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Abstract
One of the central questions in Ramsey theory asks how small the largest clique and independent set in a graph on
N vertices can be. By the celebrated result of Erdős from 1947, a random graph on N vertices with edge probability
1/2 contains no clique or independent set larger than 2 log2 𝑁 , with high probability. Finding explicit constructions
of graphs with similar Ramsey-type properties is a famous open problem. A natural approach is to construct such
graphs using algebraic tools.

Say that an r-uniform hypergraph H is algebraic of complexity (𝑛, 𝑑, 𝑚) if the vertices of H are elements of F𝑛
for some field F, and there exist m polynomials 𝑓1, . . . , 𝑓𝑚 : (F𝑛)𝑟 → F of degree at most d such that the edges
of H are determined by the zero-patterns of 𝑓1, . . . , 𝑓𝑚. The aim of this paper is to show that if an algebraic graph
(or hypergraph) of complexity (𝑛, 𝑑, 𝑚) has good Ramsey properties, then at least one of the parameters 𝑛, 𝑑, 𝑚
must be large.

In 2001, Rónyai, Babai and Ganapathy considered the bipartite variant of the Ramsey problem and proved that if
G is an algebraic graph of complexity (𝑛, 𝑑, 𝑚) on N vertices, then either G or its complement contains a complete
balanced bipartite graph of size Ω𝑛,𝑑,𝑚 (𝑁1/(𝑛+1) ). We extend this result by showing that such G contains either
a clique or an independent set of size 𝑁Ω(1/𝑛𝑑𝑚) and prove similar results for algebraic hypergraphs of constant
complexity. We also obtain a polynomial regularity lemma for r-uniform algebraic hypergraphs that are defined by a
single polynomial that might be of independent interest. Our proofs combine algebraic, geometric and combinatorial
tools.

1. Introduction

The quantitative version of Ramsey’s theorem, proved by Erdős and Szekeres [23], tells us that every
graph on N vertices contains a clique or an independent set of size at least 1

2 log2 𝑁 . In 1947, Erdős
[17] proved that this bound is best possible up to the constant factor, as the random graph on N vertices
with edge probability 1/2 contains no clique or independent set of size larger than 2 log2 𝑁 , with high
probability. Since then, it has become a central problem in graph theory to find explicit constructions of
graphs having only logarithmic-sized cliques and independent sets. One natural approach to constructing
such graphs is to use algebraic tools.

Let 𝑟, 𝑛, 𝑑, 𝑚 be positive integers. Say that an r-uniform hypergraph H is algebraic of complexity
(𝑛, 𝑑, 𝑚) if the following holds. The vertex set of H is a subset of F𝑛, where F is some field, and
there exist m polynomials 𝑓1, . . . , 𝑓𝑚 : (F𝑛)𝑟 → F of degree at most d and a Boolean formula
𝜙 : {false, true}𝑚 → {false, true} such that {v1, . . . , v𝑟 } ∈ 𝑉 (H) (𝑟 ) is an edge if and only if

𝜙([ 𝑓1(v1, . . . , v𝑟 ) = 0], . . . , [ 𝑓𝑚(v1, . . . , v𝑟 ) = 0]) = true. (1.1)
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That is, the edges of H are determined by zero patterns of polynomials 𝑓1, . . . , 𝑓𝑚. We assume that for
{v1, . . . , v𝑟 } ∈ 𝑉 (H) (𝑟 ) , the left-hand side of (1.1) is invariant under the permutation of {v1, . . . , v𝑟 },
so the edges of H are well defined. Also, say that an r-uniform hypergraph H is strongly algebraic
of complexity (𝑛, 𝑑) if there exists a single polynomial 𝑓 : (F𝑛)𝑟 → F of degree at most d such that
{v1, . . . , v𝑟 } ∈ 𝑉 (H) (𝑟 ) is an edge if and only if 𝑓 (v1, . . . , v𝑟 ) ≠ 0. We assume that the statement
𝑓 (v1, . . . , v𝑟 ) = 0 is invariant under the permutation of v1, . . . , v𝑟 . (We could have also defined edges
by 𝑓 (v1, . . . , v𝑟 ) = 0, but later it will be more convenient to work with this definition.)

1.1. Ramsey properties of algebraic graphs

One of the best-known explicit constructions of graphs having small cliques and independent sets is
due to Frankl and Wilson [24]. For a prime p, they consider the graph G whose vertex set is the 𝑝2 − 1
element subsets of [𝑛], and the sets A and B are joined by an edge if |𝐴 ∩ 𝐵 | ≡ −1(mod 𝑝). This
graph is strongly algebraic of complexity (𝑛, 2), as we can identify each set with its characteristic vector
over F𝑛

𝑝 , and two such vectors v and w are joined by an edge if 〈v, w〉 ≠ −1. Note that G is also algebraic
of complexity (𝑝2 − 1, 1, (𝑝2 − 1)2) over R, as we can identify each set of size 𝑝2 − 1 with a vector
listing its elements, and whether the vectors u, v ∈ R𝑝2−1 are joined by an edge can be decided by the
(𝑝2 − 1)2 linear equations u(𝑖) = v( 𝑗). The number of vertices of G is 𝑁 =

( 𝑛
𝑝2−1

)
, and the celebrated

Frankl-Wilson theorem on restricted intersections implies that G has no clique or independent set of
size larger than

( 𝑛
𝑝−1

)
= 𝑂 𝑝 (𝑁1/(𝑝+1) ). Choosing 𝑛 = 𝑝3, the largest clique and independent set in G has

size 2𝑂 (
√

log 𝑁 log log 𝑁 ) . Another candidate for a graph with good Ramsey properties is the Paley-graph.
If 𝑝 = 1 (mod 4) is a prime, the Paley-graph of order p is the graph whose vertex set is F𝑝 , and x and
y are joined by an edge if 𝑥 + 𝑦 is a quadratic residue: that is, (𝑥 + 𝑦) (𝑝−1)/2 ≠ −1. Such graphs are
strongly algebraic of complexity (1, (𝑝 − 1)/2), and it is widely believed that Paley-graphs have only
polylogarithmic-sized cliques or independent sets. For the best-known explicit constructions of Ramsey
graphs, see the recent works of Chattopadhyay, Zuckerman [7] and Cohen [11].

The above two constructions of algebraic graphs have at least one large parameter in their complexity.
In this paper, we show that this is not a coincidence, and if an algebraic graph of complexity (𝑛, 𝑑, 𝑚)
has good Ramsey properties, then at least one of the parameters 𝑛, 𝑑, 𝑚 must be large. In 2001, Rónyai,
Babai and Ganapathy [35] considered a bipartite version of this problem. A bi-clique in a graph G is two
disjoint sets 𝐴, 𝐵 ⊂ 𝑉 (𝐺) such that |𝐴| = |𝐵 | and every vertex in A is joined to every vertex in B by an
edge. Note that if G is the random N-vertex graph with edge probability 1/2, then the size of the largest
bi-clique in both G and its complement is𝑂 (log 𝑁), with high probability. In contrast, Rónyai, Babai and
Ganapathy [35] proved that if G is an algebraic graph on N vertices of complexity (𝑛, 𝑑, 𝑚), then either
G or its complement contains a bi-clique of size at least 𝑐𝑁1/(𝑛+1) , where 𝑐 = 𝑐(𝑛, 𝑑, 𝑚) > 0. However,
the existence of large bi-cliques or their complements does not imply the existence of large cliques or
independent sets. Our first theorem extends the result of Rónyai, Babai and Ganapathy as follows.
Theorem 1.1. There exists a constant 𝑐 > 0 such that the following holds. Let 𝑛, 𝑑, 𝑚, 𝑁 be positive
integers. Let G be an algebraic graph of complexity (𝑛, 𝑑, 𝑚) on N vertices. Then G contains either a
clique or an independent set of size at least 𝑐′𝑁1/𝛾 , where 𝑐′ = 𝑐′(𝑛, 𝑑, 𝑚) > 0 and

𝛾 = 𝑐𝑛𝑚 min
{
𝑑,

𝑛 log 𝑑

log 𝑛

}
.

That is, the growth of exponent 𝛾 as a function of n is linear, while as a function of d, it is at most
logarithmic.

The more general multicolour Ramsey problem considers edge-colourings of the complete graph 𝐾𝑁

with t colours and asks how small the size of the largest monochromatic clique can be. A colouring
𝑐 : 𝐸 (𝐾𝑁 ) → [𝑡] of the complete graph 𝐾𝑁 with t colours is algebraic of complexity (𝑛, 𝑑, 𝑚), if there
exist m polynomials 𝑓1, . . . , 𝑓𝑚 : (F𝑛)2 → F of degree at most d and a function 𝜙 : {false, true}𝑚 → [𝑡]
such that 𝑐(u, v) = 𝜙({ 𝑓𝑖 (u, v) = 0}𝑖∈[𝑚] ).
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In case 𝑡 = 𝑝 + 1, where p is prime, the best-known construction (not necessarily explicit) of a
colouring of 𝐾𝑁 with t colours having small monochromatic cliques is a recent result of Conlon and
Ferber [12], which was further improved for 𝑡 > 3 by Wigderson [41]. In [12], it is proved that if n
is a positive integer and 𝑁 = 2𝑛/2𝑝3𝑛/8+𝑜 (𝑛) , then 𝐾𝑁 has a colouring with t colours containing no
monochromatic clique of size n. Surprisingly, the colouring they provide is almost algebraic. More
precisely, first they consider an algebraic (𝑡 − 1)-colouring of complexity (𝑛, 2, 𝑡 − 1), and then they
recolour the last colour class with two new colours randomly.

We prove the extension of Theorem 1.1, which shows that in an algebraic colouring of complexity
(𝑛, 𝑑, 𝑚), at least one of the parameters 𝑛, 𝑑, 𝑚 must be large if we want to avoid large monochromatic
cliques.

Theorem 1.2. There exists a constant 𝑐 > 0 such that the following holds. Let 𝑛, 𝑑, 𝑚, 𝑡, 𝑁 be positive
integers. Every algebraic colouring of 𝐾𝑁 of complexity (𝑛, 𝑑, 𝑚) with t colours contains a monochro-
matic clique of size at least 𝑐′𝑁1/𝛾 , where 𝑐′ = 𝑐′(𝑛, 𝑑, 𝑚) and

𝛾 = 𝑐𝑛𝑚 min
{
𝑑,

𝑛 log 𝑑

log 𝑛

}
.

1.2. Ramsey properties of algebraic hypergraphs

The Ramsey problem for hypergraphs is also the subject of extensive study. For positive integers r and
t, let 𝑅𝑟 (𝑡) denote the smallest N such that any r-uniform hypergraph on N vertices contains either a
clique or an independent set of size t. Erdős, Hajnal and Rado [20] and Erdős and Rado [21] proved that
there exist constants 𝑐, 𝐶 > 0 such that

tw𝑟−1(𝑐𝑡2) < 𝑅𝑟 (𝑡) < tw𝑟 (𝐶𝑡),

where the tower function tw𝑘 (𝑥) is defined as tw1(𝑥) = 𝑥 and tw𝑘 (𝑥) = 2tw𝑘−1 (𝑥) . For recent develop-
ments on the topic, see also the works of Conlon, Fox and Sudakov [14, 15].

Semi-algebraic graphs and hypergraphs are closely related to algebraic ones and were first studied
by Alon, Pach, Pinchasi, Radoičić and Sharir [2]. An r-uniform hypergraph H is semi-algebraic of
complexity (𝑛, 𝑑, 𝑚) if 𝑉 (H) ⊂ R𝑛, and there exist m polynomials 𝑓1, . . . , 𝑓𝑚 : (R𝑛)𝑟 → R and a
Boolean formula 𝜙 such that {v1, . . . , v𝑟 } ∈ 𝑉 (H) (𝑟 ) is an edge if and only if 𝜙({ 𝑓𝑖 (v1, . . . , v𝑟 ) ≥
0}𝑖∈[𝑚] ) is true.

Let 𝑅𝑛,𝑑,𝑚
𝑟 (𝑡) denote the smallest N such that any r-uniform semi-algebraic hypergraph of complexity

(𝑛, 𝑑, 𝑚) contains either a clique or an independent set of size t. Conlon et al. [13] studied the Ramsey
problem for semi-algebraic hypergraphs and proved that there exist 𝑐 = 𝑐(𝑟, 𝑛, 𝑚, 𝑑) > 0 and 𝐶 =
𝐶 (𝑟, 𝑛, 𝑚, 𝑑) > 0 such that

tw𝑟−1(𝑐𝑡) ≤ 𝑅𝑛,𝑑,𝑚
𝑟 (𝑡) < tw𝑟−1(𝑡𝐶 ).

In the special case of 𝑛 = 1, Bukh and Matoušek [6] proved that if H is an r-uniform semi-algebraic
hypergraph of complexity (𝑛, 𝑑, 𝑚) on N vertices, then one can always find a clique or independent
set of size at least 𝑐′ log log 𝑁 , where 𝑐′ may depend not only on complexity but also on the defining
polynomials 𝑓1, . . . , 𝑓𝑚.

Quite surprisingly, algebraic hypergraphs behave very differently. We show that such hypergraphs of
constant complexity contain polynomial-sized cliques or independent sets.

Theorem 1.3. Let 𝑟, 𝑛, 𝑑, 𝑚 be positive integers. Then there exist 𝛾 = 𝛾(𝑟, 𝑛, 𝑑, 𝑚) > 0 and 𝑐 =
𝑐(𝑟, 𝑛, 𝑑, 𝑚) > 0 such that the following holds. If H is an r-uniform algebraic hypergraph of complexity
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(𝑛, 𝑑, 𝑚) on N vertices, then H contains either a clique or an independent set of size at least 𝑐𝑁1/𝛾 .
One can choose

𝛾 = 2𝑟2𝑚

((
𝑛 + 𝑑

𝑑

)
+ 1

)
.

Let us remark that the existence of 𝛾 (whose dependence on 𝑛, 𝑑, 𝑚 is not quite explicit) also follows
from a model theoretic argument of Malliaris and Shelah, Theorem 3.5 in [33] (see also [9] for a shorter
proof). They show that ifH is a p-stable r-uniform hypergraph on N vertices (see [9] for definitions), then
H contains either a clique or an independent set of size 𝑁𝛾 , where 𝛾 = 𝛾(𝑟, 𝑝) > 0. They also remark
that r-uniform algebraic hypergraphs of complexity (𝑛, 𝑑, 𝑚) are p-stable for some 𝑝 = 𝑝(𝑟, 𝑛, 𝑑, 𝑚).

Theorem 1.3 might give the feeling that semi-algebraic graphs and hypergraphs always have stronger
Ramsey-type properties than algebraic ones. In the concluding remarks, we will show that this is not
always true.

1.3. Erdős-Hajnal conjecture and graphs of bounded VC-dimension

Our results are also closely related to the celebrated Erdős-Hajnal conjecture. It was proved by Erdős
and Hajnal [18] that if G is a graph on N vertices that contains no induced copy of some fixed graph H,
then G contains a clique or an independent set of size at least 𝑒𝑐

√
log 𝑁 , where 𝑐 = 𝑐(𝐻) > 0 only

depends on H. They also proposed the conjecture that G contains a clique or an independent set of size
at least 𝑁𝑐 for some 𝑐 = 𝑐(𝐻) > 0. This conjecture, referred to as the Erdős-Hajnal conjecture, is one of
the central open problems in graph theory. Say that a family of graphs G has the Erdős-Hajnal property
if there exists a constant 𝑐 = 𝑐(G) > 0 such that every 𝐺 ∈ G contains a clique or an independent set of
size at least |𝑉 (𝐺) |𝑐 . The Erdős-Hajnal conjecture is equivalent to the statement that every hereditary
family of graphs has the Erdős-Hajnal property unless it is the family of all graphs. Here, we say that a
family F of r-uniform hypergraphs is hereditary if F is closed under taking induced subhypergraphs.

Although the Erdős-Hajnal conjecture is still wide open, its bipartite analogue was solved twenty
years ago by Erdős, Hajnal and Pach [19]. They proved that if an N-vertex graph G contains no induced
copy of H, then either G or its complement has a bi-clique of size at least 𝑁𝑐 for some 𝑐 = 𝑐(𝐻) > 0.
Fox and Sudakov [28] improved this by showing that either G contains a bi-clique of size 𝑁𝑐 or it
contains an independent set of size at least 𝑁𝑐 . This suggests that finding polynomial-sized cliques or
independent sets is considerably harder than finding bi-cliques or their complements.

The aforementioned bound of Erdős and Hajnal was recently improved for graphs of bounded
VC-dimension. The concept of graphs of bounded VC-dimension extends both algebraic and semi-
algebraic graphs of bounded complexity (as we shall see later). Let F be a family of subsets of a base
set X. If 𝑈 ⊂ 𝑋 , then F |𝑈= {𝐴 ∩ 𝑈 : 𝐴 ∈ F } is the projection of F to U. Also, for every positive
integer z, the shatter function of F is defined as

𝜋F (𝑧) = max
𝑈 ∈𝑋 (𝑧)

|F |𝑈 |.

The VC-dimension (Vapnik-Chervonenkis dimension) of the family F is the largest integer n such that
𝜋F (𝑛) = 2𝑛: that is, there exists a set 𝑈 ⊂ 𝑋 of size n such that F |𝑈= 2𝑈 . In this case, we say that U
is shattered by F . The VC-dimension, introduced by Vapnik and Chervonenkis [40], is one of the most
widely used measures of complexity of set systems in computer science and computational geometry.
We say that a graph G has VC-dimension n if the family {𝑁 (𝑣) : 𝑣 ∈ 𝑉 (𝐺)} has VC-dimension n. Ramsey
properties of graphs of bounded VC-dimension were recently studied by Fox, Pach and Suk [27]. They
proved that if G is a graph on N vertices of VC-dimension n, then G contains either a clique or an
independent set of size 𝑒 (log 𝑁 )1−𝑜 (1) , where 𝑜(1) → 0 as 𝑁 → ∞ while n is fixed. It is open whether
this bound can be improved to 𝑁𝑐 , where 𝑐 = 𝑐(𝑛) > 0: that is, whether the family of graphs of VC-
dimension at most n has the Erdős-Hajnal property. Theorem 1.1 shows that this holds for the family of
algebraic graphs of constant complexity.
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Corollary 1.4. Let 𝑛, 𝑑, 𝑚 be positive integers. The family of algebraic graphs of complexity (𝑛, 𝑑, 𝑚)
has the Erdős-Hajnal property.

1.4. Regularity lemma for algebraic hypergraphs

Graph and hypergraph regularity lemmas are among the most powerful tools in combinatorics. Let H
be an r-uniform hypergraph, and let 𝑉1, . . . , 𝑉𝑟 be disjoint subsets of 𝑉 (H). The density of (𝑉1, . . . , 𝑉𝑟 )
is 𝑑 (𝑉1, . . . , 𝑉𝑟 ) = |𝐸 (𝑉1 ,...,𝑉𝑟 ) |

|𝑉1 |... |𝑉𝑟 | , where 𝐸 (𝑉1, . . . , 𝑉𝑟 ) is the set of edges containing exactly one vertex
from each of𝑉1, . . . , 𝑉𝑟 . A partition of𝑉 (H) into parts𝑉1, . . . , 𝑉𝐾 is equitable if the sizes of𝑉1, . . . , 𝑉𝐾

differ by at most 1.
If G is a graph and (𝑈,𝑉) is a pair of disjoint subsets of the vertex set, then (𝑈,𝑉) is 𝜖-regular

if |𝑑 (𝑈,𝑉) − 𝑑 (𝑈 ′, 𝑉 ′) | < 𝜖 for every 𝑈 ′ ⊂ 𝑈, 𝑉 ′ ⊂ 𝑉 satisfying |𝑈 ′ | ≥ 𝜖 |𝑈 | and |𝑉 ′ | ≥ 𝜖 |𝑉 |. The
regularity lemma of Szemerédi [38] states that if G is a graph and 𝜖 > 0, then G has an equitable
partition into K parts with 1/𝜖 < 𝐾 < 𝑚(𝜖), where 𝑚(𝜖) depends only on 𝜖 , such that all but 𝜖 fraction
of the pairs of parts are 𝜖-regular. Unfortunately, the dependence of 𝑚(𝜖) on 1/𝜖 is Ackermann-type, so
often, this regularity lemma is quite inefficient.

For certain special families of hypergraphs, one can obtain stronger results. Say that the r-tuple
of sets (𝑉1, . . . , 𝑉𝑟 ) in the r-uniform hypergraph H is 𝜖-homogeneous if 𝑑 (𝑉1, . . . , 𝑉𝑟 ) ≤ 𝜖 or
𝑑 (𝑉1, . . . , 𝑉𝑟 ) ≥ 1− 𝜖 . Also, say that (𝑉1, . . . , 𝑉𝑟 ) is homogeneous if it is 0-homogeneous. It was proved
in the aforementioned paper of Fox, Pach and Suk [27] that if H has VC-dimension n, then H has an
equitable partition into K parts with 1/𝜖 < 𝐾 < 𝑂𝑟 ,𝑛 ((1/𝜖)2𝑛+1) such that all but at most 𝜖 fraction of
the r-tuples of parts are 𝜖-homogeneous. The authors refer to this as the ‘ultra-strong regularity lemma’,
and their bound on the number of parts has an exponent that is optimal up to an absolute constant factor.
This result improves on a sequence of earlier regularity lemmas for this class of hypergraphs [1, 8, 31].
One can do even better for semi-algebraic graphs. Fox, Pach and Suk [26] also proved that if H is semi-
algebraic of constant complexity, then H has an equitable partition into K parts, where K is bounded by
a polynomial of 𝜖 depending only on the complexity, such that all but at most 𝜖 fraction of the r-tuples
of parts are homogeneous.

But what can we say about algebraic hypergraphs? It turns out that it is too much to ask for a partition
in which all but a small fraction of r-tuples of parts are homogeneous. Indeed, if this were true, it would
imply that if G is an algebraic graph of complexity (𝑛, 𝑑, 𝑚), then either G or its complement contains
a bi-clique of linear size. In the concluding remarks, we present an example showing that this does not
hold in general. On the other hand, Chernikov and Starchenko [8] showed (see Theorem 4.13) that if a
hypergraph H is p-stable, then H has an equitable partition into K parts with 1/𝜖 < 𝐾 < 𝑂 𝑝 ((1/𝜖) 𝑝+1)
such that all r-tuples of parts are 𝜖-homogeneous. Here, we will prove the following interesting regularity
type lemma for strongly algebraic hypergraphs, which shows that strongly algebraic hypergraphs are
halfway between semi-algebraic hypergraphs and hypergraphs of bounded VC-dimension.

Theorem 1.5. Let 𝑟, 𝑛, 𝑑 be positive integers. Then there exists 𝑐 = 𝑐(𝑟, 𝑛, 𝑑) such that the following
holds. Let H be a strongly algebraic r-uniform hypergraph of complexity (𝑛, 𝑑). Then 𝑉 (H) has an
equitable partition 𝑉1, . . . , 𝑉𝐾 with 8/𝜖 < 𝐾 < 𝑐(1/𝜖)𝑟 !(2𝑛+1) parts such that all but at most 𝜖-fraction
of the r-tuples of parts are either empty or have density at least 1 − 𝜖 .

Another regularity lemma in an algebraic setting was proved by Tao [39]. This lemma applies to
graphs and hypergraphs whose vertices and edges are both defined by algebraic varieties of bounded
complexity over some field F and, more generally, are definable sets of bounded complexity (see [39] for
details). For example, the above-mentioned Paley-graph falls into this category. Tao’s lemma shows that,
remarkably, one can find an 𝜖-regular partition of the vertices of the graph or hypergraph in question
into a constant number of (definable) parts, where 𝜖 ≈ |F|−1/4. Interestingly, this seems quite different
from our regularity lemma for strongly algebraic hypergraphs.

Let us present an application of Theorem 1.5 to the Ramsey problem for strongly algebraic hyper-
graphs. The following theorem roughly tells us that finding an independent set of size s for some constant
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𝑠 = 𝑠(𝑟, 𝑛, 𝑑) in a strongly algebraic r-uniform hypergraph of complexity (𝑛, 𝑑) is almost as ‘costly’ as
finding a very large independent set. This suggests that the exponent in Theorem 1.3 can be improved,
and in order to do so, it is enough to show that every such hypergraph contains either an independent
set of size s or a large clique.

Theorem 1.6. Let 𝑟, 𝑛, 𝑑 be positive integers, 𝑠 = (𝑟 −1)
(𝑛+𝑑

𝑑

)
+1 and 𝑐, 𝛼, 𝛽 > 0. Let F be a hereditary

family of strongly algebraic r-uniform hypergraphs of complexity (𝑛, 𝑑). Suppose that each H ∈ F on N
vertices contains either a clique of size at least 𝑐𝑁𝛼 or an independent set of size s. Then every H ∈ F
on N vertices contains either a clique of size 𝑐1𝑁

𝑑𝛼𝛽/𝑛 or an independent set of size at least 𝑐2𝑁
1−𝛽 ,

where 𝑐1, 𝑐2 > 0 depend only on the parameters 𝑟, 𝑛, 𝑑, 𝑐, 𝛼, 𝛽 and 𝑑 = 𝑑 (𝑟) > 0 depends only on r.

Our paper is organised as follows. In the next section, we introduce our notation and prepare several
tools to prove our theorems. We also present the proof of Theorem 1.3 in this section. Then, in Section 3,
we present the proof of Theorems 1.1 and 1.2. We continue with the proof of Theorem 1.5 in Section 4
and present the proof of Theorem 1.6 in Section 5. Finally, we provide some discussion in the concluding
remarks.

2. Properties of algebraic hypergraphs

In this section, we prepare some tools for the proofs of our main results, and we prove Theorem 1.3.
First, let us introduce the notation we use throughout the paper, which is mostly conventional.

2.1. Notation and preliminaries

If V is some set and s is a positive integer, 𝑉 (𝑠) denotes the family of s element subsets of V. Let H
be an r-uniform hypergraph. The density of H is 𝑑 (H) = |𝐸 (H) |/

( |𝑉 (H) |
𝑟

)
. If 𝑋 ∈ 𝑉 (H) (𝑠) for some

1 ≤ 𝑠 ≤ 𝑟 − 1, then

𝑁H (𝑋) = 𝑁 (𝑋) = {𝑌 ∈ 𝑉 (H) (𝑟−𝑠) : 𝑋 ∪ 𝑌 ∈ 𝐸 (H)}

is the neighbourhood of X.
The following is a well-known result that tells us hypergraphs of density very close to 1 contain large

cliques.

Lemma 2.1. Let N be a positive integer, 1
𝑁 𝑟−1 < 𝛼 < 1

2 , and let H be an r-uniform hypergraph on N
vertices of density at least 1 − 𝛼. Then H contains a clique of size at least 1

4 (1/𝛼)
1/(𝑟−1) .

Proof. Select each vertex of H with probability 𝑝 = (2𝑁𝛼1/(𝑟−1) )−1 < 1, and let U be the set of selected
vertices. Let X be the number of non-edges spanned by U. Then E(𝑋) ≤ 𝛼𝑝𝑟

(𝑁
𝑟

)
. Delete a vertex of

each non-edge in H[𝑈], and let V be the resulting set; then V is a clique. We have

E(|𝑉 |) ≥ E(|𝑈 | − 𝑋) = 𝑝𝑁 − 𝛼𝑝𝑟

(
𝑁

𝑟

)
≥ 𝑝𝑁

2
≥ 1

4

(
1
𝛼

)1/(𝑟−1)
,

where the last two inequalities hold by the choice of p. Hence, there exists a choice for U such that
|𝑉 | ≥ 1

4 (1/𝛼)
1/(𝑟−1) . �

To describe hypergraphs defined by a single polynomial, let us introduce directed hypergraphs.
A directed r-uniform hypergraph (or r-uniform dihypergraph) is a pair H = (𝑉, 𝐸), where V is the set of
vertices and E is a set of (ordered) r-tuples of distinct elements of V, called edges. Given an r-element
subset f of V, an orientation of f is an r-tuple containing the elements of f. In a directed r-uniform
hypergraph, we allow multiple orientations of the same r-element set. Say that an r-element set X of a
dihypergraph H is complete if all 𝑟! orientations of X are edges. Let [H] be the hypergraph formed by
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the complete edges of H. A clique in an r-uniform directed hypergraph H is a clique in [H]. Also, an
independent set of H is a set of vertices in which no r-tuple forms an edge.

Given 𝐼 ⊂ [𝑟] and an |𝐼 |-tuple of vertices 𝑋 = (𝑣𝑖)𝑖∈𝐼 , the I-neighbourhood of X is 𝑁𝐼 (𝑋) =
𝑁H,𝐼 (𝑋) = {(𝑣 𝑗 ) 𝑗∈[𝑟 ]\𝐼 ∈ 𝑉𝑟−|𝐼 | : (𝑣1, . . . , 𝑣𝑟 ) ∈ 𝐸}. Note that the vertices of X appear in the
corresponding directed edges in the order given by I. In the case of directed graphs, we write simply
𝑁+(𝑣) and 𝑁−(𝑣) for the out- and in-neighbourhood of v, respectively. If X is an r-tuple and 𝑘 ∈ [𝑟],
then 𝑋 (𝑘) is the kth element of X and 𝑋̂ (𝑘) = (𝑋 (1), . . . , 𝑋 (𝑘 − 1), 𝑋 (𝑘 + 1), . . . , 𝑋 (𝑟)).

2.2. Linear algebra

In this section, we collect some facts from linear algebra and introduce the flattening rank of tensors.
Let 𝑇 : 𝐴1 × · · · × 𝐴𝑟 → F be an r-dimensional tensor, where 𝐴1, . . . , 𝐴𝑟 are finite sets and F is
a field. For 𝑖 ∈ [𝑟], the i-flattening rank of T, denoted by frank𝑖 (𝑇), is defined as follows. Let 𝐵𝑖 =
𝐴1×· · ·×𝐴𝑖−1×𝐴𝑖+1×· · ·×𝐴𝑟 ; then T can be viewed as a matrix M with rows indexed by 𝐴𝑖 and columns
indexed by 𝐵𝑖 . Then frank𝑖 (𝑇) := rank(𝑀). Note that frank𝑖 (𝑇) = 1 if and only if 𝑇 ≠ 0, and there exist
two functions 𝑓 : 𝐴𝑖 → F and 𝑔 : 𝐵𝑖 → F such that𝑇 (𝑎1, . . . , 𝑎𝑟 ) = 𝑓 (𝑎𝑖)𝑔(𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖+1, . . . , 𝑎𝑟 ).
Also, the i-flattening rank of T is the minimum t such that T is the sum of t tensors of i-flattening rank 1.
Equivalently, frank𝑖 (𝑇) is the dimension of the vector space generated by the rows of T in the ith
dimension.

It is easy to see that the i-flattening rank satisfies the usual properties of rank. It is subadditive,
and if 𝑇 ′ is a subtensor of T, then frank𝑖 (𝑇 ′) ≤ frank𝑖 (𝑇). Here, 𝑇 ′ : 𝐴′

1 × · · · × 𝐴′
𝑟 → F is a

subtensor of 𝑇 : 𝐴1 × · · · × 𝐴𝑟 → F if 𝐴′
𝑖 ⊂ 𝐴𝑖 for 𝑖 ∈ [𝑟] and 𝑇 ′(𝑎1, . . . , 𝑎𝑟 ) = 𝑇 (𝑎1, . . . , 𝑎𝑟 ) for

(𝑎1, . . . , 𝑎𝑟 ) ∈ 𝐴′
1×· · ·×𝐴′

𝑟 . A detailed discussion of i-flattening rank and its combinatorial applications
can be found in [34]. In this paper, we use the following property of the i-flattening rank of tensors
defined by polynomials.

Lemma 2.2. Let 𝑓 : (F𝑛)𝑟 → F be a polynomial of degree at most d, and let 𝑉 ⊂ F𝑛. Define the r-
dimensional tensor𝑇 : 𝑉𝑟 → F such that𝑇 (𝑋) := 𝑓 (𝑋) for 𝑋 ∈ 𝑉𝑟 . Then frank𝑖 (𝑇) ≤

(𝑛+𝑑
𝑑

)
for 𝑖 ∈ [𝑟].

Proof. Let Λ = {𝛼 ∈ N𝑛 :
∑𝑛

𝑖=1 𝛼(𝑖) ≤ 𝑑}. For x ∈ F𝑛 and 𝛼 ∈ N𝑛, let ℎ𝛼 (x) = x(1)𝛼(1) . . . x(𝑛)𝛼(𝑛) .
Then the polynomial f can be written as

𝑓 (𝑋) =
∑
𝛼∈Λ

ℎ𝛼 (𝑋 (𝑖))𝑔𝛼 ( 𝑋̂ (𝑖)),

where 𝑋 ∈ 𝑉𝑟 is considered as an r-tuple of elements of V, and 𝑔𝛼 : F(𝑟−1)𝑛 → F is some polynomial
for 𝛼 ∈ Λ. But then T is the sum of |Λ| ≤

(𝑛+𝑑
𝑑

)
tensors of i-flattening rank 1, so frank𝑖 (𝑇) ≤

(𝑛+𝑑
𝑑

)
. �

We use this lemma in the next section to define a family of forbidden directed subhypergraphs in
dihypergraphs defined by a single polynomial. Working with the flattening rank (versus matrix rank) is
not necessary for this application, but later (see Section 5) we will exploit more of its properties.

2.3. Forbidden subhypergraphs

In this section, we show that algebraic dihypergraphs defined by a single polynomial avoid the following
simple family of dihypergraphs.

Definition 1. For positive integers 𝑟, 𝑠, 𝑘 with 𝑘 ∈ [𝑟], let M(𝑟, 𝑠, 𝑘) be the family of r-uniform
dihypergraphs M having the following form. There are given, not all necessarily distinct, vertices 𝑢𝑖, 𝑗

for (𝑖, 𝑗) ∈ [𝑠]× [𝑟] forming the vertex set ofM. For (𝑖, 𝑖′) ∈ [𝑠]× [𝑠], let 𝑋𝑖,𝑖′ be the r-tuple (of distinct)
vertices satisfying 𝑋𝑖,𝑖′ ( 𝑗) = 𝑢𝑖, 𝑗 for 𝑗 ∈ [𝑟] \ {𝑘} and 𝑋𝑖,𝑖′ (𝑘) = 𝑢𝑖′,𝑘 . Then 𝑋𝑖,𝑖 is an edge of M
for 𝑖 ∈ [𝑠], and 𝑋𝑖,𝑖′ is not an edge for 1 ≤ 𝑖 < 𝑖′ ≤ 𝑠. The rest of the r-tuples can be either edges or
non-edges. Also, let M(𝑟, 𝑠) be the union of the families M(𝑟, 𝑠, 𝑘) for 𝑘 ∈ [𝑟].
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Lemma 2.3. Let H be a strongly algebraic r-uniform dihypergraph of complexity (𝑛, 𝑑). Then H
contains no member of M(𝑟, 𝑠) for 𝑠 >

(𝑛+𝑑
𝑑

)
.

Proof. Let 𝑉 = 𝑉 (H), and let f be the polynomial defining H. Define the tensor 𝑇 : 𝑉𝑟 → F such
that for 𝑋 ∈ 𝑉𝑟 , 𝑇 (𝑋) := 𝑓 (𝑋). For 𝑘 ∈ [𝑟], let 𝑀𝑘 : 𝑉 × 𝑉𝑟−1 → F be the matrix defined as
𝑀𝑘 (𝑋 (𝑘), 𝑋̂ (𝑘)) := 𝑇 (𝑋) for 𝑋 ∈ 𝑉𝑟 . Then by Lemma 2.2, we have rank(𝑀𝑘 ) = frank𝑘 (𝑇) ≤

(𝑛+𝑑
𝑑

)
.

Let 𝑠 >
(𝑛+𝑑

𝑛

)
, and suppose that H contains a copy of a member of M(𝑟, 𝑠, 𝑘) for some 𝑘 ∈ [𝑟].

Then there exist u𝑖, 𝑗 ∈ 𝑉 for (𝑖, 𝑗) ∈ [𝑠] × [𝑟] such that the following holds. For (𝑖, 𝑖′) ∈ [𝑠] × [𝑠],
define 𝑈𝑖,𝑖′ ∈ 𝑉𝑟 such that 𝑈𝑖,𝑖′ ( 𝑗) = u𝑖, 𝑗 for 𝑗 ≠ 𝑘 , and 𝑈𝑖,𝑖′ (𝑘) = u𝑖′,𝑘 . Then 𝑓 (𝑈𝑖,𝑖) ≠ 0 for
𝑖 ∈ [𝑠] and 𝑓 (𝑈𝑖,𝑖′ ) = 0 if 1 ≤ 𝑖 < 𝑖′ ≤ 𝑠. But then the submatrix of 𝑀𝑘 induced by the rows
u1,𝑘 , . . . , u𝑠,𝑘 and columns 𝑈̂1,1 (𝑘), . . . , 𝑈̂𝑠,𝑠 (𝑘) is an upper-triangular matrix, which has full rank.
Therefore, rank(𝐴) ≥ 𝑠, which is a contradiction. �

Lemma 2.4. Let H1, . . . ,H𝑚 be r-uniform dihypergraphs on an N element vertex set V. If H𝑖 contains
no member of M(𝑟, 𝑠) for 𝑖 ∈ [𝑚], then there exists 𝑈 ⊂ 𝑉 such that H𝑖 [𝑈] is either a clique or an
independent set for 𝑖 ∈ [𝑚], and |𝑈 | ≥ 𝑐𝑁1/2𝑟2𝑚𝑠 , where 𝑐 = 𝑐(𝑟, 𝑠, 𝑚) > 0 depends only on 𝑟, 𝑠, 𝑚.

Proof. We prepare the proof with the following claims.

Claim 2.5. Let G be a nonempty r-uniform hypergraph on 𝑀 ≥ 100𝑟 vertices, and suppose that the
density of G is at most 1 − 𝛼. Then there exists 𝑋 ∈ 𝑉 (G) (𝑟−1) such that 1 ≤ |𝑁 (𝑋) | ≤ (1 − 𝛼/2𝑟)𝑀 .

Proof. Let 𝛼′ be the unique real number such that |𝐸 (G) | =
( (1−𝛼′)𝑀

𝑟

)
≤ (1 − 𝛼)

(𝑀
𝑟

)
. Then one can

check that 𝛼′ ≥ 𝛼/2𝑟 . We prove by induction on r that G contains an (𝑟 − 1)-element set X such that
1 ≤ |𝑁 (𝑋) | ≤ (1 − 𝛼′)𝑀 . This is certainly true if 𝑟 = 1, so suppose that 𝑟 ≥ 2.

Let 𝑈 ⊂ 𝑉 (G) be the set of vertices with at least 1 neighbour. Then there exists 𝑢 ∈ 𝑈 such that

|𝑁 (𝑢) | ≤ 𝑟 |𝐸 (G) |
|𝑈 | .

Note that
( |𝑈 |

𝑟

)
≥ |𝐸 (G) |, as every edge is contained in U, so |𝑈 | ≥ (1 − 𝛼′)𝑀 . But then

|𝑁 (𝑢) | ≤
𝑟
( (1−𝛼′)𝑀

𝑟

)
(1 − 𝛼′)𝑀 =

(
(1 − 𝛼′)𝑀 − 1

𝑟 − 1

)
<

(
(1 − 𝛼′)𝑀

𝑟 − 1

)
.

Let G ′ be the link graph of u. Then G ′ is a nonempty (𝑟 − 1)-uniform hypergraph such that |𝐸 (G ′) | ≤( (1−𝛼′)𝑀
𝑟−1

)
. Therefore, by our induction hypothesis, there exists an (𝑟 − 2)-element set 𝑋 ′ such that

1 ≤ |𝑁G′ (𝑋 ′) | ≤ (1 − 𝛼′)𝑀 . But then 𝑋 = 𝑋 ′ ∪ {𝑢} satisfies 1 ≤ |𝑁G (𝑋) | ≤ (1 − 𝛼′)𝑀 as well,
finishing the proof. �

Claim 2.6. Let G be a nonempty r-uniform dihypergraph on 𝑀 ≥ 100𝑟 vertices, and suppose that the
density of [G] is at most 1 − 𝛼. Then there exist ℓ ∈ [𝑟] and 𝑌 ∈ 𝑉 (G)𝑟−1 such that

1 ≤ |𝑁 [𝑟 ]\{ℓ } (𝑌 ) | ≤
(
1 − 𝛼

2𝑟 · 𝑟!

)
𝑀.

Proof. First, consider the case that [G] is nonempty. Then by the previous claim, there exists
𝑋 ∈ 𝑉 (G) (𝑟−1) such that 1 ≤ |𝑁 [G ] (𝑋) | ≤ (1 − 𝛼/2𝑟)𝑀 . Let 𝑈 = 𝑉 (G) \ 𝑁 [G ] (𝑋), and note that
|𝑈 | ≤ 𝛼

2𝑟 𝑀 . For every 𝑢 ∈ 𝑈, the set 𝑋 ∪ {𝑢} has an orientation not present in G. Hence, there exist
𝑈 ′ ⊂ 𝑈, ℓ ∈ [𝑟] and an orientation Y of X such that |𝑈 ′ | ≥ |𝑈 |/𝑟! and 𝑈 ′ is disjoint from 𝑁 [𝑟 ]\{ℓ } (𝑌 ).
But then |𝑁 [𝑟 ]\{ℓ } (𝑌 ) | ≤ (1 − 𝛼

2𝑟 ·𝑟 ! )𝑀 . Also, 𝑁 [G ] (𝑌 ) ⊂ 𝑁 [𝑟 ]\{ℓ } (𝑌 ), so |𝑁 [𝑟 ]\{ℓ } (𝑌 ) | ≥ 1 as well.
Now consider the case when [G] is empty. Let 𝛽 = 1/𝑟!. In this case, we show that there exist

ℓ ∈ [𝑟] and 𝑌 ∈ 𝑉 (G)𝑟−1 such that 1 ≤ |𝑁 [𝑟 ]\{ℓ } (𝑌 ) | ≤ (1 − 𝛽)𝑀 . Suppose this is not the case: that is,
for each 𝑊 ∈ 𝐸 (G) and ℓ ∈ [𝑟], we have |𝑁 [𝑟 ]\{ℓ } (𝑊̂ (ℓ)) | > (1 − 𝛽)𝑀 . We define the sets of edges
𝐹0, . . . , 𝐹𝑟 of G as follows. Let 𝐹0 contain a single edge 𝑊0 of G. For 𝑖 ∈ [𝑟], 𝐹𝑖 will have the following
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form. There exist 𝑥1, . . . , 𝑥𝑖 ∈ 𝑉 (G) such that 𝐹𝑖 contains all r-tuples W for which W agrees with 𝑊0 in
exactly (𝑟 − 𝑖) coordinates, and the rest of the coordinates are a permutation of 𝑥1, . . . , 𝑥𝑖 . Note that then
|𝐹𝑖 | = 𝑟 (𝑟 − 1) . . . (𝑟 − 𝑖 + 1). If 𝐹𝑖 is already defined satisfying this property, we define 𝐹𝑖+1 as follows.
For each 𝑊 ∈ 𝐹𝑖 , let 𝐼𝑊 be the set of coordinates ℓ ∈ [𝑟] for which 𝑊 (ℓ) = 𝑊0 (ℓ). Consider the set

𝑈 =
⋂

𝑊 ∈𝐹𝑖

⋂
ℓ∈𝐼𝑊

𝑁 [𝑟 ]\{ℓ } (𝑊̂ (ℓ)).

Then U is the intersection of (𝑟 − 𝑖) |𝐹𝑖 | ≤ 𝑟! subsets of 𝑉 (G) of size at least (1 − 𝛽)𝑀; hence, U is
nonempty. Therefore, there exists 𝑥𝑖+1 ∈ 𝑈. Let 𝐹𝑖+1 be the set of all edges 𝑊 ′ for which 𝑊̂ ′(ℓ) = 𝑊̂ (ℓ)
and 𝑊 ′(ℓ) = 𝑥𝑖+1 for some 𝑊 ∈ 𝐹𝑖 and ℓ ∈ 𝐼𝑊 . Then 𝐹𝑖+1 has the desired properties. In particular, 𝐹𝑟

contains every orientation of {𝑥1, . . . , 𝑥𝑟 } contradicting that [G] is nonempty. This finishes the proof.
Let us illustrate the previous argument in the case 𝑟 = 3. Here, 𝐹0 contains some edge 𝑎𝑏𝑐. Then we

can find 𝑥 = 𝑥1 such that 𝑎𝑏𝑥, 𝑎𝑥𝑐, 𝑥𝑏𝑐 are all edges: they form 𝐹1. Then we can find some 𝑦 = 𝑥2 such
that 𝑎𝑦𝑥, 𝑦𝑏𝑥, 𝑎𝑥𝑦, 𝑦𝑥𝑐, 𝑥𝑏𝑦, 𝑥𝑦𝑐 are all edges: they form 𝐹2. Finally, we can find some 𝑧 = 𝑥3 such that
𝑧𝑦𝑥, 𝑦𝑧𝑥, 𝑧𝑥𝑦, 𝑦𝑥𝑧, 𝑥𝑧𝑦, 𝑥𝑦𝑧 are all edges, forming 𝐹3. �

Let 𝛼 = 2𝑟 · 𝑟!𝑁−1/2𝑟𝑚𝑠. Let 𝑈0 = 𝑉 (H), 𝑠0,𝑖,𝑘 = 𝑠 for (𝑖, 𝑘) ∈ [𝑚] × [𝑟], and define the nested
sequence of vertex sets𝑈0 ⊃ 𝑈1 ⊃ . . . and sequence of integers 𝑠ℓ,𝑖,𝑘 for ℓ = 1, . . . and (𝑖, 𝑘) ∈ [𝑚]×[𝑟]
as follows. Suppose that 𝑈ℓ and 𝑠ℓ,𝑖,𝑘 are already defined for some ℓ ≥ 0 such that H𝑖 [𝑈ℓ] contains no
member of M(𝑟, 𝑠ℓ,𝑖,𝑘 , 𝑘) for (𝑖, 𝑘) ∈ [𝑚] × [𝑟]. Let 𝐼 ⊂ [𝑚] be the set of indices i such that H𝑖 [𝑈ℓ ]
is nonempty. For such indices i, we must have 𝑠ℓ,𝑖 > 1, as the family M(𝑟, 1) is composed of a single
dihypergraph containing a single edge. Consider three cases.

Case 1. 𝐼 = ∅.
In this case, we stop and set 𝑈 = 𝑈ℓ .

Case 2. For every 𝑖 ∈ 𝐼, the density of [H𝑖] [𝑈ℓ] is at least 1 − 𝛼.
Let H𝐼 =

⋂
𝑖∈𝐼 [H𝑖]; then 𝑑 (H𝐼 [𝑈ℓ ]) ≥ 1 − 𝛼 |𝐼 | ≥ 1 − 𝛼𝑚. Therefore, by Lemma 2.1, H𝐼 [𝑈ℓ ]

contains a clique U of size at least 1
4 (1/𝛼𝑚)1/(𝑟−1) . Note that H𝑖 [𝑈] is a clique for every 𝑖 ∈ 𝐼, and

H𝑖 [𝑈] is an independent set for every 𝑖 ∈ [𝑚] \ 𝐼.
Case 3. There exists 𝑖 ∈ 𝐼 such that the density of [H𝑖] [𝑈ℓ ] is less than 1 − 𝛼.

As H𝑖 [𝑈ℓ] is not empty, we get by Claim 2.6 that there exist 𝑋 ⊂ 𝑈𝑟−1
ℓ and 𝑘 ∈ [𝑟] such that

1 ≤ |𝑁H𝑖 [𝑈ℓ ], [𝑟 ]\{𝑘 } (𝑋) | ≤
(
1 − 𝛼

2𝑟 · 𝑟!

)
|𝑈ℓ |.

Let 𝑈ℓ+1 = 𝑈ℓ \ 𝑁H𝑖 [𝑈ℓ ], [𝑟 ]\{𝑘 } (𝑋). Also set 𝑠ℓ,𝑖′,𝑘′ = 𝑠ℓ+1,𝑖′,𝑘′ if (𝑖′, 𝑘 ′) ≠ (𝑖, 𝑘), and let 𝑠ℓ+1,𝑖,𝑘 =
𝑠ℓ,𝑖,𝑘 − 1. Note that |𝑈ℓ+1 | ≥ 𝛼

2𝑟 ·𝑟 ! |𝑈ℓ |, and H 𝑗 [𝑈ℓ] contains no member of M(𝑟, 𝑠ℓ+1,𝑖′,𝑘′ , 𝑘) for
(𝑖′, 𝑘 ′) ∈ [𝑚] × [𝑟]. The latter is clear if (𝑖′, 𝑘 ′) ≠ (𝑖, 𝑘). If (𝑖′, 𝑘 ′) = (𝑖, 𝑘), let f be any edge in H𝑖 [𝑈ℓ ]
with 𝑓 (𝑘) = 𝑋 . If H𝑖 [𝑈ℓ+1] contains a member of M(𝑟, 𝑠ℓ+1,𝑖,𝑘 , 𝑘), then together with f, this forms a
member of M(𝑟, 𝑠ℓ,𝑖,𝑘 , 𝑘) in H𝑖 [𝑈ℓ ], a contradiction.

Let L be the index ℓ for which we stop. For ℓ = 1, . . . , 𝐿, let 𝑠ℓ =
∑𝑚

𝑖=1
∑𝑟

𝑘=1 𝑠ℓ,𝑖,𝑘 . Then 𝑠0 = 𝑟𝑚𝑠,
𝑠𝐿 ≥ 𝑟𝑚, and 𝑠ℓ+1 = 𝑠ℓ−1, so we get 𝐿 ≤ 𝑟𝑚(𝑠−1). Also, |𝑈ℓ+1 | ≥ 𝛼

2𝑟 ·𝑟 ! |𝑈ℓ |, so |𝑈𝐿 | ≥ (𝛼/2𝑟 ·𝑟!)𝐿𝑁 ≥
(𝛼/2𝑟 · 𝑟!)𝑟𝑚𝑠𝑁 ≥ 𝑁1/2.

If we stop in Case 1, then 𝑈 = 𝑈ℓ , so |𝑈 | ≥ 𝑁1/2. If we stop in Case 2, then |𝑈 | ≥ 1
4 (1/𝛼𝑚)1/(𝑟−1) ≥

𝑐𝑁1/2𝑚𝑠𝑟 (𝑟−1) , where 𝑐 = 𝑐(𝑟, 𝑠, 𝑚) > 0 depends only on 𝑟, 𝑠, 𝑚. This finishes the proof. �

From this, we can immediately deduce Theorem 1.3.

Proof of Theorem 1.3. Let 𝑓1, . . . , 𝑓𝑚 : (F𝑛)𝑟 be polynomials of degree at most d and 𝜙 be a Boolean
formula defining H, and let H𝑖 be the algebraic dihypergraph defined by 𝑓𝑖 on 𝑉 (H) for 𝑖 ∈ [𝑚]. By
Lemma 2.3, H𝑖 contains no member of M(𝑟, 𝑠) for 𝑠 =

(𝑛+𝑑
𝑛

)
+ 1. But then by Lemma 2.4, there exists

𝑈 ⊂ 𝑉 (H) such that |𝑈 | ≥ 𝑐𝑁1/2𝑟2𝑚𝑠 and H𝑖 [𝑈] is either a clique or an independent set for 𝑖 ∈ [𝑚].
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If 𝑋 ∈ 𝑉 (H) (𝑟 ) and Y is an orientation of X, then X is an edge of H if and only if

𝜙([𝑌 ∉ 𝐸 (H𝑖)]𝑖∈[𝑚] ) = true.

By the definition of U, the left-hand side is the same for every 𝑌 ∈ 𝑈𝑟 , so H[𝑈] is either a clique or an
independent set. �

Let us remark that the bound in Lemma 2.4 is optimal in the following sense. Let G be a graph, which
we view as a digraph in which each edge is oriented both ways. Note that if G contains no two sets of
size �𝑠/2� with no edges between them, then G contains no member of M(2, 𝑠) as well. But standard
probabilistic arguments show that there are graphs G on N vertices containing no two such sets, and
every clique and independent set in G is of size 𝑁𝑂 (1/𝑠) . In the next section, we show that this bound
can be significantly improved if we exploit some other properties of algebraic graphs as well.

2.4. Zero-patterns

One of the key results in our proof is the following lemma of Rónyai, Babai and Ganapathy [35] on the
number of zero-patterns of polynomials.

Given a sequence of m polynomials f = ( 𝑓1, . . . , 𝑓𝑚) in n variables over the field F, a zero-pattern
of f is a sequence 𝜖 ∈ {0, ∗}𝑚 for which there exists 𝑥 ∈ F𝑛 such that 𝑓𝑖 (𝑥) = 0 if and only if 𝜖 (𝑖) = 0.
Let 𝑍 (f) denote the number of zero-patterns of f. Using elegant algebraic tools, Rónyai, Babai and
Ganapathy [35] proved the following.
Lemma 2.7. Let 𝑓1, . . . , 𝑓𝑚 : F𝑛 → F be a sequence of polynomials of degree at most d. Then the
number of zero-patterns of f = ( 𝑓1, . . . , 𝑓𝑚) is at most

(𝑚𝑑+𝑛
𝑛

)
. In particular, 𝑍 (f) ≤ 𝑐𝑚𝑛, where

𝑐 = 𝑐(𝑛, 𝑑) depends only on n and d.

2.5. Weak-VC-dimension

In this section, we show that algebraic graphs of complexity (𝑛, 𝑑, 𝑚) behave similarly to graphs of VC-
dimension n. By the celebrated Sauer-Shelah lemma [36, 37], if a family of sets F has VC-dimension n,
then

𝜋F (𝑧) ≤
𝑛∑

𝑖=0

(
𝑧

𝑖

)
≤ 𝑐𝑧𝑛,

where 𝑐 = 𝑐(𝑛) depends only on n.
Let us relax the notion of a VC-dimension as follows, and note that we now work with undirected

hypergraphs. Say that the family F has weak-VC-dimension (𝑐, 𝑛) if 𝜋F (𝑧) ≤ 𝑐𝑧𝑛 for every positive
integer z. Also, an r-uniform hypergraph H has weak-VC-dimension (𝑐, 𝑛) if the family {𝑁 (𝑣) : 𝑣 ∈
𝑉 (H)} ⊂ 2𝑉 (H) (𝑟−1) has weak-VC-dimension (𝑐, 𝑛) (that is, {𝑁 (𝑣) : 𝑣 ∈ 𝑉 (H)} is viewed as a family of
subsets of the base setV = 𝑉 (H) (𝑟−1) ). Also, say that a family of hypergraphsF has weak-VC-dimension
n if there exists a constant 𝑐 = 𝑐(F) such that every H ∈ F has weak-VC-dimension (𝑐, 𝑛).
Lemma 2.8. Let H be an r-uniform algebraic hypergraph of complexity (𝑛, 𝑑, 𝑚), and let F = {𝑁 (𝑣) :
𝑣 ∈ 𝑉 (H)}. Then

𝜋F (𝑧) ≤
(
𝑧𝑚𝑑 + 𝑛

𝑛

)
≤ 𝑐𝑧𝑛,

where 𝑐 = 𝑐(𝑛, 𝑑, 𝑚) depends only on 𝑛, 𝑑, 𝑚.
Proof. Let 𝑓1, . . . , 𝑓𝑚 : (F𝑛)𝑟 → F be polynomials of degree at most d whose zero-patterns determine
the edges of H.

Let V = 𝑉 (H) (𝑟−1) : that is, the base set of F . For 𝑈 ∈ V and 𝑖 ∈ [𝑚], define the polynomial
𝑓𝑖,𝑈 : F𝑛 → F as 𝑓𝑖,𝑈 (x) = 𝑓𝑖 (𝑈 ′, x), where 𝑈 ′ ∈ (F𝑛)𝑟−1 is a fixed orientation of U. If U ⊂ V such
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that |U | = 𝑧, then each element of the family {𝑁 (𝑣) ∩ U : 𝑣 ∈ 𝑉 (H)} is determined by a zero-pattern
of the 𝑧𝑚 polynomials 𝑓𝑖,𝑈 for 𝑖 ∈ [𝑚] and 𝑈 ∈ U . Therefore, by Lemma 2.7, we have

𝜋F (𝑧) ≤
(
𝑧𝑚𝑑 + 𝑛

𝑛

)
. �

Solving the inequality
(𝑧𝑚𝑑+𝑛

𝑛

)
< 2𝑧 , Lemma 2.8 shows that an algebraic graph of complexity

(𝑛, 𝑑, 𝑚) has VC-dimension at most 𝑛 log(𝑛𝑑𝑚). Also, the VC-dimension of such graphs cannot be
bounded by a function of n alone: every graph is an algebraic graph of complexity (1, 𝑑, 1) and (1, 1, 𝑚)
for some positive integers d and m. However, Lemma 2.8 also tells us that the family of algebraic graphs
of complexity (𝑛, 𝑑, 𝑚) has weak-VC-dimension at most n.

Let 𝛿 > 0. Say that the family F of subsets of the base set X is 𝛿-separated if |𝐴Δ𝐵 | ≥ 𝛿 |𝑋 | holds for
any two distinct 𝐴, 𝐵 ∈ F . The following packing lemma is due to Haussler [29]. While it is originally
stated for families of bounded VC-dimension, the same proof implies the following result as well.

Lemma 2.9. Let n be a positive integer and 𝑐 > 0; then there exists 𝑐′ = 𝑐′(𝑐, 𝑛) such that the following
holds. Let F be a 𝛿-separated family of weak-VC-dimension (𝑐, 𝑛). Then |F | ≤ 𝑐′(1/𝛿)𝑛.

Next, we show that Lemma 2.8 and Lemma 2.9 can be combined to prove that if G is a graph of
bounded weak-VC-dimension whose density is not too close to 1, then G contains two large subsets
with few edges between them. This lemma is inspired by Theorem 1.3 in the paper of Fox, Pach and
Suk [27], which is a regularity-type result for hypergraphs of bounded VC-dimension. Later, we will
also use this theorem; see Lemma 4.1 for the precise statement.

Lemma 2.10. Let n be a positive integer and 𝑐 > 0; then there exists 𝑐0 = 𝑐0 (𝑐, 𝑛) > 0 such that the
following holds. Let 𝛼, 𝛽 > 0, and let G be a graph of weak-VC-dimension (𝑐, 𝑛) on N vertices such that
𝑑 (𝐺) ≤ 1 − 𝛼. Then G contains two disjoint sets A and B such that |𝐴| ≥ 𝛼

4 𝑁 , |𝐵 | ≥ 𝑐0𝛼(𝛼𝛽)𝑛𝑁 , and
every vertex in B has at most 𝛽 |𝐴| neighbors in A.

Proof. Let 𝑈 ⊂ 𝑉 (𝐺) be the set of vertices v such that |𝑁 (𝑣) | ≤ (1 − 𝛼/2)𝑁 . Then

(1 − 𝛼)
(
𝑁

2

)
≥ |𝐸 (𝐺) | ≥ (𝑁 − |𝑈 |)

2

(
1 − 𝛼

2

)
𝑁,

from which we get

|𝑈 | > 𝛼

2
𝑁.

Let 𝛾 = 𝛼𝛽/4, and let 𝑍 ⊂ 𝑈 be maximal such that the family {𝑁 (𝑣) : 𝑣 ∈ 𝑍} is 𝛾 separated. Then
by Lemma 2.9, we have |𝑍 | ≤ 𝑐′(1/𝛾)𝑛, where 𝑐′ = 𝑐′(𝑐, 𝑛) depends only on the parameters c and n.
By the maximality of Z, for every 𝑣 ∈ 𝑈, there exists 𝑧 ∈ 𝑍 such that |𝑁 (𝑣)Δ𝑁 (𝑧) | ≤ 𝛾𝑁 . Hence, we
can find 𝑧0 ∈ 𝑍 such that the set B is formed by the vertices v such that |𝑁 (𝑣)Δ𝑁 (𝑧0) | ≤ 𝛾𝑁 satisfies

|𝐵 | ≥ |𝑈 |
|𝑍 | ≥

𝛼𝛾𝑛

2𝑐′
𝑁.

By deleting some elements of B, we can assume that |𝐵 | ≤ 𝛼
4 and that |𝐵 | still satisfies the previous

inequality. Set 𝐴 = 𝑉 (𝐺) \ (𝐵 ∪ 𝑁 (𝑧0)); then we show that A and B suffice.
Indeed,

|𝐴| ≥ 𝑁 − |𝐵 | − |𝑁 (𝑧0) | ≥ 𝑁 − 𝛼

4
𝑁 −

(
1 − 𝛼

2

)
𝑁 ≥ 𝛼

4
𝑁.

Also, every 𝑣 ∈ 𝐵 satisfies |𝑁 (𝑣)Δ𝑁 (𝑧0) | ≤ 𝛾𝑁 , and 𝑧0 has no neighbor in A, so |𝑁 (𝑣) ∩ 𝐴| ≤ 𝛾𝑁 ≤
𝛽 |𝐴|. �
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3. A Ramsey-type result for algebraic graphs

In this section, we prove Theorems 1.1 and 1.2. If G is a directed graph and (𝐴, 𝐵) is a pair of disjoint
subsets of 𝑉 (𝐺), say that (𝐴, 𝐵) is well-directed if either every edge of G between A and B goes from
A to B, or every edge between A and B goes from B to A. We show that if G is an algebraic digraph
defined by a single polynomial and A and B are two sets of vertices such that [𝐺] has few edges between
A and B, then we can find a large subset 𝐴′ ⊂ 𝐴 and 𝐵′ ⊂ 𝐵 such that (𝐴′, 𝐵′) is well-directed. This is
the consequence of the fact that G contains no member of M(2, 𝑠) for some constant s. For simplicity,
write M−(𝑠) and M+(𝑠) instead of M(2, 𝑠, 1) and M(2, 𝑠, 2), respectively. Note that each member of
M−(𝑠) (and M+(𝑠)) is composed of s directed edges (𝑢1, 𝑣1), . . . , (𝑢𝑠 , 𝑣𝑠) such that (𝑢𝑖 , 𝑣 𝑗 ) is not an
edge for 𝑖 > 𝑗 ( 𝑗 > 𝑖, respectively).
Lemma 3.1. Let 𝑛, 𝑑 be positive integers. Then there exist 𝑐1 = 𝑐1(𝑛, 𝑑) > 0 and 𝑐2 = 𝑐2 (𝑛, 𝑑) > 0
such that the following holds. Let G be a strongly algebraic digraph of complexity (𝑛, 𝑑) on N vertices
such that 𝑑 ([𝐺]) ≤ 1 − 𝛼. Then 𝑉 (𝐺) contains two disjoint subsets A and B such that |𝐴| ≥ 𝑐1𝛼𝑁 ,
|𝐵 | ≥ 𝑐2𝛼

𝑛+1𝑁 , and (𝐴, 𝐵) is well-directed.
Proof. Let 𝑠 =

(𝑛+2𝑑
𝑛

)
+ 1 and 𝛽 = 1

6·32𝑠 . Note that [𝐺] is a strongly algebraic graph of complexity
(𝑛, 2𝑑). Indeed, if G is defined by the polynomial 𝑓 : (F𝑛)2 → F of degree at most d, then the polynomial
𝑓 ′(x, y) = 𝑓 (x, y) · 𝑓 (y, x) defines [𝐺] and has degree at most 2𝑑. Therefore, by Lemma 2.8, [𝐺] has
weak-VC-dimension (𝑐, 𝑛) for some 𝑐 = 𝑐(𝑛, 𝑑). Hence, by Lemma 2.10, there exist two subsets 𝐴0 and
𝐵0 of 𝑉 (𝐺) such that |𝐴0 | ≥ 𝛼

4 𝑁 , |𝐵0 | ≥ 𝑐0𝛼(𝛼𝛽)𝑛𝑁 = 𝑐′2𝛼
𝑛+1𝑁 (where 𝑐′2 = 𝑐′2 (𝑛, 𝑑) depends only

on n and d), and in [𝐺], every vertex in 𝐵0 has at most 𝛽 |𝐴0 | neighbours in 𝐴0. We show that 𝑐1 = 1
4·32𝑠

and 𝑐2 = 𝑐′2/2 suffices.
We define the sequence of sets 𝐴0 ⊃ 𝐴1 ⊃ . . . and sequence of edges 𝑓1, 𝑓2, · · · ∈ 𝐸 (𝐺) as follows.

For 𝑖 = 1, 2, . . . ,
◦ |𝐴𝑖 | ≥ |𝐴0 |3−𝑖 .
◦ 𝑓𝑖 = (𝑢𝑖 , 𝑣𝑖) has one vertex in 𝐴𝑖−1 and one vertex in B.
◦ If 𝑣𝑖 ∈ 𝐵0, then 𝑣𝑖 has no in-neighbor in 𝐴𝑖 , and if 𝑢𝑖 ∈ 𝐵0, then 𝑢𝑖 has no out-neighbor in 𝐴𝑖 .
Suppose that 𝐴𝑖−1 is already defined for some 1 ≤ 𝑖 < 2𝑠. Consider two cases. First, consider the
case that for every 𝑏 ∈ 𝐵0, either 𝑁+(𝑏) ∩ 𝐴𝑖−1 = ∅ or 𝑁−(𝑏) ∩ 𝐴𝑖−1 = ∅. Then there exists 𝐵 ⊂ 𝐵0
such that |𝐵 | ≥ |𝐵0 |/2 and either every 𝑏 ∈ 𝐵 satisfies 𝑁+(𝑏) ∩ 𝐴𝑖−1 = ∅, or every 𝑏 ∈ 𝐵 satisfies
𝑁−(𝑏) ∩ 𝐴𝑖−1 = ∅. Set 𝐴 = 𝐴𝑖−1; then (𝐴, 𝐵) is well-directed. As |𝐴𝑖−1 | > |𝐴0 |3−2𝑠 ≥ 𝑐1𝛼𝑁 and
|𝐵 | ≥ 𝑐2𝑁 , the sets A and B satisfy our conditions. In this case, we stop.

Now consider the case when there exists 𝑏 ∈ 𝐵0 such that both 𝑁+(𝑏) ∩ 𝐴𝑖−1 and 𝑁−(𝑏) ∩ 𝐴𝑖−1 are
nonempty. If 𝑎 ∈ 𝑁+(𝑏) ∩ 𝑁−(𝑏) ∩ 𝐴𝑖−1, then {𝑎, 𝑏} ∈ 𝐸 ([𝐺]), so |𝑁+(𝑏) ∩ 𝑁−(𝑏) ∩ 𝐴𝑖−1 | ≤ 𝛽 |𝐴0 | <
1
6 |𝐴𝑖−1 |. But then, either |𝑁+(𝑏) ∩ 𝐴𝑖−1 | ≤ 2

3 |𝐴𝑖−1 | or |𝑁−(𝑏) ∩ 𝐴𝑖−1 | ≤ 2
3 |𝐴𝑖−1 |. In the first case, set

𝐴𝑖 = 𝐴𝑖−1 \ 𝑁+(𝑏) and 𝑓𝑖 = (𝑏, 𝑎) for some 𝑎 ∈ 𝑁+(𝑏); in the second case, 𝐴𝑖 = 𝐴𝑖−1 \ 𝑁−(𝑏) and
𝑓𝑖 = (𝑎, 𝑏) for some 𝑎 ∈ 𝑁−(𝑏). Then 𝐴𝑖 and 𝑓𝑖 satisfy the desired properties.

Note that we must have stopped for some 𝑖 ≤ 2𝑠. Indeed, either at least half of the edges 𝑓1, . . . , 𝑓𝑖
go from 𝐴0 to 𝐵0, or at least half of the edges go from 𝐵0 to 𝐴0. In the first case, G contains a member
of M−(�𝑖/2�); in the second case, G contains a member of M+(�𝑖/2�). �

The following theorem will immediately imply Theorem 1.2, which in turn implies Theorem 1.1.
Theorem 3.2. There exists 𝑐 > 0 such that the following holds. Let 𝑛, 𝑑, 𝑚, 𝑁 be positive integers, F be a
field and 0 < 𝛽 < 1. Let 𝑓1, . . . , 𝑓𝑚 : (F𝑛)2 → F be polynomials of degree at most d, and let𝑉 ⊂ F𝑛 such
that |𝑉 | = 𝑁 . For 𝐼 ⊂ [𝑚], let 𝐺 𝐼 be the digraph defined on V such that (x, y) is an edge if 𝑓𝑖 (x, y) ≠ 0
for 𝑖 ∈ 𝐼 and 𝑓𝑖 (x, y) = 0 for 𝑖 ∉ 𝐼. If N is sufficiently large, then either 𝐺 ∅ contains a clique of size at
least 𝑁1−𝛽 or there exists 𝐼 ⊂ [𝑚], 𝐼 ≠ ∅ such that 𝐺 𝐼 contains a clique of size at least 1

4𝑚𝑁𝛽/𝛾 , where

𝛾 = 𝑐𝑛𝑚 min
{
𝑑,

𝑛 log 𝑑

log 𝑛

}
.
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Proof. For 𝑖 = 1, . . . , 𝑚, let 𝐺𝑖 be the algebraic digraph on V defined by 𝑓𝑖 . Then 𝐺 𝐼 = (
⋂

𝑖∈𝐼 𝐺𝑖) ∩
(
⋂

𝑖∈[𝑚]\𝐼 𝐺𝑖). Here, 𝐺𝑖 is the digraph in which every directed edge is included that is not present in 𝐺𝑖 .
Let 0 < 𝛼 < 1, 𝑠0,1 = · · · = 𝑠0,𝑚 =

(𝑛+𝑑
𝑑

)
+ 1 and 𝑈0 = 𝑉 . In what comes, we define the nested

sequence of sets 𝑈0 ⊃ 𝑈1 ⊃ . . . and sequence of positive integers 𝑠ℓ,𝑖 for ℓ = 0, 1, . . . and 𝑖 ∈ [𝑚] such
that 𝐺𝑖 [𝑈ℓ ] contains no member of M+(𝑠ℓ,𝑖). By Lemma 2.3, this is satisfied for ℓ = 0. Suppose that
𝑈ℓ and 𝑠ℓ,𝑖 has been already defined for some ℓ ≥ 0.

Let 𝐼 ⊂ [𝑚] be the set of indices i such that 𝑠ℓ,𝑖 > 1. Consider three cases.

Case 1. 𝐼 = ∅.
In this case, we stop and set𝑈 = 𝑈ℓ . Note that 𝐺𝑖 [𝑈] is empty for 𝑖 = 1, . . . , 𝑚, so 𝐺 ∅ [𝑈] is a clique.

Case 2. For every 𝑖 ∈ 𝐼, we have 𝑑 ([𝐺𝑖] [𝑈ℓ]) ≥ 1 − 𝛼.
Let 𝐺∗

𝐼 =
⋂

𝑖∈𝐼 [𝐺𝑖]; then 𝑑 (𝐺∗
𝐼 [𝑈ℓ]) ≥ 1 − 𝛼 |𝐼 | ≥ 1 − 𝛼𝑚. Therefore, by Lemma 2.1, 𝐺∗

𝐼 [𝑈ℓ ]
contains a clique U of size at least 1

4𝛼𝑚 . Note that 𝐺𝑖 [𝑈] is a clique for every 𝑖 ∈ 𝐼, and 𝐺𝑖 [𝑈] is an
independent set for every 𝑖 ∈ [𝑚] \ 𝐼, so 𝐺 𝐼 [𝑈] is a clique. In this case, we stop as well.
Case 3. There exists 𝑖 ∈ 𝐼 such that 𝑑 ([𝐺𝑖] [𝑈ℓ]) < 1 − 𝛼.

Then by Lemma 3.1, there exist two disjoint sets A and B in 𝑈ℓ such that |𝐴| ≥ 𝑐1𝛼 |𝑈ℓ |, |𝐵 | ≥
𝑐2𝛼

𝑛+1 |𝑈ℓ | and (𝐴, 𝐵) is well-directed in 𝐺𝑖 . Let 𝑡 = max{1, �𝑠ℓ,𝑖/𝑛1/2�} and 𝑢 = 𝑠ℓ,𝑖 − 𝑡. Note that if
𝐺𝑖 [𝐴] contains a member of M+(𝑢) and 𝐺𝑖 [𝐵] contains a member of M+(𝑡), then 𝐺𝑖 [𝑈ℓ] contains
a member of M+(𝑠𝑙,𝑖). Indeed, suppose that the directed edges (𝑥1, 𝑦1), . . . , (𝑥𝑢 , 𝑦𝑢) form a copy of a
member of M+(𝑢) in 𝐺𝑖 [𝐴] and (𝑥 ′1, 𝑦

′
1), . . . , (𝑥

′
𝑡 , 𝑦

′
𝑡 ) form a copy of a member of M+(𝑡) in 𝐺𝑖 [𝐵].

If every edge between A and B goes from A to B, then setting 𝑥 ′𝑖+𝑡 = 𝑥𝑖 and 𝑦′𝑖+𝑡 = 𝑦𝑖 for 𝑖 ∈ [𝑢],
the edges (𝑥 ′1, 𝑦

′
1), . . . , (𝑥

′
𝑢+𝑡 , 𝑦

′
𝑢+𝑡 ) form a copy of a member of M+(𝑠𝑙,𝑖). On the other hand, if every

edge between A and B goes from B to A, then setting 𝑥𝑖+𝑢 = 𝑥 ′𝑖 and 𝑦𝑖+𝑢 = 𝑦′𝑖 for 𝑖 ∈ [𝑡], the edges
(𝑥1, 𝑦1), . . . , (𝑥𝑢+𝑡 , 𝑦𝑢+𝑡 ) form a copy of a member of M+(𝑠𝑙,𝑖).

Therefore, either 𝐺𝑖 [𝐴] contains no member of M+(𝑢), in which case set 𝑈ℓ+1 = 𝐴 and 𝑠ℓ+1,𝑖 = 𝑢
and say that ℓ is a small-jump, or 𝐺𝑖 [𝐵] contains no member of M(𝑡), in which case set 𝑈ℓ+1 = 𝐵,
𝑠ℓ+1,𝑖 = 𝑡 and say that ℓ is a big-jump. For 𝑗 ∈ [𝑚] \ {𝑖}, set 𝑠ℓ+1, 𝑗 = 𝑠ℓ, 𝑗 .

Let 𝑠ℓ = 𝑠ℓ,1 . . . 𝑠ℓ,𝑚 · 𝑛−𝑧/2, where z is the number of 1s among 𝑠ℓ,1, . . . , 𝑠ℓ,𝑚. Let L be the index ℓ
at which we stop, let a be the number of big jumps, and let b be the number of small jumps. Note that
if ℓ is a small jump, then 𝑠ℓ+1 ≤ 𝑠ℓ (1 − 𝑛−1/2/2) and |𝑈ℓ+1 | ≥ 𝑐1𝛼 |𝑈ℓ |. Also, if ℓ is a big jump, then
𝑠ℓ+1 ≤ 𝑠ℓ𝑛

−1/2 and |𝑈ℓ+1 | ≥ 𝑐2𝛼
𝑛+1 |𝑈ℓ |. Therefore,

𝑠𝐿 ≤ 𝑠0𝑛
−𝑎/2(1 − 𝑛−1/2/2)𝑏 .

As 𝑠𝐿 ≥ 𝑛−𝑚/2 and 𝑠0 = (
(𝑛+𝑑

𝑑

)
+ 1)𝑚 ≤ min{𝑛𝑑𝑚, 𝑑𝑛𝑚}, we get

𝑎 ≤ 2 log(𝑠0/𝑠𝐿)
log 𝑛

≤ 4𝑚 min
{
𝑑,

𝑛 log 𝑑

log 𝑛

}

and

𝑏 ≤ 4𝑛1/2 log(𝑠0/𝑠𝐿) ≤ 8𝑛1/2𝑚 min{𝑑 log 𝑛, 𝑛 log 𝑑}.

Also, we get

|𝑈𝐿 | ≥ 𝑁 (𝑐1𝛼)𝑏 (𝑐2𝛼
𝑛+1)𝑎 > 𝑐3𝛼

(𝑛+1)𝑎+𝑏𝑁,

where 𝑐3 = 𝑐3 (𝑛, 𝑚, 𝑑) > 0. Choosing 𝛼 = 𝑁−𝛽/𝛾′ , where 𝛾′ = 32𝑚𝑛 min{𝑑, 𝑛 log 𝑑/log 𝑛}, the left-
hand side is at least 𝑁1−𝛽 for sufficiently large N. Therefore, if we stopped in Case 1, then we found a
set U such that 𝐺 ∅ [𝑈] is a clique of size |𝑈𝐿 | ≥ 𝑁1−𝛽 . On the other hand, if we stopped at Case 2, then
we found 𝐼 ⊂ [𝑚], 𝐼 ≠ [𝑚] and a set U such that 𝐺 𝐼 [𝑈] is a clique of size at least 1

4𝑚𝛼 ≥ 1
4𝑚𝑁𝛽/𝛾′ .

This finishes the proof. �
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Proof of Theorem 1.2. Consider an algebraic colouring of 𝐾𝑁 of complexity (𝑛, 𝑑, 𝑚) with t colours.
Let the polynomials 𝑓1, . . . , 𝑓𝑚 define the colouring of 𝐾𝑁 . Apply Theorem 3.2 with 𝛽 = 1/2. Then
there exists 𝐼 ⊂ [𝑚] such that 𝐺 𝐼 contains a clique of size at least 1

4𝑚𝑁1/2𝛾 , where

𝛾 = 𝑐𝑛𝑚 min
{
𝑑,

𝑛 log 𝑑

log 𝑛

}
.

Note that for every 𝐼 ⊂ [𝑚], the graph 𝐺 𝐼 is monochromatic; hence, 𝐾𝑁 contains a monochromatic
clique of size at least 1

4𝑚𝑁1/2𝛾 . �

4. Regularity lemma for algebraic hypergraphs

In this section, we prove Theorem 1.5. We remark that in the rest of the paper, we shall only work
with undirected hypergraphs. We prepare the proof of Theorem 1.5 with several lemmas. The following
regularity lemma is proved in [27] for hypergraphs of bounded VC-dimension; however, the same proof
works almost word for word for hypergraphs of bounded weak-VC-dimension as well.

Lemma 4.1. Let r be a positive integer and 𝑐, 𝑛 > 0. Then there exists 𝑐′ = 𝑐′(𝑟, 𝑐, 𝑛) > 0 such that
the following holds. Let 0 < 𝜖 < 1/4. Let H be an r-uniform hypergraph of weak-VC-dimension (𝑐, 𝑛).
Then 𝑉 (H) has an equitable partition 𝑉1, . . . , 𝑉𝐾 with 8/𝜖 < 𝐾 < 𝑐′(1/𝜖)2𝑛+1 parts such that all but
at most 𝜖-fraction of the r-tuples of parts are 𝜖-homogeneous.

Let us restate the definition ofM(𝑟, 𝑠) for undirected hypergraphs. The hypergraphM is a member of
M(𝑟, 𝑠) if the vertex set of M is the union of (not necessarily disjoint) (𝑟 − 1)-element sets 𝑍1, . . . , 𝑍𝑠

and s vertices 𝑧1, . . . , 𝑧𝑠 , 𝑍𝑖 ∪ {𝑧𝑖} is an edge of M for 𝑖 ∈ [𝑠], and 𝑍𝑖 ∪ {𝑧 𝑗 } is not an edge for
1 ≤ 𝑖 < 𝑗 ≤ 𝑠. The rest of the r-tuples can be either edges or non-edges. If 𝑍1, . . . , 𝑍𝑠 and 𝑧1, . . . , 𝑧𝑠

satisfy these properties, say that they define a member of M(𝑟, 𝑠).
In what follows, we show that if we also assume that H contains no member of M(𝑟, 𝑠), then those

r-tuples of parts that have density at most 𝜖 can be made empty by removing a few vertices. We first need
the following technical lemma, which can be viewed as a variant of Claim 2.5 for sparse hypergraphs.

Lemma 4.2. Let G be a nonempty r-partite r-uniform hypergraph with vertex classes 𝑊1, . . . ,𝑊𝑟 such
that 𝑑 (𝑊1, . . . ,𝑊𝑟 ) ≤ 𝜖 . Then there exist ℓ ∈ [𝑟] and 𝑋 ∈

⋃
𝑖∈[𝑟 ]\{ℓ } 𝑊𝑖 such that |𝑋 | = 𝑟 − 1 and

1 ≤ |𝑁 (𝑋) | ≤ 𝜖1/𝑟 |𝑊ℓ |.

Proof. We proceed by induction on r. In case 𝑟 = 1, the statement is trivial, so assume 𝑟 ≥ 2.
Let 𝑈 ⊂ 𝑉 (G) be the set of vertices with positive degree, and let 𝑈𝑖 = 𝑊𝑖 ∩ 𝑈 for 𝑖 ∈ [𝑟]. Then

|𝑈1 | · · · |𝑈𝑟 | ≥ 𝜖 |𝑊1 | · · · |𝑊𝑟 |, so there exists 𝑗 ∈ [𝑟] such that |𝑈 𝑗 | ≥ 𝜖1/𝑟 |𝑊 𝑗 |. Without loss of
generality, assume that 𝑗 = 𝑟 . Then by simple averaging, there exists 𝑥 ∈ 𝑈𝑟 such that

|𝑁 (𝑥) | ≤ |𝐸 (G) |
|𝑈𝑟 |

≤ 𝜖 (𝑟−1)/𝑟 |𝑊1 | . . . |𝑊𝑟−1 |.

Let G ′ be the (𝑟 −1)-partite (𝑟 −1)-uniform hypergraph with vertex classes 𝑊1, . . . ,𝑊𝑟−1 formed by
the neighbourhood of x. By our induction hypothesis, there exist ℓ ∈ [𝑟 − 1] and 𝑋 ′ ∈

⋃
𝑖∈[𝑟−1]\{ℓ } 𝑊𝑖

such that |𝑋 ′ | = 𝑟 − 2 and 1 ≤ |𝑁 (𝑋 ′) | ≤ 𝜖1/𝑟 |𝑊ℓ |. But then ℓ and 𝑋 = 𝑋 ′ ∪ {𝑥} satisfy our desired
properties. �

The next lemma will be the heart of the proof of Theorem 1.5. Before we state it, let us introduce
a definition. Let H be an r-uniform hypergraph, and let (𝑉1, . . . , 𝑉𝐾 ) be disjoint subsets of its vertex
set. Suppose that 𝑍1, . . . , 𝑍𝑠 ∈ 𝑉 (H) (𝑟−1) and 𝑧1, . . . , 𝑧𝑠 ∈ 𝑉 (H) define a member of M(𝑟, 𝑠) in H. If
𝑧1, . . . , 𝑧𝑠 belong to the same part𝑉 𝑗 , and no two vertices of 𝑍𝑖 ∪{𝑧𝑖} belong to the same part for 𝑖 ∈ [𝑠],
then say that

⋃𝑠
𝑖=1 𝑍𝑖 ∪ {𝑧1, . . . , 𝑧𝑠} induces a focused copy of a member of M(𝑟, 𝑠) and 𝑍1, . . . , 𝑍𝑠 and

𝑧1, . . . , 𝑧𝑠 defines a focused member of M(𝑟, 𝑠).
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Lemma 4.3. Let 𝑟, 𝑠 be positive integers. Then there exists 𝑐 = 𝑐(𝑟, 𝑠) > 0 such that the following holds.
Let 𝜖0 > 0, let H be an r-uniform hypergraph, and let 𝑈1, . . . ,𝑈𝐿 be disjoint subsets of 𝑉 (H). Suppose
that H contains no focused copy of a member of M(𝑟, 𝑠). Let G be an r-uniform hypergraph on [𝐿] such
that if {𝑖1, . . . , 𝑖𝑟 } is an edge of G; then 𝑑H (𝑈𝑖1 , . . . ,𝑈𝑖𝑟 ) ≤ 𝜖0. Then for 𝑖 ∈ [𝐿], there exists 𝑉𝑖 ⊂ 𝑈𝑖

such that |𝑉𝑖 | ≥ (1 − 𝑐𝜖1/𝑟 !
0 ) |𝑈𝑖 |, and (𝑉𝑖1 , . . . , 𝑉𝑖𝑟 ) is empty for every {𝑖1, . . . , 𝑖𝑟 } ∈ 𝐸 (G).

Proof. We prove this by induction on r. We proceed with the base case 𝑟 = 2 and the general case 𝑟 ≥ 3
simultaneously. Let 𝑇 := ∅, and let 𝜖1 = 𝜖1/𝑟

0 . Let 𝑋 ∈ [𝐿] (𝑟−1) and 𝑘 ∈ [𝐿] \ 𝑋 . If 𝑋 ∪ {𝑘} ∉ 𝐸 (G),
set 𝐹𝑋,𝑘 = ∅. Otherwise, let 𝐹𝑋,𝑘 be the (𝑟 − 1)-partite (𝑟 − 1)-uniform hypergraph on

⋃
𝑥∈𝑋 𝑈𝑥

whose edges are the (𝑟 − 1)-tuples 𝑍 ∈ 𝑉 (H) (𝑟−1) such that Z has one vertex in 𝑈𝑥 for 𝑥 ∈ 𝑋 and
|𝑁H (𝑍) ∩𝑈𝑘 | ≥ 𝜖1 |𝑈𝑘 |. As 𝑑H({𝑈𝑥}𝑥∈𝑋 ,𝑈𝑘 ) ≤ 𝜖0, we have

𝑑𝐹𝑋,𝑘 ({𝑈𝑥}𝑥∈𝑋 ) ≤
𝜖0
𝜖1

= 𝜖𝑟−1
1 . (4.1)

Also, define 𝑇𝑘 ⊂ 𝑈𝑘 as the union of the sets 𝑈𝑘 ∩ 𝑁H (𝑍 ′), where 𝑍 ′ ∈ (𝑉 (H) \𝑈𝑘 ) (𝑟−1) has all its
vertices in different parts and |𝑈𝑘 ∩ 𝑁H (𝑍 ′) | ≤ 𝜖1 |𝑈𝑘 |.

Claim 4.4.

|𝑇𝑘 | ≤ 𝑠𝜖1 |𝑈𝑘 |.

Proof. Suppose that |𝑇𝑘 | > 𝑠𝜖1 |𝑈𝑘 |. Then we can find greedily 𝑍1, . . . , 𝑍𝑠 ∈ (𝑉 (H) \ 𝑈𝑘 ) (𝑟−1) and
𝑧1, . . . , 𝑧𝑠 ∈ 𝑇𝑘 such that 𝑧𝑖 ∈ 𝑁 (𝑍𝑖) for 𝑖 ∈ [𝑠] and 𝑧𝑖 ∉ 𝑁 (𝑍 𝑗 ) for 𝑖 > 𝑗 . But then 𝑍1, . . . , 𝑍𝑠 and
𝑧1 . . . , 𝑧𝑠 induces a focused copy of a member of M(𝑟, 𝑠), a contradiction. �

For 𝑘 ∈ [𝐿], let 𝑈 ′
𝑘 = 𝑈𝑘 \ 𝑇𝑘 . Note that if 𝑋 ∪ {𝑘} ∈ 𝐸 (G) and 𝑍 ∪ {𝑧} is an edge of H for some Z

having one vertex in every 𝑈 ′
𝑥 , 𝑥 ∈ 𝑋 and 𝑧 ∈ 𝑈 ′

𝑘 , then 𝑍 ∈ 𝐸 (𝐹𝑋,𝑘 ). Remove every edge Z from 𝐹𝑋,𝑘

that has no neighbor in 𝑈 ′
𝑘 . Let 𝐹𝑋 =

⋃
𝑘∈[𝐿 ]\𝑋 𝐹𝑋,𝑘 .

Now let us consider the base case 𝑟 = 2. Then every 𝐹𝑋,𝑘 is a just a subset of 𝑈𝑋 , which by (4.1)
has size at most 𝜖1 |𝑈𝑋 |. This implies that |𝐹𝑋 | ≤ 𝑠𝜖1 |𝑈𝑋 | for 𝑋 ∈ [𝐿]. Indeed, otherwise, by a simple
greedy argument, we can find 𝑧1, . . . , 𝑧𝑠 ∈ 𝐹𝑋 and 𝑘1, . . . , 𝑘𝑠 such that 𝑧𝑖 ∈ 𝐹𝑋,𝑘𝑖 and 𝑧𝑖 ∉ 𝐹𝑋,𝑘 𝑗 for
𝑖 > 𝑗 . Choose an arbitrary vertex 𝑤𝑖 ∈ 𝑁 (𝑧𝑖) ∩𝑈 ′

𝑘𝑖
. Then 𝑤1, . . . , 𝑤𝑠 and 𝑧1, . . . , 𝑧𝑛 define a focused

copy of a member of M(2, 𝑠), a contradiction. For 𝑖 ∈ [𝐿], set 𝑉𝑖 = 𝑈 ′
𝑖 \ 𝐹𝑖 . Then |𝑉𝑖 | ≥ |𝑈𝑖 | (1− 2𝑠𝜖1),

and there are no edges between 𝑉𝑖 and 𝑉 𝑗 for {𝑖, 𝑗} ∈ 𝐸 (G). Therefore, choosing 𝑐(2, 𝑠) = 2𝑠 proves
this case. Now consider the general case 𝑟 ≥ 3.

Claim 4.5.

𝑑𝐹𝑋 ({𝑈𝑥}𝑥∈𝑋 ) < 3𝑟𝑠𝜖1.

Proof. Let 𝐹 := 𝐹𝑋 , let 𝑊𝑥 := 𝑈 ′
𝑥 for 𝑥 ∈ 𝑋 . In what follows, step by step, we define |𝑋 | sequences

of pairs (𝑍𝑖,𝑥 , 𝑧𝑖,𝑥) ∈ (
⋃

𝑦∈𝑋\{𝑥 }𝑈
′
𝑦) (𝑟−1) ×𝑈 ′

𝑥 for 𝑥 ∈ 𝑋 and 𝑖 = 0, 1, . . . , while removing elements
from 𝑊𝑥 and edges from F. Suppose that 𝑗𝑥 is the largest index i for which (𝑍𝑖,𝑥 , 𝑧𝑖,𝑥) is already
defined. If ({𝑊𝑥}𝑥∈𝑋 ) spans no edge in F, then stop. Otherwise, there exists 𝑘 ∈ [𝐿] such that 𝐹𝑋,𝑘

is not empty on ({𝑊𝑥}𝑥∈𝑋 ). By applying Lemma 4.2 to the (𝑟 − 1)-tuple ({𝑈𝑥}𝑥∈𝑋 ) and hypergraph
𝐹𝑋,𝑘 ∩ 𝐹 (which by (4.1) has density at most 𝜖𝑟−1

1 ), there exist 𝑥 ∈ 𝑋 and 𝑍 ∈
⋃

𝑦∈𝑋\{𝑥 } 𝑊𝑦 such
that 1 ≤ |𝑁𝐹𝑋,𝑘∩𝐹 (𝑍) ∩ 𝑊𝑥 | ≤ 𝜖1 |𝑈𝑥 |. Let 𝑧 𝑗𝑥+1,𝑥 be an arbitrary element of 𝑁𝐹𝑋,𝑘∩𝐹 (𝑍) ∩ 𝑊𝑥 .
Furthermore, remove the elements of 𝑁𝐹𝑋,𝑘∩𝐹 (𝑍) from 𝑊𝑥 , and remove the edges of 𝐹𝑋,𝑘 from F.
Also, let 𝑍 𝑗𝑥+1,𝑥 := 𝑍 and define 𝑘 𝑗𝑥+1,𝑥 := 𝑘 .

After we stop, let 𝑠𝑥 be the largest index i such that (𝑍𝑖,𝑥 , 𝑧𝑖,𝑥) is defined. Note that for every 𝑥 ∈ 𝑋 and
𝑖 ≤ 𝑠𝑥 , 𝑍1,𝑥 , . . . , 𝑍𝑖,𝑥 and 𝑧1,𝑥 , . . . , 𝑧𝑖,𝑥 define a focused copy of a member of M(𝑟−1, 𝑖). Let 𝑢𝑖,𝑥 be an
arbitrary element of 𝑈 ′

𝑘𝑖,𝑥
∩ 𝑁H (𝑍𝑖,𝑥 ∪ {𝑧𝑖,𝑥}). Then 𝑍1,𝑥 ∪ {𝑢1,𝑥}, . . . , 𝑍𝑖,𝑥 ∪ {𝑢𝑖,𝑥} and 𝑧1,𝑥 , . . . , 𝑧𝑖,𝑥
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define a focused copy of a member of M(𝑟, 𝑖) in H. Therefore, we have 𝑠𝑥 < 𝑠. Also, at each step, when
we modify 𝑊𝑥 , we remove at most 𝜖1 |𝑈𝑥 | elements; so after we stop, we have |𝑊𝑥 | ≥ |𝑈 ′

𝑥 | − 𝑠𝑥𝜖1 |𝑈𝑥 |.
Let us bound 𝑑𝐹𝑋 ({𝑈𝑥}𝑥∈𝑋 ). Recall that 𝑑𝐹𝑋,𝑘𝑖,𝑥

({𝑈𝑥}𝑥∈𝑋 ) ≤ 𝜖𝑟−1
1 by (4.1). Let 𝐹∗ =⋃

𝑥∈𝑋

⋃
𝑖∈[𝑠𝑥 ] 𝐹𝑋,𝑘𝑖,𝑥 . Then

𝑑𝐹 ∗ ({𝑈𝑥}𝑥∈𝑋 ) <
∑
𝑥∈𝑋

∑
𝑖∈[𝑠𝑥 ]

𝑑𝐹𝑋,𝑘𝑖,𝑥
({𝑈𝑥}𝑥∈𝑋 ) < 𝑠(𝑟 − 1)𝜖𝑟−1

1 .

If 𝑘 ≠ 𝑘𝑖,𝑥 for every 𝑥 ∈ 𝑋 and 𝑖 ∈ [𝑠𝑥], then every edge of 𝐹𝑘,𝑋 touches 𝑈𝑥 \𝑊𝑥 for some 𝑥 ∈ 𝑋 . Note
that |𝑈𝑥 \𝑊𝑥 | = |𝑈𝑥 \𝑈 ′

𝑥 | + |𝑈 ′
𝑥 \𝑊𝑥 | ≤ 2𝑠𝜖1 |𝑈𝑥 |. Hence |𝑈𝑥\𝑊𝑥 |

|𝑈𝑥 | < 2𝑠𝜖1. Therefore, we have

𝑑𝐹𝑋\𝐹 ∗ ({𝑈𝑥}𝑥∈𝑋 ) < 2(𝑟 − 1)𝑠𝜖1.

Finally, by our construction, ({𝑊𝑥}𝑥∈𝑋 ) spans no edges. Thus, 𝑑𝐹𝑋 ({𝑈𝑥}𝑥∈𝑋 ) < 3𝑟𝑠𝜖1. �

Since |𝑈 ′
𝑥 | ≥ (1 − 𝑠𝜖1) |𝑈𝑥 |, we can write

∏
𝑥∈𝑋 |𝑈 ′

𝑥 | ≥ (1 − 𝑠𝜖1)𝑟−1 ∏
𝑥∈𝑋 |𝑈𝑥 | ≥ 1

2
∏

𝑥∈𝑋 |𝑈𝑥 |,
assuming 𝑠𝜖1 < 1/10𝑟 . Therefore, from the last claim, we have that 𝑑𝐹𝑋 ({𝑈 ′

𝑥}𝑥∈𝑋 ) ≤ 6𝑟𝑠𝜖1.
Let H′ =

⋃
𝑋 ∈[𝐿 ] (𝑟−1) 𝐹𝑋 . We show that H′ contains no focused copy of a member of M(𝑟 − 1, 𝑠)

with respect to the disjoint sets 𝑈 ′
1, . . . ,𝑈

′
𝐿 . Otherwise, there exist 𝑊1, . . . ,𝑊𝑠 ∈ 𝑉 (H′) (𝑟−2) and

𝑤1, . . . , 𝑤𝑠 ∈ 𝑈 ′
𝑗 for some 𝑗 ∈ [𝐿] defining a focused member of M(𝑟 − 1, 𝑠). Let 𝑍𝑖 = 𝑊𝑖 ∪ {𝑤𝑖}. But

then for 𝑖 ∈ [𝑠], there exist 𝑘𝑖 ∈ [𝐿] and 𝑋𝑖 ∈ [𝐿] (𝑟−1) such that 𝑍𝑖 ∈ 𝐹𝑋𝑖 ,𝑘𝑖 . Picking 𝑧𝑖 ∈ 𝑁H (𝑍𝑖) ∩𝑈 ′
𝑖

arbitrarily, {𝑊𝑖 ∪ {𝑧𝑖}}𝑖∈[𝑠] and {𝑤𝑖}𝑖∈[𝑠] define a focused member of M(𝑟, 𝑠) in H, a contradiction.
But then we can apply our induction hypothesis with the following parameters: the (𝑟 − 1)-uniform

hypergraph H′ instead of H, the disjoint sets 𝑈 ′
1, . . . ,𝑈

′
𝐿 instead of 𝑈1, . . . ,𝑈𝐿 , 6𝑟𝑠𝜖1 instead of 𝜖0 and

the complete (𝑟 − 1)-uniform hypergraph on [𝐿] instead of G. Recalling that |𝑈 ′
𝑖 | ≥ (1 − 𝑠𝜖1) |𝑈𝑖 | and

𝜖1 = 𝜖1/𝑟
0 , we conclude that for 𝑖 ∈ [𝐿], there exists 𝑉𝑖 ⊂ 𝑈 ′

𝑖 such that

|𝑉𝑖 | ≥ (1 − 𝑐(𝑟 − 1, 𝑠) (6𝑟𝑠𝜖1)1/(𝑟−1)!) |𝑈 ′
𝑖 | ≥ (1 − 𝑐(𝑟, 𝑠)𝜖1/𝑟 !

0 ) |𝑈𝑖 |

for some suitable 𝑐(𝑟, 𝑠) > 0, and (𝑉𝑖1 , 𝑉𝑖2 , . . . , 𝑉𝑖𝑟−1) is empty for (𝑖1, . . . , 𝑖𝑟−1) ∈ [𝐿] (𝑟−1) . But note
that then (𝑉𝑖1 , . . . , 𝑉𝑖𝑟 ) is also empty in H if {𝑖1, . . . , 𝑖𝑟 } ∈ 𝐸 (G). This finishes the proof. �

Now everything is set to prove the main theorem of this section.

Proof of Theorem 1.5. Let 𝜖0 > 0, which we shall specify later as a function of 𝜖 . By Lemma 2.8 and
Lemma 4.1, there exists an equitable partition of 𝑉 (H) into L parts 𝑈1, . . . ,𝑈𝐿 such that 8/𝜖0 < 𝐿 <
𝑐′(1/𝜖0)2𝑛+1 and all but at most 𝜖0-fraction of the r-tuples of parts are 𝜖0-homogeneous.

Let 𝑠 =
(𝑛+𝑑

𝑑

)
+ 1; then H contains no member of M(𝑟, 𝑠) by Lemma 2.3. In particular, H contains

no focused copy of a member of M(𝑟, 𝑠) with respect to the partition 𝑈1, . . . ,𝑈𝐿 . Let 𝑐0 = 𝑐(𝑟, 𝑠) be
the constant given by Lemma 4.3. Then for every 𝑖 ∈ [𝐿], there exists 𝑉 ′

𝑖 ⊂ 𝑈𝑖 such that

|𝑉 ′
𝑖 | ≥ (1 − 𝑐0𝜖

1/𝑟 !
0 ) |𝑈𝑖 | ≥ (1 − 𝑐0𝜖

1/𝑟 !
0 )

⌊
𝑁

𝐿

⌋
,

and (𝑉 ′
𝑖1
, . . . , 𝑉 ′

𝑖𝑟
) is empty if 𝑑 (𝑈𝑖1 , . . . ,𝑈𝑖𝑟 ) < 𝜖0. Let K be a minimal positive integer such that

𝑁/𝐾 < min𝑖∈[𝐿 ] |𝑉 ′
𝑖 |; then 𝐾 < 𝐿 + 2𝑐0𝜖

1/𝑟 !
0 𝐿 < 2𝐿. In particular, when we choose 𝜖0, it will satisfy

𝑐0𝜖
1/𝑟 !
0 < 1/2. Let 𝑉1, . . . , 𝑉𝐾 be any equitable partition of 𝑉 (H) such that 𝑉𝑖 ⊂ 𝑉 ′

𝑖 for 𝑖 ∈ [𝐿]: this
clearly exists by the definition of K.

Say that an r-tuple {𝑖1, . . . , 𝑖𝑟 } ∈ [𝐾] (𝑟 ) is good if 𝑑 (𝑉𝑖1 , . . . , 𝑉𝑖𝑟 ) > 1 − 2𝑟 𝜖0 or (𝑉𝑖1 , . . . , 𝑉𝑖𝑟 ) is
empty. Otherwise, say that {𝑖1, . . . , 𝑖𝑟 } is bad. Note that if {𝑖1, . . . , 𝑖𝑟 } ∈ [𝐿]𝑟 , then {𝑖1, . . . , 𝑖𝑟 } is good
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if (𝑈𝑖1 , . . . ,𝑈𝑖𝑟 ) is 𝜖-homogeneous. Indeed, if 𝑑 (𝑈𝑖1 , . . . ,𝑈𝑖𝑟 ) > 1 − 𝜖0, then

𝑑 (𝑉𝑖1 , . . . , 𝑉𝑖𝑟 ) > 1 −
|𝑈𝑖1 | . . . |𝑈𝑖𝑟 |
|𝑉𝑖1 | . . . |𝑉𝑖𝑟 |

𝜖0 ≥ 1 − 2𝑟 𝜖0,

and if 𝑑 (𝑈𝑖1 , . . . ,𝑈𝑖𝑟 ) < 𝜖0, then (𝑉𝑖1 , . . . , 𝑉𝑖𝑟 ) is empty by definition. The number of r-tuples
{𝑖1, . . . , 𝑖𝑟 } ∈ [𝐾] (𝑟 ) having a nonempty intersection with {𝐿 + 1, . . . , 𝐾} is fewer than (𝐾 − 𝐿)𝐾𝑟−1.
Hence, the total number of bad r-tuples is at most

𝜖0

(
𝐿

𝑟

)
+ (𝐾 − 𝐿)𝐾𝑟−1 < 𝜖0

(
𝐾

𝑟

)
+ 2𝑐0𝜖

1/𝑟 !
0 𝐾𝑟 ≤ 𝑐1𝜖

1/𝑟 !
0

(
𝐾

𝑟

)
,

where 𝑐1 = 𝑐1 (𝑟, 𝑠) > 𝑐0 depends only on r and s. Choose 𝜖0 such that both 𝑐1𝜖
1/𝑟 !
0 , 2𝑟 𝜖0 ≤ 𝜖 < 1/4. Then

𝑉1, . . . , 𝑉𝐾 is an equitable partition of H such that 8/𝜖 < 8/𝜖0 < 𝐾 ≤ 2𝑐′(1/𝜖0)2𝑛+1 < 𝑐(1/𝜖)𝑟 !(2𝑛+1)

for some 𝑐 = 𝑐(𝑟, 𝑠) > 0, and all but at most an 𝜖-fraction of the r-tuples of parts (𝑉𝑖1 , . . . , 𝑉𝑖𝑟 ) satisfy
that either 𝑑 (𝑉𝑖1 , . . . , 𝑉𝑖𝑟 ) > 1 − 2𝑟 𝜖0 > 1 − 𝜖 , or (𝑉𝑖1 , . . . , 𝑉𝑖𝑟 ) is empty. �

5. A Ramsey-type result for algebraic hypergraphs

In this section, we prove Theorem 1.6. First, let us extend the list of forbidden hypergraphs in algebraic
hypergraphs of constant complexity. To do this, we use a result about the maximum flattening rank
of tensors that are almost diagonal. Let 𝑇 : 𝐴1 × · · · × 𝐴𝑟 → F be an r-dimensional tensor. Let the
max-flattening rank of T, denoted by mfrank(𝑇), be the maximum of frank𝑖 (𝑇) for 𝑖 ∈ [𝑟]. Say that
an r-dimensional tensor 𝑇 : 𝐴𝑟 → F is semi-diagonal if the following holds. Let 𝑎1, . . . , 𝑎𝑟 ∈ 𝐴.
Then 𝑇 (𝑎1, . . . , 𝑎𝑟 ) = 0 if 𝑎1, . . . , 𝑎𝑟 are pairwise distinct, and 𝑇 (𝑎1, . . . , 𝑎𝑟 ) ≠ 0 if 𝑎1 = · · · = 𝑎𝑑 .
If 𝑎1, . . . , 𝑎𝑟 are neither all equal or all distinct, there is no restriction on 𝑇 (𝑎1, . . . , 𝑎𝑟 ). We prove the
following result in the companion note [34].

Theorem 5.1. Let 𝑇 : 𝐴𝑟 → F be an r-dimensional semi-diagonal tensor. Then

mfrank(𝑇) ≥ |𝐴|
𝑟 − 1

.

Let N𝑟 ,𝑠 be the family of r-uniform hypergraphs N having the following form. There are s disjoint
edges 𝑓𝑖 = {𝑢𝑖,1, . . . , 𝑢𝑖,𝑟 } for 𝑖 ∈ [𝑠], whose union is the vertex set of N , and the r element set
{𝑢𝑖1 ,1, . . . , 𝑢𝑖𝑟 ,𝑟 } is not an edge for any r-tuple (𝑖1, . . . , 𝑖𝑟 ) ∈ [𝑠]𝑟 , where 𝑖1, . . . , 𝑖𝑟 are pairwise distinct.
The rest of the r element subsets of the vertex set can be either edges or non-edges.

Lemma 5.2. Let H be a strongly algebraic r-uniform hypergraph of complexity (𝑛, 𝑑). Then H contains
no member of N𝑟 ,𝑠 for 𝑠 > (𝑟 − 1)

(𝑛+𝑑
𝑑

)
.

Proof. Let 𝑉 = 𝑉 (H) ⊂ F𝑛, and let 𝑓 : (F𝑛)𝑟 → F be the polynomial defining H. Define tensor
𝑇 : 𝑉𝑟 → F to be 𝑇 (x1, . . . , x𝑟 ) = 𝑓 (x1, . . . , x𝑟 ). Then by Lemma 2.2 mfrank(𝑇) ≤

(𝑛+𝑑
𝑑

)
.

Suppose that H contains a member of N𝑟 ,𝑠 for some 𝑠 > (𝑟 − 1)
(𝑛+𝑑

𝑛

)
. Then there exists u𝑖, 𝑗 ∈ F𝑛

for (𝑖, 𝑗) ∈ [𝑠] × [𝑟] such that 𝑓 (u𝑖,1, . . . , u𝑖,𝑟 ) ≠ 0 for 𝑖 ∈ [𝑠] and 𝑓 (u𝑖1 ,1, . . . , u𝑖𝑟 ,𝑟 ) = 0 for
(𝑖1, . . . , 𝑖𝑟 ) ∈ [𝑠]𝑟 for which 𝑖1, . . . , 𝑖𝑟 are pairwise distinct. Let 𝑇 ′ be the subtensor of T induced on
{u1,1, . . . , u𝑠,1}× · · · × {u1,𝑟 , . . . , u𝑠,𝑟 }. Identifying u𝑖, 𝑗 by i, the tensor 𝑇 ′ : [𝑠]𝑟 → F is semi-diagonal,
so

mfrank(𝑇) ≥ mfrank(𝑇 ′) ≥ 𝑠

𝑟 − 1

by Theorem 5.1. This is a contradiction, finishing the proof. �

Now everything is set to prove the main theorem of this section.
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Proof of Theorem 1.6. Let H ∈ F , and let 𝑁 = |𝑉 (H) |. Then H is an r-uniform strongly algebraic
hypergraph of complexity (𝑛, 𝑑). Let 𝜖 = 𝑁−𝛽/𝑟 !(2𝑛+1) . Then by Theorem 1.5, there is an equitable
partition of 𝑉 (H) into parts 𝑉1, . . . , 𝑉𝐾 for some 8/𝜖 < 𝐾 < 𝑐′(1/𝜖)𝑟 !(2𝑛+1) such that all but at most
𝜖-fraction of the r-tuples of parts either are empty or have density at least 1−𝜖 . Here, 𝑐′ = 𝑐′(𝑟, 𝑛, 𝑑) > 0.

For 𝑖 ∈ [𝐾], pick a vertex 𝑣𝑖 ∈ 𝑉𝑖 randomly with uniform distribution. Let H′ be the hypergraph
induced on the vertex set {𝑣1, . . . , 𝑣𝐾 }; then H′ ∈ F as well. Define the r-uniform hypergraph G on
vertex set [𝐾] as follows. The r-element set {𝑖1, . . . , 𝑖𝑟 } ∈ [𝐾] (𝑟 ) is an edge of G if and only if either
{𝑣𝑖1 , . . . , 𝑣𝑖𝑟 } ∈ 𝐸 (H) and 𝑑 (𝑉𝑖1 , . . . , 𝑉𝑖𝑟 ) ≥ 1 − 𝜖 , or {𝑣𝑖1 , . . . , 𝑣𝑖𝑟 } ∉ 𝐸 (H) and (𝑉𝑖1 , . . . , 𝑉𝑖𝑟 ) is
empty. Note that if (𝑉𝑖1 , . . . , 𝑉𝑖𝑟 ) either is empty or has density at least 1 − 𝜖 , then {𝑖1, . . . , 𝑖𝑟 } is an
edge with probability at least 1 − 𝜖 . Therefore, E(𝑑 (G)) ≥ 1 − 2𝜖 , so there is a choice for 𝑣1, . . . , 𝑣𝐾

such that 𝑑 (G) ≥ 1 − 2𝜖 . Fix such a choice. By Lemma 2.1, G contains a clique J of size at least
1
8 𝜖

−1/(𝑟−1) . Let H∗ be the subhypergraph of H induced on the vertex set {𝑣 𝑗 : 𝑗 ∈ 𝐽}. As H∗ ∈ F , H∗

contains either an independent set of size s or a clique of size 𝑐 |𝐽 |𝛼 = 𝑐1𝑁
𝛼𝛽/𝑟 !(𝑟−1) (2𝑛+1) for some

𝑐1 = 𝑐1 (𝑟, 𝑛, 𝑑, 𝑐, 𝛼, 𝛽) > 0. In the latter case, we are done, so assume that H∗ contains an independent
set {𝑣𝑖 : 𝑖 ∈ 𝐼} of size s.

We finish the proof by noting that at least one of 𝑈𝑖 , 𝑖 ∈ 𝐼 is an independent set in H. Otherwise,
if 𝑈𝑖 contains an edge 𝑓𝑖 for every 𝑖 ∈ 𝐼, then

⋃
𝑖∈𝐼 𝑓𝑖 spans a member of N𝑟 ,𝑠 in H, contradicting

Lemma 5.2. Therefore, H contains an independent set of size at least 1
2 �𝑁/𝐾� > 𝑐2𝑁

1−𝛽 , where
𝑐2 = 𝑐2 (𝑟, 𝑛, 𝑑, 𝑐, 𝛼, 𝛽) > 0. �

6. Concluding remarks

Following Fox and Pach [25], we say that a family of graphs G has the strong-Erdős-Hajnal property
if there exists a constant 𝑐 = 𝑐(G) > 0 such that for every 𝐺 ∈ G, either G or its complement contains
a bi-clique of size at least 𝑐 |𝑉 (𝐺) |. In [2], it is proved that the strong-Erdős-Hajnal property implies
the Erdős-Hajnal property in hereditary graph families and that the family of semi-algebraic graphs of
complexity (𝑛, 𝑑, 𝑚) has the strong-Erdős-Hajnal property. On the other hand, it is known that this is
not the case for algebraic graphs. For infinitely many N, one describes a strongly algebraic graph G of
complexity (3, 2) such that the size of the largest bi-clique in both G and its complement is 𝑂 (𝑁3/4).

If q is a prime power, the Erdős-Rényi graph 𝐸𝑅𝑞 is defined as follows. The vertices of 𝐸𝑅𝑞 are
the elements of the projective plane over F𝑞 , and (𝑥0, 𝑥1, 𝑥2) and (𝑦0, 𝑦1, 𝑦2) are joined by an edge if
𝑥0𝑦0 + 𝑥1𝑦1 + 𝑥2𝑦2 = 0. The graph 𝐸𝑅𝑞 has 𝑁 = 𝑞2 + 𝑞 + 1 vertices, is (𝑞 + 1)-regular and has at most
2(𝑞 + 1) vertices with loops. This graph contains no copy of 𝐾2,2 and has eigenvalues ±√𝑞 and 𝑞 + 1,
where the multiplicity of 𝑞 + 1 is 1; see, for example, [30]. By the expander mixing lemma (see, for
example, Theorem 2.11 in [30]), one can bound the number of the edges/non-edges of 𝐸𝑅𝑞 between two
disjoint subsets of vertices using its eigenvalues. This lemma implies that both 𝐸𝑅𝑞 and its complement
contains no bi-clique of size larger than

𝑁
√
𝑞

𝑞 + 1
= 𝑂 (𝑁3/4).

Note that the complement of 𝐸𝑅𝑞 is strongly algebraic of complexity (3, 2). Indeed, we can view
the vertices of 𝐸𝑅𝑞 as elements of F3

𝑞 by replacing each (𝑥0, 𝑥1, 𝑥2) ∈ PF2
𝑞 with one element of the

equivalence class 𝐶(𝑥0 ,𝑥1 ,𝑥2) = {(𝜆𝑥0, 𝜆𝑥1, 𝜆𝑥2) : 𝜆 ∈ F𝑞 \ {0}} ⊂ F3
𝑞 . For a variant of this construction,

see, for example, [10], Section 6.1.
Finally, let us mention that although algebraic graphs of bounded complexity do not have strong

Ramsey properties (as we proved in this paper), they are one of the main sources of best examples for so-
called Turán-type questions. Given an r-uniform hypergraph H, the extremal number (or Turán number)
of H denoted by ex(𝑁,H) is the maximum number of edges in an r-uniform hypergraph on N vertices
that contains no copy of H as a subhypergraph. If H is a graph, the asymptotic value of the extremal
number of H is known by the Erdős-Stone theorem, unless H is bipartite. The case of bipartite graphs
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is notoriously hard. In many cases, when the order of ex(𝑁, 𝐻) is known for some bipartite graph H,
the construction achieving the right order of magnitude is an algebraic graph of bounded complexity;
see, for example, [3, 4, 5, 22]. Algebraic hypergraphs of bounded complexity also appear in connection
to Turán type results; see, for example, [32, 16].
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