∣∣∣∣
t=0

varies but is still white noise in nature. In such a case, the mapping w → u is shown to be
continuous.

Lemma 2.2. For each ω ∈ �, the mapping W → u, defined by (2.2) and (2.3), is a continuous
mapping from C(J ) to C(I × J ) with respect to the ‖ · ‖-norm in these spaces. That is,

‖u1 − u2‖ ≤ ekT L/2‖W1 − W2‖.
Proof. From (2.6) we see that

u1(s, y) − u2(s, y) = 1
2

∫ x+t

x−t

W̄1(dy) − 1
2

∫ x+t

x−t

W̄2(dy)

+ 1
2

∫
I×J

∫
χ(t,x)(s, y)(f (y, u1(s, y)) − f (y, u2(s, y))) dy ds.
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We define
µ(x) := sup

(s,y)∈I×[0,x]
|u1(s, y) − u2(s, y)|.

Then, for each x ∈ J , we see that

µ(x) ≤ 1

2

∥∥∥∥
∫ x+t

x−t

W̄1(dy) −
∫ x+t

x−t

W̄2(dy)

∥∥∥∥ + k

2

∫ T

0

∫ x

0
µ(y) dy ds

≤ ‖W1(x) − W2(x)‖ + kT

2

∫ x

0
µ(y) dy.

Applying Gronwall’s inequality, we obtain

µ(x) ≤ ekT L/2‖W1(x) − W2(x)‖,
and the result follows.

3. Nonlinear random forcing

In this section, the case of a vibrating string excited by a nonlinear stochastic force which
involves the formal derivative of a Brownian sheet is considered. A Brownian sheet W on I ×J

is a random set function defined on the Borel subsets of I ×J such that the following conditions
hold.

(i) For a Borel set A of B(I × J ), W(A) is a mean zero Gaussian random variable with
covariance given by E[W(A)W(B)] = ν(A ∩ B), where ν is Lebesgue measure on
(I × J, B(I × J )) and B(I × J ) denotes the collection of Borel subsets of I × J .

(ii) If A and B are disjoint Borel subsets of I × J , then W(A ∪ B) = W(A) + W(B).

The Brownian sheet W is defined on a fixed complete probability space (�, F, P). The filtration
{Ft : t ≥ 0} is defined by the σ -field

Ft := σ {W(A) : A ∈ B([0, t] × J )}, t ∈ I.

The displacement u(t, x) of a point x at time t on the string of length L fixed at both ends with a
Dirichlet boundary condition is given by the following version of the stochastic wave equation:

∂2u(t, x)

∂t2 = ∂2u(t, x)

∂x2 + f (x, u)Ẅtx,

u(0, x) = a(x),

∂u(t, x)

∂t

∣∣∣∣
t=0

= b(x),

u(t, 0) = ∂u(t, x)

∂t

∣∣∣∣
x=L

= 0, (t, x) ∈ I × J,

(3.1)

where Ẅtx is the derivative of the Brownian sheet W in the sense of distribution. The initial
conditions a(x) and b(x) are deterministic continuous functions which are in L2(J ). Again,
we assume that f is continuous as a function in (x, u) on J × R and Lipschitz in u, as in (2.4).
Because of the singularity of the noise Ẅtx , a solution to (3.1) is meant in the distributional
sense; see Walsh (1986) and Elshamy (1995). That is, a function u(t, x) is a solution to (3.1)
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if u(t, x) is a Ft -adapted continuous random field such that, for each C∞ function φ on I × J

having compact support with φ(T , x) = ∂φ(T , x)/∂t = 0, for all x ∈ J , we have∫
I×J

∫
∂2φ(t, x)

∂t2 u(t, x) dx dt

=
∫

I×J

∫
∂2φ(t, x)

∂x2 u(t, x) dx dt −
∫

J

∂φ(0, x)

∂t
a(x) dx +

∫
J

φ(0, x)b(x) dx

+
∫

I×J

∫
φ(t, x)f (x, u(t, x))W(dx, dt), P-almost surely.

The solution u(t, x) can then be written as

u(t, x) = u0(t, x)+ 1
2

∫
I×J

∫
χ(t,x)(s, y)f (y, u(s, y))W(dy, ds), (t, x) ∈ I ×J, (3.2)

where

u0(t, x) = 1
2 (A(x + t) + A(x − t)) + 1

2

∫ x+t

x−t

b̄(y) dy (3.3)

and

b̄(x) := b(x), for 0 ≤ x ≤ L,

b̄(−x) := −w(x), for 0 ≤ x ≤ L,

b̄(x + 2kL) = b̄(x), if − L ≤ x ≤ L and k = ±1, ±2, . . . .

Let fn(x, u) be a sequence of continuous functions defined on J × R which are Lipschitz
in u and let un(t, x) denote the solutions to the stochastic equation

∂2un(t, x)

∂t2 = ∂2un(t, x)

∂x2 + fn(x, un)Ẅtx,

un(0, x) = a(x),

∂un(t, x)

∂t

∣∣∣∣
t=0

= b(x),

un(t, 0) = ∂un(t, x)

∂t

∣∣∣∣
x=L

= 0, (t, x) ∈ I × J.

(3.4)

That is,

un(t, x) = u0(t, x) + 1
2

∫
I×J

∫
χ(t,x)(s, y)fn(y, un(s, y))W(dy, ds), (t, x) ∈ I × J.

Theorem 3.1. Assume that fn(x, u) → f (x, u) uniformly on J × R, then we obtain

sup
(t,x)∈I×J

E |un(t, x) − u(t, x)|2 → 0 as n → ∞, (3.5)

where u(t, x) satisfies (3.4) with f (x, u) in place of fn(x, un), i.e.

u(t, x) = u0(t, x) + 1
2

∫
I×J

∫
χ(t,x)(s, y)f (y, u(s, y))W(dy, ds).
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Proof. Note that

un(t, x) − u(t, x)

= 1
2

∫
I×J

∫
χ(t,x)(s, y)fn(y, un(s, y))W(dy, ds)

− 1
2

∫
I×J

∫
χ(t,x)(s, y)f (y, u(s, y))W(dy, ds)

= 1
2

∫
I×J

∫
χ(t,x)(s, y)(fn(y, un(s, y)) − f (y, un(s, y)))W(dy, ds)

+ 1
2

∫
I×J

∫
χ(t,x)(s, y)(f (y, un(s, y)) − f (y, u(s, y)))W(dy, ds).

Thus,

E |un(t, x) − u(t, x)|2

≤ 1
2 E

∣∣∣∣
∫

I×J

∫
(fn(y, un(s, y)) − f (y, un(s, y)))W(dy, ds)

∣∣∣∣
2

+ 1
2 E

∣∣∣∣
∫

I×J

∫
(f (y, un(s, y)) − f (y, u(s, y)))W(dy, ds)

∣∣∣∣
2

≤ 1
2 E

∫
I×J

∫
|fn(y, un(s, y)) − f (y, un(s, y))|2 dy ds

+ 1
2 E

∫
I×J

∫
|f (y, un(s, y)) − f (y, u(s, y))|2 dy ds

≤ LT

2
sup
y,u

|fn(y, u) − f (y, u)|2 dy ds

+ k2

2

∫
I×J

∫
E |un(s, y)) − u(s, y)|2 dy ds.

We define

δ(x) = sup
(s,y)∈I×[0,x]

E |un(s, y) − u(s, y)|2.

Then, for each x ∈ J ,

δ(x) ≤ LT

2
sup
x,u

|fn(x, u) − f (x, u)|2 + T k2

2

∫ x

0
δ(y) dy.

It follows from Gronwall’s inequality that

δ(x) ≤ LT

2
exp

(
k2T L

2

)
sup
x,u

|fn(x, u) − f (x, u)|2.

This gives (3.5), which completes the proof.
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We note that Theorem 3.1 actually holds for p ≥ 2; this is stated in the following result.

Theorem 3.2. Assume that fn(x, u) → f (x, u) uniformly on J × R. Then for any p, p ≥ 2,
we obtain

sup
(t,x)∈I×J

E[|un(t, x) − u(t, x)|p] → 0 as n → ∞.

Proof. We have

un(t, x) − u(t, x)

= 1
2

∫
I×J

∫
χ(t,x)(s, y)fn(y, un(s, y))W(dy, ds)

− 1
2

∫
I×J

∫
χ(t,x)(s, y)f (y, u(s, y))W(dy, ds)

= 1
2

∫
I×J

∫
χ(t,x)(s, y)(fn(y, un(s, y)) − f (y, un(s, y)))W(dy, ds)

+ 1
2

∫
I×J

∫
χ(t,x)(s, y)(f (y, un(s, y)) − f (y, u(s, y)))W(dy, ds)

and

E |un(t, x) − u(t, x)|p

≤ E

∣∣∣∣
∫

I×J

∫
(fn(y, un(s, y)) − f (y, un(s, y)))W(dy, ds)

∣∣∣∣
p

+ E

∣∣∣∣
∫

I×J

∫
(f (y, un(s, y)) − f (y, u(s, y)))W(dy, ds)

∣∣∣∣
p

.

Using Burkholder, Hölder, and Gronwall inequalities, as in the proof of Theorem 2.1, the result
follows.

Using Chebyshev’s inequality and Theorem 3.1, we obtain the following result.

Lemma 3.1. Assume that fn(x, u) → f (x, u) uniformly on J × R. Then, for any positive
constant ε, we obtain

P(|un(t, x) − u(t, x)| > ε) → 0 as n → ∞.

4. Smoothness of the random fields

This section is devoted to the investigation of additional characteristics of the random fields
representing the solutions to the stochastic wave equations (2.1) and (3.1). The integral
equations (2.2) and (3.2) define a Picard iterative scheme which can be used to construct
Ft -predictable elements of L2(I × J × �). Standard techniques can then be utilized to show
the existence of a unique Ft -predictable solution u(t, x) in L2(I ×J ×�) having a continuous
version as a function of (t, x). In fact, we can estimate its modulus of continuity. To this end,
a function F defined on a bounded domain D is said to be (uniformly) Hölder continuous with
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exponent α, 0 < α ≤ 1, in D, provided that

sup

{ |F(x) − F(y)|
|x − y|α : x, y ∈ D, x 
= y

}
is finite.

Hölder continuity is a quantitative measure of continuity which is particularly well suited
to the study of partial differential equations. It may be viewed, in some sense, as fractional
differentiability.

Theorem 4.1. (Initial white noise excitation.) Consider (2.2), the solution to Equation (2.1),
where (2.3) holds.

Let a(x) be a Hölder continuous function with exponent α = 1
2 and f be a continuous

function of (x, u) in J × R. Then, for ω almost everywhere, (x, t) → u(x, t) is a Hölder
continuous function with exponent α = 1

2 .

Proof. Since f (·, ·) is a continuous function, the integral in (2.2) is a smooth function of
(t, x). We now estimate the increments of

U(t, x) =
∫ x+t

x−t

W̄ (dy) =
∫ x+t

x−t

w(dy).

We have

E |U(t + h, x + k) − U(t, x)|
= E |U(t + h, x + k) − U(t, x + k) + U(t, x + k) − U(t, x)|
≤ E |U(t + h, x + k) − U(t, x + k)| + E |U(t, x + k) − U(t, x)|
= Term 1 + Term 2,

(4.1)

where

Term 1 = E |U(t + h, x + k) − U(t, x + k)|

= E

∣∣∣∣
∫ x+k+t+h

x+k−t−h

w(dy) −
∫ x+k+t

x+k−t

w(dy)

∣∣∣∣
= E

∣∣∣∣
(∫ x+k−t

x+k−t−h

+
∫ x+k+t

x+k−t

+
∫ x+k+t+h

x+k+t

−
∫ x+k+t

x+k−t

)
w(dy)

∣∣∣∣
= E

∣∣∣∣
∫ x+k−t

x+k−t−h

w(dy) +
∫ x+k+t+h

x+k+t

w(dy)

∣∣∣∣
≤ E

∣∣∣∣
∫ x+k−t

x+k−t−h

w(dy)

∣∣∣∣ + E

∣∣∣∣
∫ x+k+t+h

x+k+t

w(dy)

∣∣∣∣
≤

(
E

∣∣∣∣
∫ x+k−t

x+k−t−h

w(dy)

∣∣∣∣
2)1/2

+
(

E

∣∣∣∣
∫ x+k+t+h

x+k+t

w(dy)

∣∣∣∣
2)1/2

using Liapounov’s inequality

=
(∫ x+k−t

x+k−t−h

12 dy

)1/2

+
(∫ x+k+t+h

x+k+t

12 dy

)1/2

≤ |h|1/2 + |h|1/2

= 2|h|1/2

https://doi.org/10.1239/jap/1183667413 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1183667413


A stability property of stochastic vibration 455

and

Term 2 = E |U(t, x + k) − U(t, x)|

= E

∣∣∣∣
∫ x+k+t

x+k−t

w(dy) −
∫ x+t

x−t

w(dy)

∣∣∣∣
= E

∣∣∣∣
(∫ x+t

x+k−t

+
∫ x+k+t

x+t

−
∫ x+k−t

x−t

−
∫ x+t

x+k−t

)
w(dy)

∣∣∣∣
= E

∣∣∣∣
∫ x+k+t

x+t

w(dy) −
∫ x+k−t

x−t

w(dy)

∣∣∣∣
≤ E

∣∣∣∣
∫ x+k+t

x+t

w(dy)

∣∣∣∣ + E

∣∣∣∣
∫ x+k−t

x−t

(−1)w(dy)

∣∣∣∣
≤

(
E

∣∣∣∣
∫ x+k+t

x+t

w(dy)

∣∣∣∣
2)1/2

+
(

E

∣∣∣∣
∫ x+k−t

x−t

(−1)w(dy)

∣∣∣∣
2)1/2

using Liapounov’s inequality

=
(∫ x+k+t

x+t

12 dy

)1/2

+
(∫ x+k−t

x−t

(−1)2 dy

)1/2

≤ |k|1/2 + |k|1/2

= 2|k|1/2.

Putting these estimates together in (4.1) and using a + b ≤ 2(ap + bp)1/p, for p ≥ 1 and
a, b ≥ 0, we see (using p = 4) that

E |U(t + h, x + k) − U(t, x)| ≤ 2(|h|1/2 + |k|1/2)

≤ 4(|h|2 + |k|2)1/4

≤ 4(
√

|t |2 + |k|2)1/2.

Therefore, U(t, x) is a Hölder continuous with exponent α = 1
2 , which completes the proof.

Theorem 4.2. (Nonlinear random forcing.) Consider (3.2), the solution to Equation (3.1),
where (3.3) holds.

Let a(x) be a Hölder continuous function with exponent α, 0< α < 1
2 , and let

∫
I×J

∫
E |f (y, u(s, y))|p dy ds < ∞, for p ≥ 2.

Then, for ω almost everywhere, (x, t) → u(x, t) is a Hölder continuous function with exponent
α, 0 < α < 1

2 .

Proof. Since the function b(·) is continuous on J , the integral in (3.3) is a smooth function
of (t, x).

We define

V (t, x) =
∫

I×J

∫
χ(t,x)(s, y)f (y, u(s, y))W(dy, ds), (t, x) ∈ I × J.
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We show that, for ω almost everywhere, V (t, x) is a Hölder continuous function by estimating
its increments. We have

(E|V (t + h, x + k) − V (t, x)|n)1/n

= (E|V (t + h, x + k) − V (t, x + k) + V (t, x + k) − V (t, x)|n)1/n

≤ (E|V (t + h, x + k) − V (t, x + k)|n)1/n + (E|V (t, x + k) − V (t, x)|n)1/n

by Minkowski’s inequality

= Term A + Term B,

(4.2)
where

(Term A)n = E |V (t + h, x + k) − V (t, x + k)|n

= E

∣∣∣∣
∫

I×J

∫
χ(t+h,x+k)(s, y)f (y, u(s, y))W(dy, ds)

−
∫

I×J

∫
χ(t,x+k)(s, y)f (y, u(s, y))W(dy, ds)

∣∣∣∣
n

= E

∣∣∣∣
∫

I×J

∫
(χ(t+h,x+k)(s, y) − χ(t,x+k)(s, y))f (y, u(s, y))W(dy, ds)

∣∣∣∣
n

≤ c E

∣∣∣∣
∫

I×J

∫
(χ(t+h,x+k)(s, y) − χ(t,x+k)(s, y))2f 2(y, u(s, y)) dy ds)

∣∣∣∣
n/2

(4.3)

≤ c

(∫
I×J

∫
|χ(t+h,x+k)(s, y) − χ(t,x+k)(s, y)|2q dy ds

)n/2q

× E

(∫
I×J

∫
|f 2(y, u(s, y))|p dy ds

)n/2p

(4.4)

≤ c

(∫
I×J

∫
|χ(t+h,x+k)(s, y) − χ(t,x+k)(s, y)|2q dy ds

)n/2−1

×
∫

I×J

∫
E |f (y, u(s, y))|n dy ds.

Here, (4.3) is obtained by Burkholder’s inequality, where c is a constant whose value may
change from line to line in this proof, and (4.4) is obtained using Hölder’s inequality with
p = n/2 and q = n/(n − 2).

We observe that χ(t+h,x+k)(s, y) − χ(t,x+k)(s, y) vanishes except in the shaded region
between two rectangles with long sides making 45◦ with the x-axis (see Figure 2), where
its value is either +1 or −1. Therefore, the first integral can be estimated by maximizing the
shaded area, which is easily seen to be no larger than

4(
√

2L)

(
h√
2

)
= 4Lh.

Therefore,

Term A ≤ c(4Lh)1/2−1/n

(∫
I×J

∫
E |f (y, u(s, y))|n dy ds

)1/n

≤ c(4Lh)1/2−1/n.
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Figure 2: Illustration of χ(t+h,x)(s, y) − χ(t,x)(s, y).

Similarly,
Term B ≤ c(4Lk)1/2−1/n.

Putting these bounds together in (4.2), we see that

(E|V (t + h, x + k) − V (t, x)|n)1/n ≤ c(4Lh)1/2−1/n + c(4Lh)1/2−1/n

≤ c(h1/2−1/n + k1/2−1/n)

≤ c(h(1/2−1/n)p + k(1/2−1/n)p)1/p

≤ c(
√

h2 + k2)1/2−1/n, with p = 4n

n − 2
.

Since n can be chosen to be as large as we please, it follows from Liapounov’s inequality that
V (t, x) is a Hölder continuous function with exponent α, 0 < α < 1

2 . This completes the
proof.
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